JPS59100485A - Color image display - Google Patents

Color image display

Info

Publication number
JPS59100485A
JPS59100485A JP20860682A JP20860682A JPS59100485A JP S59100485 A JPS59100485 A JP S59100485A JP 20860682 A JP20860682 A JP 20860682A JP 20860682 A JP20860682 A JP 20860682A JP S59100485 A JPS59100485 A JP S59100485A
Authority
JP
Japan
Prior art keywords
image display
picture element
color
color image
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20860682A
Other languages
Japanese (ja)
Inventor
坂田 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP20860682A priority Critical patent/JPS59100485A/en
Publication of JPS59100485A publication Critical patent/JPS59100485A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は5力ラー画像表示装置に関し、特に。[Detailed description of the invention] TECHNICAL FIELD The present invention relates to a pentagonal color image display device, and particularly to a pentagonal color image display device.

複数の色要素、例えばR’、+ 、G ’+ Bの三原
色を点状に配置する場合に絵素配置ピッチが最適になる
ようにしたカラー画像表示装置に関する。
The present invention relates to a color image display device in which the pixel arrangement pitch is optimized when a plurality of color elements, for example, the three primary colors of R', +, G'+B, are arranged in a dotted manner.

従来の絵素配置においては、絵素間隔を技術的に可能な
範囲で可及的に小さくして絵素が見えないよう構成する
ことに努めてきた。すなわち、絵素間隔は小さい程よい
という設計思想に基いて、カラー表示装置、カラーパネ
ルなどが製作、されてきたg   ・・   、。
In conventional picture element arrangement, efforts have been made to make the picture element spacing as small as possible within the technically possible range so that the picture elements cannot be seen. That is, color display devices, color panels, etc. have been manufactured based on the design concept that the smaller the pixel spacing, the better.

ところが、絵素間隔を極端に小さくすることは技術的(
こ困難があるのみならず、視覚の性質上。
However, it is technically difficult to make the pixel spacing extremely small (
Not only is this difficult, but it is also due to the nature of vision.

絵素間・隔を小さくす、る程良い画質が得られるもので
はないということが判明した。
It has been found that reducing the distance between picture elements does not result in better image quality.

本発明の、目的は、上述の点に鑑みて、最適の絵素配列
および絵素間隔を、視覚の特性に基いて決定し、もって
カラーパネルの画質を向上させると共に、sM技術をよ
シ容易としたカラー□画像□表系□装置全、提供、する
ことに、ある。     −かかる目的を達成するため
に本発明では、基準入力栢号屹対して1数め色要素から
なる単位の絵素が白バランスをとるよう複数の色要素の
発光量を設定し得るカラー画像表糸装置において、単位
の絵素間隔が最適視距離において垂直および水平ともに
2−鈷、cpdとなる・よ・う・配設する。
In view of the above-mentioned points, an object of the present invention is to determine the optimal pixel arrangement and pixel spacing based on visual characteristics, thereby improving the image quality of a color panel and facilitating the implementation of the sM technology. We provide all the color □image □surface system □equipment. - In order to achieve such an object, the present invention provides a color image table in which the luminescence amount of a plurality of color elements can be set so that a unit picture element consisting of the first color element with respect to a reference input model number maintains white balance. The thread device is arranged so that the unit pixel spacing is 2-pd, cpd both vertically and horizontally at the optimum viewing distance.

以下1図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to one drawing.

第1図面は、本発明の一実□施例に用いる絵素の配列を
示す。ここで各絵素前複数の色1素あ輝度比は、R−!
:Gキ3Bである□。か□かする点状絵素の配列は種々
考えられるが、R(赤)・G(緑)・B(青)の絵素を
用いて画面を隙間かり埋められること。
The first drawing shows an arrangement of picture elements used in one embodiment of the present invention. Here, the luminance ratio of multiple color elements in front of each picture element is R-!
:G, 3B, □. Various arrangements of dot-like picture elements can be considered, but it is possible to fill in the gaps on the screen using R (red), G (green), and B (blue) picture elements.

垂直および水平の各方向について等方であること、テレ
ビジヨンのように走査線構成の画像については走査線に
沿っても凹凸ができず絵素の端が一直線になること、な
どの理由から本図に示すような、素に対して、Gの絵素
を2個用いている。Gの絵素をコ個用いることにより、
白色を再現する際の□ 6お↓びRの単位面積当りの輝
度はほぼ等しくな、る。これ(こ門つ、てjl T S
 G方式における白色)くラン”xc’:+R+。、B
漬度比0.3 、: 0..4.? : 0.// l
):満足される。また、R,Bの各絵素に比べてGの絵
素が2倍あることは、Gが7個の絵素を用いて得られる
画像に比べて、無彩色および緑に近い画像の解像度が良
くなるという長□所を有する(入間の目は緑に最大感度
を有する)。
This is because it is isotropic in both the vertical and horizontal directions, and for images with a scanning line structure like television, there are no irregularities along the scanning line and the edges of the picture elements are in a straight line. As shown in the figure, two G picture elements are used for each element. By using G picture elements,
When reproducing white, the luminance per unit area of □ 6 ↓ and R are almost equal. This (komontsu, tejl T S
White color in G system) Kuran “xc”: +R+., B
Pickling ratio: 0.3: 0. .. 4. ? : 0. // l
): Satisfied. In addition, the fact that there are twice as many G pixels as there are R and B pixels means that the resolution of achromatic and green images is higher than that of images obtained using seven G pixels. It has the advantage of being better (Iruma's eyes are most sensitive to green).

さて、第1図(4)に示すパネルが無彩色になったとき
5画面の一部を取り出して、その輝度分布を示すと第2
図(B>’oようになる。すりわち、絵素Bに該当する
部分についてのみ輝度がiく(すなわち、暗くなって)
見える。
Now, when the panel shown in Figure 1 (4) becomes achromatic, a part of the 5 screen is taken out and its luminance distribution is shown.
Figure (B>'o. In other words, the brightness of only the part corresponding to picture element B becomes i (i.e., it becomes darker)
appear.

第2図は、視覚の空間周波数特性を示す。ここで、横軸
は空間周波数(Cpd)を表わし、縦軸は相対感度(c
lB )を表わす。本図より明らかなとおり、輝度パタ
ーンに関する空間周波数特性は5色度パターンについて
のものよりもはるかに広帯域でちる。従って5絵素が粗
いうちは2第1図(A)に示すR−G−Bの絵素配列が
そのまま見えて混色しないが、絵素が細かくなり色度の
分解能を超えると混色してしまう。しかし、輝度の変化
、す万わち絵素の明るさ分布(第1図[F])参照)は
識別することができる。さら1こ、絵素が細かくなって
明るさ変化の分解能を超えると、明るさによる絵素配列
(第7図03>参照)も見え碌くなり、絵素栂造は分ら
なくなってしまう。
FIG. 2 shows the spatial frequency characteristics of vision. Here, the horizontal axis represents the spatial frequency (Cpd), and the vertical axis represents the relative sensitivity (c
lb). As is clear from this figure, the spatial frequency characteristics for the luminance pattern are much broader than those for the five chromaticity pattern. Therefore, while the 5 pixels are coarse, the R-G-B pixel arrangement shown in Figure 1 (A) can be seen as is and colors do not mix, but as the pixels become finer and exceed the chromaticity resolution, colors will mix. . However, changes in brightness, ie, the brightness distribution of picture elements (see FIG. 1 [F])) can be discerned. Furthermore, when the picture elements become finer and exceed the resolution of brightness changes, the arrangement of picture elements according to brightness (see Figure 7, 03) also becomes difficult to see, and the picture elements become indiscernible.

なお、本出願人は、第3図に示すような編構造の絵素配
列について既に出願(特願昭見−第り3/バ≠号「画像
表示装置」)を行い、配列間隔dに最適間隔が存在する
ことを明らかにしている。かかる視覚効果は、暗部の点
状配列(第1図(B)参照)についても同様に妥当する
。例えば、絵素の空間的大きさおよびその配列間隔を順
次小さくしていつだ場合に、絵素のみの妨害窓(絵素の
目□、立つ程度)および鮮鋭窓は第弘図に示すような視
覚効果となって表われる。第グ図から明らかなとおり、
絵素が粗いと火線で示すように妨害窓は犬べくなりかか
る絵素で画像を構成した場合の画質としての評価値は小
さくなる。一方、絵素が細かく々ると見えにくくなり(
第一図に示す視覚の空間周波数特性により)かかる絵素
で画像を構成した場合の評価値(才人とガる。
The present applicant has already filed an application for a pixel array with a knitted structure as shown in FIG. It is clear that there is a gap. Such a visual effect is also valid for the dot-like array in the dark area (see FIG. 1(B)). For example, when the spatial size of the picture elements and their arrangement interval are gradually reduced, the interference window (the degree to which the picture element stands) and the sharpness window of only the picture elements become as shown in Figure 1. It appears as a visual effect. As is clear from Fig.
If the picture elements are coarse, as shown by the caustic line, the image quality evaluation value will be small when an image is composed of picture elements where the interference window tends to be too close. On the other hand, when the picture elements become smaller and smaller, it becomes difficult to see (
Based on the visual spatial frequency characteristics shown in Figure 1), the evaluation value when an image is composed of such picture elements (Saitoto Garu).

また、絵素の鮮鋭窓は、絵素が粗いときは比較的大きく
一定であるが、絵素が小さくなりその間隔が小さくなる
につれて、・絵素自体カニ見え(こくくなる。その結果
、絵素の鮮鋭窓も低下し、妙S力)る絵素で画像を構成
した場合の画質の評価イ直も低下する。
In addition, the sharpness window of a picture element is relatively large and constant when the picture element is coarse, but as the picture element becomes smaller and the interval between them becomes smaller, the picture element itself becomes sharp. The original sharpness of the window also deteriorates, and the evaluation of the image quality when an image is composed of picture elements that differ from each other also deteriorates.

これらの事実に基づき、絵素間隔【こ最適値のあること
が推定される。す、なわち、妨害窓75Sそれ41ど大
きくなくしかも鮮鋭窓が残っている程度の細かさを有す
、る絵素が最適であるといえる。
Based on these facts, it is estimated that there is an optimal value for the pixel spacing. In other words, it can be said that a picture element that is not large, such as the obstructing windows 75S and 41, but is fine enough to leave a sharp window, is optimal.

現実]こけ・、画像の内容自体が本来の画質の評価を決
定するはずであるが、絵素構造を有する1面面の絵素が
細かくなると5人間の視覚は1画イ象の内容の鮮鋭窓と
絵素の鮮鋭窓との両者を区′All L、得なくなる。
[Reality] The content of the image itself should determine the evaluation of the original image quality, but when the pixels on one surface with a pixel structure become finer, human vision becomes less sharp than the content of one image. Both the window and the sharpness of the picture element cannot be obtained.

実際に、ある種の画像(例えば、少女像)について妨害
感と鮮鋭感とを主観評価すると、第5図に示すような特
性(実験値)か得られる。ここで横軸は空間周波数(c
pd )を、縦軸は評価値を示す。また、実線は画質の
評価値を、点線および一点鎖線はそれぞれ妨害感および
画像の鮮鋭感(絵素の鮮鋭感も含む)を示す。本図より
明らか外とおシ、絵素が細かい(すなわち、空間周波数
が高い)領域では、妨害感および鮮鋭感を示す評価値は
互いに逆の特性を有して因る。その結果、総合的な評価
である画質の評価値は、あたかも、妨害感と鮮鋭感の低
い値の包終に近い形の実線となる。
In fact, when a certain type of image (for example, a girl's image) is subjectively evaluated for the sense of interference and sharpness, the characteristics (experimental values) shown in FIG. 5 are obtained. Here, the horizontal axis is the spatial frequency (c
pd), and the vertical axis shows the evaluation value. Further, the solid line indicates the evaluation value of the image quality, and the dotted line and the dashed-dotted line indicate the sense of interference and the sharpness of the image (including the sharpness of the picture elements), respectively. It is clear from this figure that in areas where the picture elements are fine (that is, the spatial frequency is high), the evaluation values indicating the sense of interference and the sense of sharpness have opposite characteristics. As a result, the evaluation value of image quality, which is a comprehensive evaluation, becomes a solid line that is almost at the end of low values for interference and sharpness.

第6図は、その他の画像に関する総合的な画質の評価値
を示す。ここで、横軸および縦軸は第!図と同様、それ
ぞれ空間周波数(opd)および評価値を表わす。本図
より明らか外とおり、空間周波数23−11.!tcp
d付近(こおいて、画質の評価値が最高となる。
FIG. 6 shows overall image quality evaluation values for other images. Here, the horizontal and vertical axes are number ! As in the figure, the spatial frequency (OPD) and evaluation value are shown, respectively. As clearly seen from this figure, the spatial frequency is 23-11. ! tcp
Around d (at this point, the image quality evaluation value is the highest).

また、現行の放送で用いられている走査線!2!゛本方
式の有効走査線数は、約グ60本である。′第1図■に
示すパネル構造のRGGB基本単位の大きさを、横がx
l<=>、縦が′y(鴎)であるとすると、画面高は≠
tby(聾)1画面幅はに10 ’y (mm)となる
。この画面を夕お本方式の適視距離1こ換算すると5画
面高の夕〜乙倍ということ1どなり、その数値は、23
ooy−′、27にoyとなる。垂直方向は一走査線幅
に/単位の画素とかうことになj、その空間周波数を計
算すると、 れぞれの逆数であり、ダ0− ’Ig cpdとなるっ
さらに、上述のXは、7単位の画素が横長(長方形)に
ガるとして、Jにucpdを最適ピッチとして計算する
。このとき、yを2fiとする。最小x1■は X1÷
17600 X 360/2πの逆数がグθであるとな
るっまた最大X2tanはX2−□中J、I(Mlノコ
5×360 となる。すなわち、このと、きカラーパネル表示装置の
画かくは縦ターθ圏、横/2:?’Ortmで、その最
適ピッチは垂直、2IIIIl+水平は2悶〜3.ざ−
となる。なお、高精lfa度の方式である//、2j本
方式では、有効走査線数を7000本とし、絵素の垂直
方向のピッチを/調とし、アスペクト比を3X!とすれ
ば。
Also, the scanning lines used in current broadcasting! 2! The effective number of scanning lines in this method is about 60. 'The size of the RGGB basic unit of the panel structure shown in Figure 1 ■ is x
If l<=> and the height is ′y (seagull), then the screen height is ≠
The width of one tby (deaf) screen is 10'y (mm). If this screen is converted to 1 point of suitable viewing distance for the Yu-Omoto method, it is 5 times the height of the screen, which is 1, and the value is 23.
ooy-', becomes oy at 27. In the vertical direction, it is equivalent to one scanning line width/unit pixel, etc., and when we calculate the spatial frequency, it is the reciprocal of each, and becomes da 0 - 'Ig cpd.Furthermore, the above-mentioned X is Assuming that 7 units of pixels are arranged horizontally (rectangular), ucpd is calculated as the optimum pitch for J. At this time, y is set to 2fi. The minimum x1■ is X1÷
The reciprocal of 17600 In the tar θ area, horizontal/2:?'Ortm, its optimal pitch is vertical, 2III1+horizontal is 2 to 3.
becomes. In addition, in the //, 2j method, which is a high-precision lfa method, the number of effective scanning lines is 7000, the vertical pitch of picture elements is /, and the aspect ratio is 3X! given that.

同様にして、画かくは縦1000陣、@1b7o■であ
ジ、その最適ピッチは垂直/庵(、a、y−犯cpd)
Similarly, the drawing is 1000 lines vertically, @1b7o■, and its optimal pitch is vertical/an (, a, y-cpd)
.

水平へl剛〜2.7疎となる。To the horizontal, it becomes l stiff ~ 2.7 sparse.

従って、第7図に示すように、1本の走査線幅の間にグ
個の絵素R、G’、 ’i 、Bから成る基本単位(第
1図(4)の破線で囲んだ部分)が収まるよう設計する
ことが最適である。このことは、より走査線数の多い高
品位テレビのみならず、1反対に、走査線数の少い方式
のテレビにも適用し得る。また、上述した基本単位の形
が長方形の場合1こけ、長辺方向の間隔(すなわち、低
周波となる成分)がJ−グj cpdになるよう設定す
ればよい。
Therefore, as shown in FIG. 7, a basic unit consisting of G picture elements R, G', 'i, and B (the part surrounded by the broken line in FIG. 1 (4) ) is optimal. This can be applied not only to high-definition televisions with a larger number of scanning lines, but also to televisions of a type with a smaller number of scanning lines. Further, when the above-mentioned basic unit shape is a rectangle, it may be set so that the interval in the long side direction (that is, the low frequency component) becomes J-gj cpd.

なお、/走査線の幅と上述のR,G、G;、B基本単位
との大きさを一致させることなく、より犬きなR、G、
G7.B基本単位を用いる場合には、2走査線分以上の
幅にまたがり、また、より小さなI’l、G、G、B基
本単位を用いる場合には、/走査線〒内に′以上(7)
R・G・G・B基本単位を含むようになる。その結果、
最適な絵素配列に比べて、画質の劣化が生じる。
In addition, without making the width of the /scanning line match the size of the above-mentioned R, G, G;, B basic unit, more narrow R, G,
G7. When using the B basic unit, it spans a width of two or more scanning lines, and when using the smaller I'l, G, G, B basic unit, it spans a width of more than (7 )
Includes R, G, G, and B basic units. the result,
Compared to the optimal pixel arrangement, image quality deteriorates.

本発面は、プラズマ表示方式によるカラーパネルのみな
らず、液晶を用いた方式によるパネルにも適用し得るこ
ともちろんでちる。
It goes without saying that the present invention can be applied not only to color panels using a plasma display method, but also to panels using a liquid crystal display method.

また、本発明は、R,、l c、 、 Bの絵素を用い
たカラー印刷にも適用することができる。
Further, the present invention can also be applied to color printing using R, lc, , and B picture elements.

以上呼明し苑とおり、本発明によれば、R,G。As mentioned above, according to the present invention, R, G.

Bの絵素を3〜(licpaの間隔をもって配列するこ
とにより最高の画質を得ることができるので、画像の品
質を向上させ、かつ製作費の上昇を抑えだカラー・画像
表示装置を得ることができる。換言すれば、微細な絵素
構造とする必要が力いので、製作費は低廉となり、しか
も、かかる微細な絵素構造による画像よシも質の良い画
像を得ることができる。
The highest image quality can be obtained by arranging the picture elements of B at intervals of 3~(licpa), so it is possible to obtain a color image display device that improves image quality and suppresses increases in production costs. In other words, since it is necessary to have a fine pixel structure, the manufacturing cost is low, and images of high quality can be obtained with such a fine pixel structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図面および(B)は本発明の一実施例に用いる絵素
の配列を説明する図、第一図は視覚の空間周波特性を示
す線図、第3図は編構造の絵素配列について説明する図
、第≠図は絵素の妨害窓および鮮鋭感を示す線図、第5
図および第6図は種々の画像における空間周波数対評価
値を示す線図、第7図は走査線と本発明にがかる絵素と
の関係を説明する図である。 特許出願人 日本放送協会 、1ご覧 1、!7ノ 第1図 (A)   ”  (B) 第2図 堅間周妻敦(cpd) 第3図 第4図 □ (湧、のピ・ソチ) 第5図 墾腸周5皮致 第6図 EE護汗訂−mI走査i+*分 741
The first drawing and (B) are diagrams explaining the pixel arrangement used in one embodiment of the present invention, the first drawing is a diagram showing the spatial frequency characteristics of visual perception, and the third drawing is about the pixel arrangement of the knitted structure. Figure 5 is a diagram showing the interference window and sharpness of picture elements.
6 and 6 are diagrams showing spatial frequency versus evaluation values in various images, and FIG. 7 is a diagram illustrating the relationship between scanning lines and picture elements according to the present invention. Patent applicant: Japan Broadcasting Corporation, 1 See 1,! 7 No. 1 (A) ” (B) 2. Atsushi Katama Shutsuma (cpd) 3. 4 EE Gokan Edition-mI scan i+*min 741

Claims (1)

【特許請求の範囲】 1)基準入力信号に対して複数の色要素からなる単位の
絵素が白バランスをとるよう該複数の色要素の発光量を
、設定し得るカラー画像表示装置において、前記単位の
絵素間隔が最適視距離において垂直および水平ともに5
〜4’5cpclとなるよう配設したことを特徴とする
カラー画像表示装置。 2)前記単位の絵素を等面積のR、C,、G、Bの色要
素で構成して正方形もしくは長方形に配設し、前記色要
素の単位面積当りの発光輝度をす、くなくともRとGに
ついてはほぼ等しく設定し、前記単位・の絵素が正方形
、の場合に楓、 は垂直および水平ともにそ、の間隔を、前:、記単位の
絵素が長方形の場合には長手方向の間隔を、Ω5−1f
!;cpaとしたことを特徴とする特許請求の範囲第1
項記載のカラー画像表示装置。 6)走査線の幅を、前記単位の絵素の垂直幅と等しくし
たことを特徴とする特許請求の範囲第1項またけ第2項
記載のカラー画像表示装置。。
[Scope of Claims] 1) A color image display device capable of setting the light emitting amount of a plurality of color elements so that a unit picture element consisting of a plurality of color elements maintains white balance with respect to a reference input signal, The unit pixel spacing is 5 both vertically and horizontally at the optimal viewing distance.
A color image display device characterized in that the color image display device is arranged so that the image size is 4'5 cpcl. 2) The unit picture element is composed of R, C, G, and B color elements of equal area and arranged in a square or rectangle, and the luminance per unit area of the color elements is at least R and G are set almost equally, and if the picture element in the above unit is a square, the interval is set as maple; if the picture element in the unit is a rectangle, the interval is set as . The distance in the direction is Ω5-1f
! The first claim characterized in that ;cpa
Color image display device as described in Section 1. 6) The color image display device according to claim 1 and claim 2, wherein the width of the scanning line is equal to the vertical width of the unit picture element. .
JP20860682A 1982-11-30 1982-11-30 Color image display Pending JPS59100485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20860682A JPS59100485A (en) 1982-11-30 1982-11-30 Color image display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20860682A JPS59100485A (en) 1982-11-30 1982-11-30 Color image display

Publications (1)

Publication Number Publication Date
JPS59100485A true JPS59100485A (en) 1984-06-09

Family

ID=16558989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20860682A Pending JPS59100485A (en) 1982-11-30 1982-11-30 Color image display

Country Status (1)

Country Link
JP (1) JPS59100485A (en)

Similar Documents

Publication Publication Date Title
TWI492204B (en) Improvements to color flat panel display sub-pixel arrangements and layouts with reduced blue luminance well visibility
US6023315A (en) Spatial light modulator and directional display
US7907133B2 (en) Pixel interleaving configurations for use in high definition electronic sign displays
US9691305B2 (en) Pixel interleaving configurations for use in high definition electronic sign displays
US6950115B2 (en) Color flat panel display sub-pixel arrangements and layouts
US7646398B2 (en) Arrangement of color pixels for full color imaging devices with simplified addressing
US20020140655A1 (en) Pixel driving module of liquid crystal display
CN108364568A (en) A kind of display panel, display device and color membrane substrates
JPH02304843A (en) Display device
CN110767159A (en) Display panel driving method and device and display equipment
CN108776388A (en) Double vision 3D display device and method based on gradual change slit grating
JPS60263122A (en) Color display panel
US4617563A (en) Liquid crystal display device
JPH1010998A (en) Colour display device
JPS59100485A (en) Color image display
CN111370455B (en) Pixel arrangement structure, display panel and display device
JPH03233593A (en) Color image display device
JP3123306B2 (en) Display device
JPS59208530A (en) Multicolor liquid crystal matrix panel
CA2061329A1 (en) Method and apparatus for improving output display device resolution
JPH0895027A (en) Color image display device
KR100836492B1 (en) Image display device
JPH01194576A (en) Video display device
JPH012086A (en) color display panel
JPS58217988A (en) Image display