JPS5899756A - Measurement of biological concentration of chemical substance employing aquatic animal - Google Patents

Measurement of biological concentration of chemical substance employing aquatic animal

Info

Publication number
JPS5899756A
JPS5899756A JP56197700A JP19770081A JPS5899756A JP S5899756 A JPS5899756 A JP S5899756A JP 56197700 A JP56197700 A JP 56197700A JP 19770081 A JP19770081 A JP 19770081A JP S5899756 A JPS5899756 A JP S5899756A
Authority
JP
Japan
Prior art keywords
chemical substance
concentration
chemical
speed
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56197700A
Other languages
Japanese (ja)
Inventor
Yoshiji Kajiwara
梶原 美次
Kenichiro Yoshikuni
吉国 研一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56197700A priority Critical patent/JPS5899756A/en
Publication of JPS5899756A publication Critical patent/JPS5899756A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Abstract

PURPOSE:To enable the measurement of biological concentration of chemical compounds for such a short time as only a few days by determinig the intake speed and the excretion speed of the chemical compound when it is orally dosed to an aquatic animal once. CONSTITUTION:A test tank with a capacity of 120l is kept at the temperature of 25 deg.C. Twenty carps are put in the tank and made inured to the environment for 2 weeks. Then, they are dosed with a feed containing chemical compounds as listed at a rate of 1% of the weight per fish. The feed is 20% in the water content with a diameter of 3mm. and a length of 3mm.. Then, five each of the carps are sampled at a specified time interval and undergo an analysis as a whole after the removal of intestinal tracts thereof. From the results of the analysis, a graph is obtained which indicates a relationship of logarithmic values of the concentrations of the chemical compounds in the carps to the time passed after the dosage of the compounds. Based on the graph, the constant of the intake speed and the constant of the excretion speed are determined for each chemical compound and further, the ratio of both the speed constants is calculated.

Description

【発明の詳細な説明】 本発明は化学物質を経口投与によシ1向水棲生1に投与
して、その取込み速度及び排泄速度を測定する仁と罠よ
り、短時間に濃縮度を測定可能とすると共に、水に不溶
性又は分散性の悪い化合物をも適用し得る化学物質の生
体濃縮度測定方法に関する。
[Detailed Description of the Invention] The present invention enables the concentration level to be measured in a short time by administering a chemical substance orally to aquatic organisms and measuring its uptake rate and excretion rate. The present invention also relates to a method for measuring bioconcentration of chemical substances, which can also be applied to compounds that are insoluble or poorly dispersible in water.

近年化学工業の急速な発展に伴ない、へ体反び環境に対
する化学物質の影響が太き一問題にされるに至っている
が、従来もこれらの化学物質の安全性の評価を1的とし
て、化学物質の水棲生物に対する濃縮度が測定されてい
ゐ。この濃縮度測定方法は、複数個の試験水槽に互に異
なる濃度の化学、物質等の水溶液を常時流入させなから
−これら試験水、槽中で水棲生物を長期間(通常2月間
)飼育して経口法によるととなく、主にエラを通して水
棲生物中に化学物質を濃縮させ、この−化学物質の溶j
性化学物質にも適用でき、しかも濃縮度の測定に要する
日数もわずか数日と短かい、水棲生物を用いた化学物質
の生体濃縮度測定方法を提供することを目的とする。
In recent years, with the rapid development of the chemical industry, the influence of chemical substances on the human body and the environment has become a major issue. The concentration of chemicals in aquatic organisms has been measured. This concentration measurement method is based on the fact that aqueous solutions of chemicals, substances, etc. with different concentrations are constantly flowing into multiple test tanks; aquatic organisms are kept in these test waters and tanks for a long period of time (usually two months). This method concentrates chemicals in aquatic organisms primarily through the gills, regardless of the oral method.
The purpose of the present invention is to provide a method for measuring bioconcentration of chemical substances using aquatic organisms, which can be applied to sexually active chemical substances, and requires only a few days to measure the concentration.

゛ 即ち、本発明は水棲生物に化学物質を投与して水棲
生物に対する化学物質の濃縮度を測定する生体濃縮度測
定方法において、経口投与法により水棲生物に化学物質
を1回設−与し、投与以後水叛生一体内に取込まれる化
学物質量を経時的に測定して得られt測定値から取込み
速度定数友び排泄速度定数を求め、この両定数の値から
化学物質の水棲生物に対する濃縮度を求めるものである
゛ That is, the present invention provides a bioconcentration measurement method for measuring the concentration of a chemical substance in an aquatic organism by administering a chemical substance to an aquatic organism, in which the chemical substance is administered once to the aquatic organism by an oral administration method, After administration, the amount of the chemical substance taken into the aquatic organisms is measured over time, and the uptake rate constant and excretion rate constant are calculated from the measured value of t. From the values of these two constants, it is possible to determine the effect of the chemical substance on aquatic organisms. This is to find the degree of concentration.

本発明に使用する水棲生物としては、コイ、フナ、テラ
ピア、マス等の淡水に生息する水棲生物やタイ等の海水
に生息する水棲生物などが使用できるが。
As the aquatic organisms used in the present invention, aquatic organisms that live in freshwater such as carp, crucian carp, tilapia, and trout, and aquatic organisms that live in seawater such as sea bream can be used.

入手の容易性、取扱:い易さ等か気特にコイが好ましい
。これらの水棲生物は一定の成長時期のものを選んで使
用することがデータのバラツキ2y&:小さ・t 10
 fi、体重20〜409程度のものが好適に使用され
る。
Carp is particularly preferred because of its ease of availability and ease of handling. Because these aquatic organisms are selected and used during a certain growth period, the data variation is 2y &: small・t 10
fi, and those with a weight of about 20 to 409 are preferably used.

試験水槽としては通常のガラス製の箱塑水〜岬が適宜使
用できるが、食残した餌料等から化学物質が水槽水中に
溶出して水棲生物に吸収されたりすることのないように
、新しい伺育水が常時流入する流水式試験水槽が使い易
い。ま穴、流入する飼育水は調温され、溶存IIXを充
分含有し、実質的に有害成分を含有していないものであ
ることを要すゐ。
As a test tank, an ordinary glass box plastic water tank can be used as appropriate, but a new tank is used to prevent chemical substances from uneaten food from leaching into the tank water and being absorbed by aquatic organisms. A running water test tank with constant water supply is easy to use. The inflowing breeding water must be temperature controlled, contain sufficient dissolved IIX, and be substantially free of harmful components.

本発明にシいては、上記試験水槽等に準備された水棲生
物に、既知量の化学物質を1回だけ経口投与するもので
、ある。化学物質は通常餌料に混合して成型し雷ものが
好ましく、例えば平均体重が20〜30f@度の魚を試
験に用いる場合には化学物質を混合し九餌料紘直径1〜
3肱長さ3〜5INIL@度の大きさに成形することが
望ましい。このように成形した化学物質を含有する餌料
は一般に化−物質量を測定するものであるが、測定回数
は化学物質の取り込み速度定数、排泄速度定数、測20
回/日程度である。測定期間は通常化学物質を投与後水
棲生物中の化学物質濃度が最大となるまでの時間の約4
倍を全測定期間とすれば充分であシ、この期間は化学物
質により多少異なるがご般的にFi24時間以内である
According to the present invention, a known amount of a chemical substance is orally administered only once to aquatic organisms prepared in the test tank or the like. It is preferable that the chemical substance is usually mixed with the bait and molded into a shape. For example, when using fish with an average weight of 20 to 30 degrees for the test, the chemical substance is mixed with the bait and the diameter of the bait is 1 to 1.
It is desirable to form it into a size with a length of 3 to 5 inches. Feed containing chemical substances formed in this way is generally used to measure the amount of chemical substances, but the number of measurements is based on the uptake rate constant, excretion rate constant, and measurement of chemical substances.
times/day. The measurement period is usually approximately 4 hours, which is the time required for the concentration of the chemical in aquatic organisms to reach its maximum after administration of the chemical.
It is sufficient to double the total measurement period, and although this period varies somewhat depending on the chemical substance, it is generally within Fi 24 hours.

ま几、水棲生物中の化学物質の濃度の測定方法は適宜な
分析方法が選択され得る。t*、水棲生物 −を全体分
析する場合に社、水棲生物体内に未取込みの化学物質が
残存する可能性のある腸管を予め除去した優、分析に供
する等の配膳の必要な場合もある。
As a method for measuring the concentration of chemical substances in aquatic organisms, an appropriate analytical method can be selected. When analyzing the entire body of an aquatic organism, it may be necessary to remove the intestinal tract in advance, in which unincorporated chemical substances may remain in the aquatic organism's body, and prepare the aquatic organism for analysis.

本発明においては、このようにして求めた化学物質の水
棲生物への取込み量(濃度)と時間の関係から取込み速
度定aKi及び排泄速度定数〜を求めるものである。こ
の両定数拡下記式(1) 、 (214エ水棲生物にお
ける化学物質の排泄速度定数 C;化学物質の水棲生物白濃度 D:水棲生物の消化管内に残存する吸収0工能な化学物
質量 で定義されるものであるが、このに1tK鵞の値を求め
る方法としては作図法によるのが簡便である。
In the present invention, the uptake rate constant aKi and the excretion rate constant ~ are determined from the relationship between the amount (concentration) of the chemical substance taken into aquatic organisms and time determined in this way. Expanded formula (1) for both of these constants, (214E Excretion rate constant C of a chemical substance in aquatic organisms; Concentration D of a chemical substance in aquatic organisms D: Amount of a chemical substance with zero absorption capacity remaining in the digestive tract of an aquatic organism. Although it is defined, it is convenient to use the drawing method to find the value of 1tK.

即ち、第1°図は水棲生物に化学物質を1回投与後の時
間経過と水棲生物中の化学物質濃度の夾測値との関係を
示すグラフを用いて、作図法によシx、、 Klを求め
る場合の一例を示すものである。このグラフの曲線Pは
実測によシ得られた水棲生物中の化学物質の濃度曲線で
、この曲lsPにおいては、化学物質を投与した後1.
に至るまでの期間は水棲生物中の化学物質濃度の増加す
る増加期で、tlを過ぎた後は時間の経過と共に減少す
る減少期となっている。この減少期における曲線ptt
−=に、= 0.639 / t34    −・・・
・ (3)−4た、艮は前記外挿線Q或いはへの値と増
加期(t=o−t、)の曲mpとの差を算出し、これを
グラフ上にグロットし、これらのゾロットし次点とへと
を結ぶ直線Rの傾斜として作図的に求めることができる
That is, the first diagram is created using a drawing method using a graph showing the relationship between the elapsed time after a single administration of a chemical substance to an aquatic organism and the measured concentration of the chemical substance in the aquatic organism. This shows an example of finding Kl. Curve P in this graph is a concentration curve of chemical substances in aquatic organisms obtained through actual measurements.In this curve P, 1.
The period leading up to tl is an increasing period in which the concentration of chemical substances in aquatic organisms increases, and after tl there is a decreasing period in which it decreases with the passage of time. The curve ptt in this decreasing period
-=to, = 0.639/t34 -...
・(3)-4, Ai calculates the difference between the value of the extrapolation line Q or the value of the song mp in the increasing period (t=o-t,), plots this on the graph, and calculates these It can be determined graphically as the slope of the straight line R connecting the first point to the next point.

このようにして求め九取込み速度定数氏、排泄速度定数
4から下記式(4) %式%(4) で示される速度定数比Kを求めると、このKの値は従来
の濃縮度Cfの対数値と極めて高い相関性が認められる
ものである。
From the 9 uptake rate constants obtained in this way and the excretion rate constant 4, the rate constant ratio K expressed by the following formula (4) is determined. It is recognized that there is an extremely high correlation with the numerical value.

従って、予め実験によシ求めたKの値と濃縮度Cfの対
数の値との関係を示すグラフを用いて、任意の化学物質
の1回投与により求め7’cKの値から濃縮度Cf を
読み取ることにより濃縮[Cfが求まるものである。
Therefore, using a graph showing the relationship between the value of K determined in advance by experiment and the logarithm value of the concentration Cf, the concentration Cf can be calculated from the value of 7'cK determined by a single administration of an arbitrary chemical substance. Concentration [Cf] is determined by reading.

の概略濃縮度を短時間で求める必要がある場合等には好
都合である。ま几、本発明方法による場合の測定精度は
高い。更に、本法によれば、経口投与によシ化学物質を
投与するものであるから、従来法のように水に分散又祉
溶解することが困難な化学物質でも簡単に試験に供する
ことができる上、試験設備も簡単なものとな・る等の利
点を有する。
This is convenient when it is necessary to determine the approximate concentration of a substance in a short time. However, the measurement accuracy when using the method of the present invention is high. Furthermore, according to this method, chemical substances are administered orally, so even chemical substances that are difficult to disperse or dissolve in water as in conventional methods can be easily tested. Moreover, it has the advantage that the test equipment is simple.

以下、実施例によp本発明を更に具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔実施例〕〔Example〕

mll!に示す化学物質、茂び*:機生物としてコイを
用いて本発明方法によシ各化合物の速度定数比を求峠た
mll! The rate constant ratio of each compound was determined by the method of the present invention using carp as a living organism.

第  1  表 即ち、容積が1201の試験水槽の水槽温度を25とし
、この中にコイを20尾入れて2週間環境にらした後、
化学物質を含有する直径3iua、長さ−、含水率20
91の餌料を魚体重のl−量給餌・し°た0次いで、所
定時間間隔毎に各5尾ずつ裸馬し、腸管を除いて全体を
分析に供した。この分析結果から、投与後の経過時間に
対するコイ中の化学物質濃度の対数値の関係を示すグラ
フを得九。このグラフから作図法により各化学゛物質の
取込み速度定数騰及び排泄速率定数に、を求め、更に速
度定数比Kを求め九結果をi2表に示した。また比較の
為に、従来法によシ求めた濃縮度ofを併記した。
Table 1: A test tank with a volume of 1,201 cm was set at a temperature of 25, and 20 carp were placed in it and left in the environment for 2 weeks.
Contains chemicals diameter 3 iua, length -, moisture content 20
91 feed was fed in an amount equal to 1 of the fish body weight.Then, 5 fish each were stripped at predetermined time intervals, and the entire fish was subjected to analysis with the intestinal tract removed. From the results of this analysis, a graph showing the relationship between the logarithm of the chemical concentration in the carp and the elapsed time after administration was obtained. From this graph, the uptake rate constant increase and excretion rate constant of each chemical substance were determined by the plotting method, and the rate constant ratio K was also determined, and the results are shown in Table i2. For comparison, the concentration of determined by the conventional method is also shown.

このようKして得られ7’?1.にの値と従来法によシ
求めた濃縮度Cfとの関係を第2図に示す。この場合、
相関性はr 諺0.99で極めて良い相関性を有してい
た。
K like this and get 7'? 1. FIG. 2 shows the relationship between the value of C and the concentration Cf determined by the conventional method. in this case,
The correlation was extremely good with an r of 0.99.

【図面の簡単な説明】[Brief explanation of the drawing]

1第1−図は作図法によシ取込み速度定数Km及び排醜
1速度定数〜を求める場合の外挿線を記入した、*6棲
生物中の化学物質濃度の対数と投与後の経過時間との関
係を示すグラフ、第2図は従来法によるjog ’;:
 fと速度定数比の関係を示すグラフである。 w軒zsh   工第技イ・tl院没 石板誠−。 投与後の経過時間(1) 第2図 取込み速度定数(K t ) /!J興漣度定数(K2
)手  続  補  正  書 昭和57年4月ニア日 特許庁長官島田春樹′殿 1、事件の表示  昭和56年特許願第197700号
      ′2、発明の名称  水棲生物を用いた化
学物質の生体濃縮度測定−方法 〜& 補正をする者         。 事件との関係 、特許出願人 5−4Qo”a’s、”” m。57$3Ji3oB 
  。 & 補正の対i  図 面
1. Figure 1 shows the extrapolation lines used to calculate the uptake rate constant Km and the removal rate constant ~. *6 Logarithm of chemical concentration in living organisms and elapsed time after administration. Figure 2 is a graph showing the relationship between jog '; and Figure 2.
It is a graph showing the relationship between f and rate constant ratio. Wkenzsh Technological Techniques Lee Tl Inn Sekiban Makoto. Elapsed time after administration (1) Figure 2 Uptake rate constant (K t ) /! J xingren degree constant (K2
) Procedures Amendment Written by Mr. Haruki Shimada, Commissioner of the Patent Office of Japan, April 1982 1. Indication of the case Patent Application No. 197700 of 1981 2. Title of the invention Bioconcentration of chemical substances using aquatic organisms Measurement - Method - & Person who makes corrections. Relationship to the incident, patent applicant 5-4Qo"a's,""m.57$3Ji3oB
. & correction pair i drawing

Claims (1)

【特許請求の範囲】 1 水棲生物に化学物質を投与して水棲生物に対する化
学物質の濃縮度を一定する生体濃縮度測定方法において
一経口投与法によシ水棲生物rc化学物質を1回投与し
、投与以後水棲生物体内に取込まれる化学物質量を経時
的に測定して得られる測定値から取込み速度定数反び排
泄速度定数を求め、この画定数の値から化学物質の水棲
生物に対する濃縮度を求めることを特徴とする化学物質
の生体濃縮度測定方法。 2 水棲生物が淡水魚である特許請求の範囲第1項記載
の測定方法。
[Scope of Claims] 1. In a bioconcentration measurement method in which a chemical substance is administered to an aquatic organism to maintain a constant concentration of the chemical substance in the aquatic organism, an RC chemical substance is administered once to an aquatic organism by a single oral administration method. , the uptake rate constant and excretion rate constant are determined from the measured values obtained by measuring the amount of the chemical substance taken into the aquatic organism body over time after administration, and the concentration of the chemical substance in the aquatic organism is determined from the value of this demarcation constant. A method for measuring bioconcentration of a chemical substance, characterized by determining the bioconcentration of a chemical substance. 2. The measuring method according to claim 1, wherein the aquatic organism is a freshwater fish.
JP56197700A 1981-12-10 1981-12-10 Measurement of biological concentration of chemical substance employing aquatic animal Pending JPS5899756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197700A JPS5899756A (en) 1981-12-10 1981-12-10 Measurement of biological concentration of chemical substance employing aquatic animal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197700A JPS5899756A (en) 1981-12-10 1981-12-10 Measurement of biological concentration of chemical substance employing aquatic animal

Publications (1)

Publication Number Publication Date
JPS5899756A true JPS5899756A (en) 1983-06-14

Family

ID=16378898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197700A Pending JPS5899756A (en) 1981-12-10 1981-12-10 Measurement of biological concentration of chemical substance employing aquatic animal

Country Status (1)

Country Link
JP (1) JPS5899756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052784A (en) * 2015-07-17 2015-11-18 中国水产科学研究院黄海水产研究所 Metabolism physiological measurement system and method for marine organisms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052784A (en) * 2015-07-17 2015-11-18 中国水产科学研究院黄海水产研究所 Metabolism physiological measurement system and method for marine organisms

Similar Documents

Publication Publication Date Title
Smith et al. Use of chromic oxide as an indicator of fecal output for the purpose of determining the intake of pasture herbage by grazing cows
Petersen et al. Intercalibration of mussel Mytilus edulis clearance rate measurements
Fazio et al. Comparative study of some hematological and biochemical parameters of Italian and Turkish farmed rainbow trout Oncorhynchus mykiss (Walbaum, 1792)
Haws et al. Some aspects of the hematology of two species of catfish in relation to their habitats
Yildiz et al. The anesthetic effects of clove oil and 2-phenoxyethanol on rainbow trout (Oncorhynchus mykiss) at different concentrations and temperatures
Fazio et al. Blood hemogram profiles of farmed onshore and offshore gilthead sea bream (Sparus aurata) from Sicily, Italy
Bugman et al. Evaluation of the anesthetic efficacy of alfaxalone in oscar fish (Astronotus ocellatus)
Douben Metabolic rate and uptake and loss of cadmium from food by the fish Noemacheilus barbatulus L.(stone loach)
Arp et al. Burrow environment and coelomic fluid characteristics of the echiuran worm Urechis caupo from populations at three sites in northern California
Thomas et al. Apparent ammonia-nitrogen production rates of white sturgeon (Acipenser transmontanus) in commercial aquaculture systems
Katz et al. The stability and efficacy of tricaine methanesulfonate (MS222) solution after long-term storage
Burnett et al. The role of branchial ventilation in hemolymph acid-base changes in the shore crabCarcinus maenas during hypoxia
Hydock et al. A standard protocol for fecal pH measurement in the horse
JPS5899756A (en) Measurement of biological concentration of chemical substance employing aquatic animal
Mangum et al. Oxygen uptake and transport in the prosobranch mollusc Busycon canaliculatum. I. Gas exchange and the response to hypoxia
Hartman et al. Some blood constituents of the normal skate
Griffin et al. Effect of exposure to potassium permanganate on stress indicators in channel catfish Ictalurus punctatus
Mones et al. Lactic acidosis induced by manual restraint for health evaluation and comparison of two point-of-care analyzers in healthy loggerhead sea turtles (Caretta caretta)
Chen et al. Effects of anesthetic eugenol on respiration and excretion of Sinogastromyzon szechuanensis
Rizzo et al. Biochemical, histopathologic, physiologic, and behavioral effects of nonsteroidal antiinflammatory drugs in rainbow trout (Oncorhynchus mykiss)
Shull The value of anion gap and osmolal gap determination in veterinary medicine
MacAvoy et al. Effects of tricaine methanesulfonate (MS‐222) on hematocrit: first field measurements on blacknose dace
Miller et al. Ornamental fish
Swann et al. Use and application of salt in aquaculture
Semple Compensatory changes in the rat following removal of electrolytes by intraperitoneal dialysis