JPS5899751A - Measurement of concentration of sulfur in fuel - Google Patents

Measurement of concentration of sulfur in fuel

Info

Publication number
JPS5899751A
JPS5899751A JP19795681A JP19795681A JPS5899751A JP S5899751 A JPS5899751 A JP S5899751A JP 19795681 A JP19795681 A JP 19795681A JP 19795681 A JP19795681 A JP 19795681A JP S5899751 A JPS5899751 A JP S5899751A
Authority
JP
Japan
Prior art keywords
fuel
concentration
waste gas
flow rate
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19795681A
Other languages
Japanese (ja)
Inventor
Akio Yamamoto
山本 章生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19795681A priority Critical patent/JPS5899751A/en
Publication of JPS5899751A publication Critical patent/JPS5899751A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure all ion components in a fuel continuously for an actual time by processing the flow rate of a fuel, the flow rate of a waste gas generated from the combustion thereof and the concentration of sulfur dioxide. CONSTITUTION:A coke gas sampled from a piping system 1 by way of a sampling line 3, a pre-treating device 2<a>, a standard gas feed valve 2<b>, a constant flow valve 2<c> and a gas flowmeter 2<d> and combustion air supplied from an air source by way of a mist separator 2<e>, a constant flow valve 2<f> and an air flowmeter 2<g> are mixed together with a mixer 2<h> and then, sent to a reaction tank 2<k>, where they are burned completely under a platinum catalyst. A waste gas generated by the combustion reaction is fed to an SO2 analyzer 5 via a waste gas flowmeter 4 to measure the concentration of sulfur dioxide. The measurement signals are inputted into an arithmetic unit 6 to compute sulfur components in the fuel.

Description

【発明の詳細な説明】 本発明は、燃料中のイオタ濃度測定方法に関する。[Detailed description of the invention] The present invention relates to a method for measuring iota concentration in fuel.

近時、公害対策上から二酸化イオタの総排出量を抑制す
る燃焼制御を行うために燃料中のイオク分を計測するこ
とが要求されており、また燃料ガス中の脱硫を行う設備
においてその安定稼動のために脱硫後のイオク分を計測
することが必要である。
Recently, there has been a need to measure the iodine content in fuel in order to perform combustion control to suppress the total emission of iota dioxide from the perspective of pollution prevention, and it is also necessary to measure the iodine content in fuel gas in order to ensure stable operation of equipment that desulfurizes fuel gas. Therefore, it is necessary to measure the ion content after desulfurization.

従来\燃料中のイ、オフ濃度測定方法として各種の方法
が提案され−ている。例えば硫化水素の選択′性が優れ
た半導体センサの電気伝導率の5化を調べる半導体セン
サによる方法、酢酸鉛が付着した感応テ′−プをサンプ
ルに接触させて下記(1)式の反応による発色の度合を
測定する試験紙光電光度法がある0  □ 、(CH3C’OO)2Pb + H2S→2CH3C
OOH+PbS・・・(1)しかしり者は再現性及び応
答性が悪く、後者は応答性、感応テープ交換の必要性等
に問題があるほか、両者共、硫化水素についてのみ計測
するものであり、全イオク分を計測する方法ではない。
Conventionally, various methods have been proposed for measuring the off concentration in fuel. For example, there is a method using a semiconductor sensor to check the electrical conductivity of a semiconductor sensor with excellent selectivity for hydrogen sulfide, and a method using a semiconductor sensor in which a sensitive tape coated with lead acetate is brought into contact with the sample and the reaction of the following formula (1) is carried out. There is a test paper photoelectric photometry method to measure the degree of color development0 □ , (CH3C'OO)2Pb + H2S→2CH3C
OOH + PbS... (1) However, the latter has poor reproducibility and response, and the latter has problems with response, the need to replace the sensitive tape, etc., and both measure only hydrogen sulfide. This is not a method to measure the total ion content.

ところが燃料中のイオク分は、硫化水素が主成分である
が、それ以外の成分も相当含有されている。例えばコー
クスガス中のイオタ濃度は、第1表に示す如・く、硫化
水素が250〜350ppm含有される一方、それ以外
の成分も26〜42 ppm含有されておシ、硫化水素
だけを計測する場合は、そのイオタ分計測値は10%以
上低目となる。
However, although the iodine content in fuel is mainly hydrogen sulfide, it also contains a considerable amount of other components. For example, the iota concentration in coke gas, as shown in Table 1, contains 250 to 350 ppm of hydrogen sulfide, but also 26 to 42 ppm of other components, so only hydrogen sulfide is measured. In this case, the iota measured value will be lower by 10% or more.

−(以下余白) 第  1  表 更に塩酸酸性のモリブデン酸アンモニウム溶液と硫化水
素との青色発色度合を比色法にて測定する電量滴定法、
赤外線の特定波長における吸収。度合が硫化水素濃度に
応じて変化することを利用した赤外線吸収法もあるが、
前者は測定時の安全性に問題があり、後者は硫化水素の
吸収波長域にメタン、二酸化窒素、二酸化イオタ等の吸
収波長域が重なるのでその干渉が大きいという難点があ
る。
- (blank below) Table 1 Furthermore, the coulometric titration method for measuring the degree of blue color development between an ammonium molybdate solution acidified with hydrochloric acid and hydrogen sulfide using a colorimetric method;
Absorption at specific wavelengths of infrared radiation. There is also an infrared absorption method that utilizes the fact that the degree changes depending on the hydrogen sulfide concentration.
The former has a problem with safety during measurement, and the latter has the disadvantage that the absorption wavelength range of hydrogen sulfide overlaps with the absorption wavelength range of methane, nitrogen dioxide, iota dioxide, etc., and the interference is large.

更にガスクロマトグラフィによる方法は、硫化水素以外
のイオク分の測定も可能であるが、非常に高価な装置が
必要であシ、オンライン計測にけ本発明は所かる事情に
鑑みてなされたものであシ、燃料中の全イ芭り分を実時
間で連続的に計測できるイオタ濃度測定方法を提供する
ことを目的とする。
Furthermore, gas chromatography allows measurement of ions other than hydrogen sulfide, but requires very expensive equipment, and the present invention was developed in view of these circumstances. Another object of the present invention is to provide a method for measuring iota concentration that can continuously measure all iota concentrations in fuel in real time.

本発明に係る燃料中のイオタ濃度測定方法は、燃料の流
量と該燃料を燃焼させて生成した廃ガスの流量と該廃ガ
ス中の二酸化イオタ濃度とに基づき燃料中のイオタ濃度
を求めることを#f徴とする。
The method for measuring the iota concentration in fuel according to the present invention involves determining the iota concentration in the fuel based on the flow rate of the fuel, the flow rate of the waste gas generated by burning the fuel, and the iota dioxide concentration in the waste gas. #f characteristic.

先ず気体燃料について、コークスガス−を例にとって本
発明の詳細な説明子る。白金を触−媒とじぞコークスガ
スを完全燃焼させ、このときの燃料流量と亮ガス流量と
廃ガス中の二酸化イオタ濃度と主測定すると、該測定値
の間には下記(2)式が成立する。即ちコークス−ガス
lNd1時当たりに発生する廃ガスの中の二酸化イオタ
のモル数M(So、)は、下記(2)式にて表わされる
First, regarding gaseous fuel, the present invention will be explained in detail using coke gas as an example. When platinum is used as a catalyst to completely burn coke gas, and the main measurements are the fuel flow rate, light gas flow rate, and iota dioxide concentration in the waste gas, the following equation (2) holds true between the measured values. do. That is, the number of moles M (So,) of iota dioxide in the waste gas generated per hour of coke gas lNd is expressed by the following equation (2).

但し F(Exh、aust ) :廃ガ哀流量(N−
7時)C(SO2) :廃ガス中の二酸化イオタ濃度(
ppm)F(COG):コークスガス流量(Nw1時)
そして下記(3)式に示す反応式により二酸化イオタが
全て硫化水素の一燃焼に−より生成するものと仮定する
と1 、二酸化イネ91モルは硫化水素1モルに相当するから
、コークスガス中の全イオク分を硫化水素に換算した値
C(H,S)は、(2)式より下記(4)式で表わされ
ることとなる。
However, F (Exh, aust): Waste gas flow rate (N-
7 o'clock) C (SO2): Iota dioxide concentration in waste gas (
ppm) F (COG): Coke gas flow rate (Nw 1 hour)
Assuming that all iota of dioxide is generated by one combustion of hydrogen sulfide according to the reaction formula shown in equation (3) below, 91 moles of rice dioxide corresponds to 1 mole of hydrogen sulfide, so all of the iota in coke gas is The value C(H,S) obtained by converting the ion content into hydrogen sulfide is expressed by the following equation (4) from equation (2).

似し C(H,S):コークスガス中の全イオク分の硫
化水素濃度換算値(ppm) 次に液体燃料又は固体燃料と液体燃料との混合燃料の場
合も燃料を完全燃焼させ、このときの燃料流量と廃ガス
流量と廃ガス中の二酸化イオタ濃度とを測定すると、該
測定値の間には下記(5)式が成立する。即ち燃料li
f/時当たりに生成する廃ガス中の二酸化イオタのモル
数M(So2)は下記(5)式 −にて表わされる。
Similar C (H, S): Hydrogen sulfide concentration equivalent value for all ions in coke gas (ppm) Next, in the case of liquid fuel or a mixed fuel of solid fuel and liquid fuel, the fuel is completely combusted; When the fuel flow rate, waste gas flow rate, and iota dioxide concentration in the waste gas are measured, the following equation (5) holds true between the measured values. That is, fuel li
The number of moles M (So2) of iota dioxide in the waste gas generated per f/hour is expressed by the following formula (5).

但し F(L、 S) :燃料流量(即/時)この場合
も前記(3)弐に示す反応式により二酸化イオタが全て
硫化水素の燃焼により生成するものと仮定すると、燃料
中の全イオク分を硫化水素に換算した値C(H,S)は
、下記(6)式で表わされることとなる。
However, F (L, S): Fuel flow rate (immediate/hour) In this case as well, assuming that all iota dioxide is generated by combustion of hydrogen sulfide according to the reaction formula shown in (3) 2 above, the total ion content in the fuel is The value C(H,S) obtained by converting C(H, S) into hydrogen sulfide is expressed by the following equation (6).

C(H2S)÷34 X 10−”XM(Sow)  
    ・・・(6)但し C(H,S):燃料中の全
イオク分の硫化水素濃度換算値(wt%) 斯くして燃料を完全燃焼させて生成した廃ガスの中の二
酸化イオタの濃1度を測定することにょシ燃料中の全イ
オク分を求めることができる。
C (H2S) ÷ 34 X 10-”XM (Sow)
...(6) However, C(H,S): Concentration of hydrogen sulfide equivalent to all ions in the fuel (wt%) Concentration of iota dioxide in the waste gas generated by complete combustion of the fuel By measuring 1 degree, the total ion content in the fuel can be determined.

次に本発明方法をその実施例に基づいて説明する。図面
は本発明方法の実施に使用する装置を示す模式図であり
、コークスガス配管系1からコークスカスをサンプリン
グするためのサンプリングライン3が設けられ、該サン
プリングライン3Fi燃焼装置2に連結されている。該
燃焼装置2は、@処理装置2a、標準ガス供給弁2b、
定流量弁2c及びコークスガス流量計2dがその記載順
に従って配された一方の配管と、図示しない燃焼用空気
源に連結され、ミストセパレータ2C1゛定流量弁2f
及び空気流量計2gがその記載順に従って配された他方
の配管とが共に混合器2hへ連結され、サンプリングさ
れたコークスガスと燃焼用空気とが混合された後、白金
触媒が内蔵された反応槽2にへ送られ、白金触媒のもと
で完全燃焼するようになって、いる。前記前処理装置2
aはコークスガスをコークスガス配管系lから吸引して
反応槽2にへ送給するポンプとその前後に除湿除塵のた
めに設けられたクーラ及びフィルタとからなっている。
Next, the method of the present invention will be explained based on examples thereof. The drawing is a schematic diagram showing an apparatus used to carry out the method of the present invention, in which a sampling line 3 for sampling coke scum from a coke gas piping system 1 is provided, and the sampling line 3Fi is connected to a combustion device 2. The combustion device 2 includes @processing device 2a, standard gas supply valve 2b,
A constant flow valve 2c and a coke gas flow meter 2d are connected to one of the pipes arranged according to the order of description and a combustion air source (not shown), and a mist separator 2C1 and a constant flow valve 2f are connected to each other.
and the other pipe in which the air flow meters 2g are arranged according to the order listed are both connected to the mixer 2h, and after the sampled coke gas and combustion air are mixed, the reaction tank containing the platinum catalyst is connected. 2, where it is completely combusted under a platinum catalyst. The pretreatment device 2
A consists of a pump that sucks coke gas from the coke gas piping system 1 and supplies it to the reaction tank 2, and coolers and filters provided before and after the pump for dehumidification and dust removal.

また前記標準ガス供給弁2bは、定流量弁2c及びコー
クスガス流量計2dを介して混合器2hに通じる管路を
前処理装置2aに通じる管路から標準ガスボンベに通じ
る管路へ切換えて全システムを標準ガスにて校正できる
ようになっている。更にコークスガス流量計2dは定流
量弁2cによシ一定流量に調節されたコークスガス流[
F(COG)を計測するのに用いられ、該流量計2dK
よる計測値F (COG )に関する信号は演算装置6
へ伝送されるようになっている。なお定流量弁2Cによ
シ一定流量が十分確保される場合には、コークスガス流
量計2dによる計測値F (COG )に代えてその一
定流量に関する信号を演算装置6へ伝送してもよい。そ
して反応m2kにおける燃焼反応によシ生成した廃ガス
は、廃ガス流量計4を経てS、O,分析計5へ送給され
、廃ガス流量及び廃ガス中の二酸化イオウ濃度が夫々計
測され、その計測値F(Exhaust)及びC(SO
F) K関する信号は前記演算装置6へ共に入力され)
−!の入力信号に基づいて演算装置6は、前記(4)式
による演算を行う−ようにしである。
Further, the standard gas supply valve 2b switches the line leading to the mixer 2h from the line leading to the pretreatment device 2a to the line leading to the standard gas cylinder via the constant flow valve 2c and the coke gas flow meter 2d, thereby controlling the entire system. can be calibrated using standard gas. Further, the coke gas flow meter 2d detects the coke gas flow adjusted to a constant flow rate by the constant flow valve 2c.
The flowmeter 2dK is used to measure F(COG).
The signal related to the measured value F (COG) is sent to the arithmetic unit 6.
It is now transmitted to. Note that if a constant flow rate is sufficiently ensured by the constant flow rate valve 2C, a signal related to the constant flow rate may be transmitted to the calculation device 6 instead of the measured value F (COG ) by the coke gas flowmeter 2d. Then, the waste gas generated by the combustion reaction in reaction m2k is sent to the S, O, and analyzer 5 via the waste gas flow meter 4, and the waste gas flow rate and the sulfur dioxide concentration in the waste gas are measured, respectively. The measured values F (Exhaust) and C (SO
F) Signals related to K are input together to the arithmetic unit 6)
-! Based on the input signal, the arithmetic unit 6 performs the arithmetic operation according to equation (4).

上述の如く構成された装置を用いる場合の精度にりいて
検討してみると、燃料中のイオク分は反応槽2に内で完
全に燃焼するものとし、コークスガスの密度変すないも
のとし、コークスガス流量計2dの測定精度を±1%、
廃ガス流量計4の測定精度を±1%、 SO,分析計5
の測定精度を±2%、演算装[6の演算精度を±0.5
%とすると、燃料中の全イネ−り分の測定精度は±2.
5%となる。
Considering the accuracy when using the apparatus configured as described above, it is assumed that the iodine content in the fuel is completely combusted in the reaction tank 2, and that the density of coke gas does not change. Measurement accuracy of coke gas flow meter 2d is ±1%,
Measurement accuracy of waste gas flow meter 4 is ±1%, SO, analyzer 5
Measurement accuracy of ±2%, calculation accuracy of calculation unit [6] ±0.5
%, the measurement accuracy of the total energy content in the fuel is ±2.
It will be 5%.

なお木夫施例では気体燃料中のイオウ濃度を求める場合
について説明したが、液体燃料又は固体燃料と液体燃料
との混合燃料の中のイオウ濃度を求める場合につい゛て
は、前記(5)式による演算を行うこととすれば、その
全イーオク分を高精度にて求めるこ−とができるのは勿
−論である。
In Kio's example, the case of determining the sulfur concentration in gaseous fuel was explained, but when determining the sulfur concentration in liquid fuel or a mixed fuel of solid fuel and liquid fuel, the above equation (5) can be used. Of course, if the calculation is performed by , then the total eocs can be calculated with high precision.

また本−天施例では燃料を完全燃焼させるために燃料を
サンプリングすることとしたが、完全燃焼すべく制御さ
れた実ラインにおいては、実ラインにて燃料を燃焼させ
、その燃料流量と燃焼廃ガス流量と燃焼廃ガス中の二酸
化イオウ濃度とく基づいてイオウ濃度を求めることとし
てもよい。
In addition, in this example, the fuel was sampled in order to achieve complete combustion, but in an actual line controlled for complete combustion, the fuel is combusted in the actual line, and the fuel flow rate and combustion waste are measured. The sulfur concentration may be determined based on the gas flow rate and the sulfur dioxide concentration in the combustion waste gas.

以上詳述した如く、木発F3J4ij:、燃料中のイオ
ウ濃度を測定するのにサンプリングした燃料を完全に燃
焼させ、又は完全燃焼すべく制御した実ラインにて燃料
を燃焼させ、その燃料流量と燃焼廃ガス流量と燃焼廃ガ
ス中の二酸化イオウ濃度とに基づいて実ラインの燃料中
のイオウ濃度を求めるので、半導体センサによる方法、
試験紙光電光度法等と異なって燃料中の全イネク分を高
精度にて求めることができ、そのために要する装置の価
格はガスクロマトグラフィによる方法等と異なって低廉
であり、また一定時の安全性についても電流滴定法と異
なって問題がない。゛従って木発EJAは、燃料の燃焼
廃ガスの公害対策を行う上で非常に有力な手段を提供す
ることとなる。
As detailed above, in order to measure the sulfur concentration in the fuel, the sampled fuel is completely combusted, or the fuel is combusted in an actual line that is controlled to achieve complete combustion, and the fuel flow rate and Since the sulfur concentration in the fuel of the actual line is determined based on the combustion waste gas flow rate and the sulfur dioxide concentration in the combustion waste gas, the method using a semiconductor sensor,
Unlike methods such as test strip photoelectric photometry, the total amount of rice in the fuel can be determined with high precision, and the cost of the equipment required for this is lower than methods such as gas chromatography, and it is also safe at a certain time. Unlike the amperometric titration method, there are no problems with this method. ``Therefore, wood-fired EJA will provide a very effective means to take measures against pollution from fuel combustion waste gas.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の実施に使用する装置を示す模式図で
ある。 1・・」コークスガス配管系 2・・・燃焼装置 2d
・・・コークスガス流量計 2h・・・混合器 2k・
・・反応槽 4・・・廃ガス流量計 5・・・SO7分
析計特 許 出 願 人   住友金属工業株式会社代
理人゛弁理士 河 野 登 犬
The drawing is a schematic diagram showing the apparatus used to carry out the method of the invention. 1..." Coke gas piping system 2... Combustion device 2d
...Coke gas flow meter 2h...Mixer 2k.
... Reaction tank 4 ... Waste gas flowmeter 5 ... SO7 analyzer Patent applicant: Sumitomo Metal Industries Co., Ltd. Agent (patent attorney) Noboru Kono

Claims (1)

【特許請求の範囲】[Claims] L 燃料の流量と該燃料を燃焼させて生成した虎ガスの
流量と該廃ガス中の二酸化イオタ濃度とに基づき燃料中
リイオク濃度を求めることを特徴とする燃料中のイオタ
濃度測定方法。
L. A method for measuring iota concentration in fuel, which comprises determining the concentration of iota dioxide in the fuel based on the flow rate of the fuel, the flow rate of tiger gas produced by burning the fuel, and the iota dioxide concentration in the waste gas.
JP19795681A 1981-12-08 1981-12-08 Measurement of concentration of sulfur in fuel Pending JPS5899751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19795681A JPS5899751A (en) 1981-12-08 1981-12-08 Measurement of concentration of sulfur in fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19795681A JPS5899751A (en) 1981-12-08 1981-12-08 Measurement of concentration of sulfur in fuel

Publications (1)

Publication Number Publication Date
JPS5899751A true JPS5899751A (en) 1983-06-14

Family

ID=16383101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19795681A Pending JPS5899751A (en) 1981-12-08 1981-12-08 Measurement of concentration of sulfur in fuel

Country Status (1)

Country Link
JP (1) JPS5899751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133364A (en) * 1983-12-22 1985-07-16 Mitsubishi Heavy Ind Ltd Detection of sulfur in liquid or solid sample
EP1324037A1 (en) * 2001-12-14 2003-07-02 MAGNETI MARELLI POWERTRAIN S.p.A. Method for estimating the sulfur content in the fuel of an internal combustion engine
WO2005121512A1 (en) * 2004-06-10 2005-12-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and exhaust gas control method for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133364A (en) * 1983-12-22 1985-07-16 Mitsubishi Heavy Ind Ltd Detection of sulfur in liquid or solid sample
EP1324037A1 (en) * 2001-12-14 2003-07-02 MAGNETI MARELLI POWERTRAIN S.p.A. Method for estimating the sulfur content in the fuel of an internal combustion engine
WO2005121512A1 (en) * 2004-06-10 2005-12-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
US7409822B2 (en) 2004-06-10 2008-08-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
CN100427729C (en) * 2004-06-10 2008-10-22 丰田自动车株式会社 Exhaust gas control apparatus and exhaust gas control method for internal combustion engine

Similar Documents

Publication Publication Date Title
Saltzman et al. Iodometric microdetermination of organic oxidants and ozone. Resolution of mixtures by kinetic colorimetry
US3300282A (en) Method and apparatus for hydrogen sulfide determination
CN111366677A (en) SCR catalyst performance evaluation device for removing nitric oxide, benzene and toluene in cooperation
US5080867A (en) Portable carbonyl sulfide analyzer
JPS5899751A (en) Measurement of concentration of sulfur in fuel
US4272249A (en) Method of monitoring oxygen concentrations in gas streams
Hochheiser Methods of measuring and monitoring atmospheric sulfur dioxide
CN105259156A (en) Sulfur testing device and method
GB952155A (en) Improvements relating to the quantitative analysis of gaseous mixtures
US4977093A (en) Process for analyzing carbonyl sulfide in a gas
CN101519990B (en) Method, apparatus and program for measuring oil consumption of engine
Brief et al. Nickel carbonyl: Its detection and potential for formation
CN208155870U (en) A kind of sulfur trioxide tester
McArthur A method for determining low concentrations of oxygen in gases
JPS59197859A (en) Continuous measuring method of concentration of sulfur trioxide in waste gas
Houde et al. Automatic apparatus for the determination of carbon and hydrogen in organic compounds
Nash Jr et al. Continuous Determination of Small Percentages of Methane in Gases
JPH0915228A (en) Method and device for inspecting device for converting sulfur oxide into sulfur dioxide gas
JPS6258163A (en) Apparatus for analyzing sulfur compound in process gas
CN108593632A (en) sulfur trioxide tester
CN113702445B (en) PH value detection method and water quality analysis method
JPH057567Y2 (en)
JPH0134112Y2 (en)
RU2253915C2 (en) Installation for determination of hydrogen in uranium dioxide fuel pellets
JPH02213741A (en) Gas analyzing device