JPS5899225A - Reactive power detecting circuit - Google Patents

Reactive power detecting circuit

Info

Publication number
JPS5899225A
JPS5899225A JP56196462A JP19646281A JPS5899225A JP S5899225 A JPS5899225 A JP S5899225A JP 56196462 A JP56196462 A JP 56196462A JP 19646281 A JP19646281 A JP 19646281A JP S5899225 A JPS5899225 A JP S5899225A
Authority
JP
Japan
Prior art keywords
current
power
capacitor
voltage
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56196462A
Other languages
Japanese (ja)
Other versions
JPH035614B2 (en
Inventor
清 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56196462A priority Critical patent/JPS5899225A/en
Publication of JPS5899225A publication Critical patent/JPS5899225A/en
Publication of JPH035614B2 publication Critical patent/JPH035614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の技術分計 本発明は、負荷の無効電力を距離を隔てたW源―で検出
する回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a circuit for detecting reactive power of a load using a W source separated by a distance.

発明の技術的背景 本発明は、アーク炉等のよう忙遅れ無効電力が不規則か
つ急激な便化をする自衛を静止形無効電力補償装f轡で
制御する回路において、負荷であるアーク炉と静止形無
効電力補償装貴の股!場所が離れてお〕、かつアーク炉
側に力率改善用コンデンサが設置されている場合に、前
記艷止形無効電力補償装置の設置されている場所で、前
記コンデンサよりの直接的な電流あるいは電圧の入力を
用いることなく、負荷のみの遅れ無効電力を検出する回
路を得ようとするものである。
TECHNICAL BACKGROUND OF THE INVENTION The present invention provides a circuit that uses a static reactive power compensation system to control self-defense in arc furnaces, etc., where reactive power is irregularly and rapidly reduced. Static reactive power compensation equipment crotch! If the location is far away] and a power factor improvement capacitor is installed on the arc furnace side, the direct current from the capacitor or The purpose of this invention is to obtain a circuit that detects delayed reactive power only in a load without using a voltage input.

負荷回路の力率改善を行なう場合、コンデンサは負荷の
近傍に設置するのが最も有効な手法となるi従って、ア
ーク炉のように無効電力が大きな負荷は、電源より負荷
までの配電線の電圧降下を補償することもあって、コl
デ/すがアーク炉設備に近接して設置されることが多い
When improving the power factor of a load circuit, the most effective method is to install a capacitor near the load. Therefore, for loads with large reactive power such as arc furnaces, the voltage of the distribution line from the power source to the load is In order to compensate for the descent,
It is often installed close to arc furnace equipment.

一方、静止形無動電力補償装置は電源側給電量I!に設
置するのが一般的である。これは同一給電母線に複数の
アーク炉が接続された場合郷に利用度が向上することに
よっている。第1図はこれを表わしており、10は電源
、lは電源側給電母線、コは鋒止形無効電力補償装置、
Jは力率改善用コンデンサ設備、夢は負荷のアーク炉設
備、!はアーク炉設備用配電線である。
On the other hand, the static passive power compensator has a power supply amount I! It is generally installed in This is due to the fact that when multiple arc furnaces are connected to the same power supply bus, utilization improves. Fig. 1 shows this, where 10 is a power supply, l is a power supply side power supply bus, C is a fixed type reactive power compensator,
J is power factor improvement capacitor equipment, dream is load arc furnace equipment,! is a distribution line for arc furnace equipment.

このように、ア′−り炉の近傍に力率改善用コンデンサ
設備3が設置され、静止形無動電力補償装置1がその給
電母線1llIに設置された系統において、この両方の
設備距離が配電線!を介して離れている場合に、静止形
無動電力補償装置コの制御入力回路にアーク炉設備参の
送り出し回線用変流器を使用すると、アーク炉設備参の
遅れ無効電力と力率改善用コンデンサ設備Jの進み無効
電力のべりFル合成された値が入力される。
In this way, in a system in which the power factor improvement capacitor equipment 3 is installed near the furnace and the static static power compensator 1 is installed on the power supply bus 1llI, the distance between these two equipments is Electrical wire! If a current transformer for the output line of the arc furnace equipment is used in the control input circuit of the static passive power compensator, it will be possible to improve the delayed reactive power and power factor of the arc furnace equipment. The combined value of the forward reactive power of the capacitor equipment J is input.

ところで、静止形無動電力補償装置λの制御対象はアー
ク炉設備≠よりの遅れ無効電力のみであり、前記ベクト
ル合成された入力よりコンデンサ設備Jの分を差し引い
た値を実際の制御入力とする必要がある。
By the way, the object to be controlled by the static passive power compensator λ is only the delayed reactive power from the arc furnace equipment≠, and the actual control input is the value obtained by subtracting the amount for the capacitor equipment J from the vector-combined input. There is a need.

従来、この対策として、第1図に示すようにアーク炉設
備参のみの電流11Fを変流器nを介して導出し、電N
ll1給電母線lから計器用変圧器Vを経て検出した給
電母線電圧とともに、静止形無動電力検出制御回路へ与
える手法がある。
Conventionally, as a countermeasure against this problem, as shown in Fig. 1, the electric current 11F of the arc furnace equipment is derived through a current transformer n, and the electric current N
There is a method of supplying the power supply bus voltage detected from the ll1 power supply bus 1 via the voltage transformer V to the static non-active power detection control circuit.

あるいは、第JWJに表わすようなコンデンサ設備Jの
みの電流1゜とアーク炉設@参とコンデンサ設備Jへの
合成電流1とを減算用補助狡流器Jの二次電流のアナ冑
ダ減算により、アータ炉参のみの電流に置き換える方法
が採用されてきた。
Alternatively, by subtracting the current 1° of only the capacitor equipment J as shown in No. JWJ and the combined current 1 to the arc furnace equipment @ reference and the capacitor equipment J, by subtracting the secondary current of the auxiliary flow device J. , a method has been adopted in which the current is replaced only by the Ata reactor.

背景技術の問題点 これら従来の方策を採用する場合、電源ioよりアーク
炉設備参までの距離が長くなると、その間に変流器3コ
あるいはJ/の二次回路配線を必要とし、更にこの配線
に対する銹導障害を問題視しなければならない欠点があ
った。
Problems with the Background Art When these conventional measures are adopted, if the distance from the power source IO to the arc furnace equipment becomes long, three current transformers or J/ secondary circuit wiring will be required in between, and this wiring will also be required. However, there was a drawback that the problem of corrosion resistance had to be considered as a problem.

発明の目的 本発明は、その従来装置の峻路を打開するためになされ
たもので、コンデンサ設備はインピーダンス(−jXc
)が一定であり、コンデンサに流れる電流はその印加電
圧に比例することを利用して、静止形無動電力補償装量
の設置場所において、系統電圧よりアーク炉側にtfさ
れた計器変圧器によりコンデンサ電流を導出し、郷価的
にアーク炉電流を演算ヂきるようにした無効電力検出回
路を提供することを目的とする。
Purpose of the Invention The present invention has been made to overcome the difficulties of the conventional device.
) is constant and the current flowing through the capacitor is proportional to the applied voltage. It is an object of the present invention to provide a reactive power detection circuit that derives a capacitor current and can calculate the arc furnace current in a cost-effective manner.

発明の概要 本発明は、負荷・アーク炉設備とそれに並列に接続され
たコンデンサ設備とを備えた回路に電力を供給する電源
@において、電源の給電母線電圧量を検出する計器用変
圧器と前記回路に流れる電流を導出する変流器を設け、 負荷のみに流れる電流iFを によって演出する減算機構と第1および1g」の掛算器
をそなえた無効電力検出回路である。
Summary of the Invention The present invention provides an instrument transformer for detecting the amount of power supply bus voltage of the power supply in a power supply @ that supplies power to a circuit including a load/arc furnace equipment and a capacitor equipment connected in parallel thereto; This reactive power detection circuit is equipped with a current transformer that derives the current flowing through the circuit, a subtraction mechanism that produces the current iF that flows only through the load, and multipliers 1 and 1g.

ただし、 僧は電源の角周波数、 00は前記コンデンサの静電容量。however, The monk is the angular frequency of the power source, 00 is the capacitance of the capacitor.

ljxは電源から負荷までの配WaSインピーダンスで
rは抵抗、Xはリアクタンス、 である。
ljx is the distribution WaS impedance from the power source to the load, r is the resistance, and X is the reactance.

発明の実施例 第参図は1本発明の一実施例の構成を示すブロック図で
ある。
Embodiment of the Invention Figure 1 is a block diagram showing the configuration of an embodiment of the present invention.

電f110よ令アーク設備参までの配電線jのインピー
ダンスr + jXと、電源10の給電母線電圧Vと、
電源ICよりアーク炉設備aMよびコンデンサ設備JK
流れる合成電fIIE壬から、力率コンデ/す設備Jの
端子電圧v0は VO=V″″zx(r+jz)         ・・
・・・・・・・・・・・・・(/1また、コンデンサ設
備3に流れる電流i は工1×0oxv0001.0.
..9101.1.(コ式)アーク炉設備参に流れる電
流i、とコンデンサ電流工=11+工。
The impedance r + jX of the distribution line j from electric f110 to the arc equipment reference, the power supply bus voltage V of the power supply 10,
Arc furnace equipment aM and capacitor equipment JK from power supply IC
From the flowing composite electric current fIIE, the terminal voltage v0 of the power factor conditioner J is VO=V″″zx(r+jz)...
・・・・・・・・・・・・(/1 Also, the current i flowing through the capacitor equipment 3 is 1×0oxv0001.0.
.. .. 9101.1. (Formula) The current i flowing through the arc furnace equipment and the capacitor current = 11+.

;工IF”X0OX’V0 =〒p+(ωxoox(V−Iz(r+jx) ))ゆ
えに (3式)の中で、ω、 Oo 、 r 、 3xは定数
であり、V、工のみが変数である。
;Work IF" .

これら変数の各々は給電母線電圧1合成電流であり、い
ずれも1員側給電回路で容易(入手できる値である。
Each of these variables is the feed bus voltage 1 composite current, and all of them are values that can be easily obtained in the one-member side feed circuit.

従って、静止形無効電力補償装!コな電源/(’l儒に
場合寸も、アーク炉用変流器nを使用せずに、アーク炉
電流士rを演算導出することができる。
Therefore, a static reactive power compensator! In the case of a small power supply/('l), it is possible to calculate and derive the arc furnace current r without using the arc furnace current transformer n.

(3式)は主回路における値であるので、これを変流器
J3二次、計器用変圧器l二次回路に換算したOo、 
r、 jxの定数値Oo’ 、r’ 、jx’を使用す
ることによって、制御回路内でアナログ加減算を行なう
ことが可能となる。
Since (Equation 3) is the value in the main circuit, it is converted to the current transformer J3 secondary circuit and the potential transformer l secondary circuit Oo,
By using constant values Oo', r', and jx' of r and jx, it is possible to perform analog addition and subtraction within the control circuit.

1、−1−(ωXOO’X(妄−1x(r”+jx )
))・・曲(仏式)第参−において、変流器33により
合成電流iを得て、この合成電流Zをインピーダンス設
定器≠/に導き1x(r’+jx’)が得られる、これ
は第1の掛算器である。この値を計器用変圧器コIKよ
って得られる電圧マより差引くことでコンデンサ端子電
圧讐。和尚電圧v−1(r’+jx’)を得る。その電
圧を第コの掛算器の;ンデンサインピーダンの演算を行
ない、この値を合成電流iより差し引くことによってコ
ンデンサ電流iFを得ることができる。
1, -1-(ωXOO'X(delirium-1x(r"+jx)
))...In the song (French style) Part 3-, a composite current i is obtained by the current transformer 33, and this composite current Z is led to the impedance setter≠/ to obtain 1x(r'+jx'), which is This is the first multiplier. By subtracting this value from the voltage obtained by the voltage transformer IK, the capacitor terminal voltage is determined. Obtain the voltage v-1 (r'+jx'). The capacitor current iF can be obtained by calculating the indensine speed of the third multiplier for this voltage and subtracting this value from the composite current i.

発−の効果 本発明を使用することKよって、アーク炉設備参上参静
止形無効電力補償装曾コ設雪場所まで、制御ケーブルを
1線することが不要とな〕、静止形無動電力補償装置コ
への入力回路の誤信号の低減が計れ、かつアーク炉設備
参と静止形無動電力補償装置コとの距離が相当隔てであ
るときはその途中での誘導の問題が解決され、電流導出
の変流器の負担が軽減され、静止形無動電力制御装置の
制御性能の向上が期待される。
By using the present invention, it is no longer necessary to run one control cable from the arc furnace equipment to the snow installation site. If it is possible to reduce erroneous signals in the input circuit to the equipment, and if the distance between the arc furnace equipment and the static static power compensator is considerable, the problem of induction along the way will be solved, and the current It is expected that the burden on the current transformer will be reduced and the control performance of static non-active power control devices will be improved.

また、アーク設備参よシ発生するある種の高調波は力率
改善用コンデ/す設備JK流入するが、アーク炉設備参
の近辺には変流器二を設置しないので、検出する電流波
形が改善される 制御上好ましい。
In addition, certain harmonics generated by the arc equipment flow into the power factor improvement conditioner equipment, but since no current transformer is installed near the arc furnace equipment, the current waveform to be detected is Improved Favorable for control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は静止形無勢電力補償装置を有する一般的なアー
ク炉設備の路線図、第1図は従来の静止形無動電力補償
i雪への入力をアーク炉設備から検出するブロック図、
第3図は従来の静止形無効電力補償装雪への入力を電源
からアーク炉設備への配電線およびコンデンサ設備より
検出するブロック図、第参図は本発明の一実施例におけ
る構成を示すブロック図である。 10・・・電源、ハ・・電源側給電母線、コ・・・静止
形無動電力補償装置、J・・・力率改善用コンデンサ設
備、参・・・アーク炉設備、!・・・アーク炉設備用配
電線、1・・・計器用変圧器、u 、 J/ 、 jj
・・・変流器、コ・・・静止形無動電力補償装置−の無
効電力検出・制御回路、Jコ・・・減算用補助変流器、
ai・・・配電線路インピーダンスを整定した配電線路
インピーダンスと電流の第1の掛算器、句・・・コ/デ
ンサイ/ピーダンスと電圧の第コの掛算器。 出願人代理人   猪  股     清第1 M V−1zl $3図 とj 襖4図
Fig. 1 is a route diagram of a general arc furnace equipment having a static passive power compensator; Fig. 1 is a block diagram for detecting the input to the conventional static passive power compensator from the arc furnace equipment;
Figure 3 is a block diagram for detecting the input to the conventional static reactive power compensation snow system from the distribution line from the power supply to the arc furnace equipment and the capacitor equipment, and Figure 3 is a block diagram showing the configuration of one embodiment of the present invention. It is a diagram. 10...Power source, C...Power supply side power supply bus, C...Static passive power compensator, J...Capacitor equipment for power factor improvement, Reference...Arc furnace equipment! ... Distribution line for arc furnace equipment, 1 ... Instrument transformer, u, J/, jj
...Current transformer, Co...Reactive power detection/control circuit of static type passive power compensator, J Co...Auxiliary current transformer for subtraction,
ai... A first multiplier for the distribution line impedance and current that has set the distribution line impedance, phrase... A first multiplier for co/density/pedance and voltage. Applicant's agent Kiyoshi Inomata 1 M V-1zl Figure 3 and J Fusuma 4

Claims (1)

【特許請求の範囲】 1、負荷とそれに並列KII続されたコンデンサとをそ
なえた回路に電力を供給する電源測において、電源の給
電母線電圧量を検出する計器用変圧器と電源より前記回
路に流れる電流士を導出する変流器を設け、 負荷のみに流れる電流を土1、 電源の角周波数をω、 前記コンデ/すの静電容量を00、 電源から勇荷までの1電線インピーダンスを抵抗rとリ
アクタンスXKよ6r+、1x。 でそれぞれ表わすとき Iy= I((klXOOX(V−1x(!”+j3C
) ))の演算を行なうようKしたことを特徴とする無
効電力検出回路。 コ、電流士の導出電流が配電線路インピーダンスr+3
xを掛算される第1の掛算器に与えられ。 電圧量の検出電圧から前記第7の掛算器の出力を減算し
た電圧が前記コンデンサのイ/ビーダンス−0ot−掛
算される第一の掛算器へ入力され、前記−流Iの導出電
流から前記第2の掛算器の出力を減算してなる特許請求
の範囲第1項記載の無効電力検出回路。
[Claims] 1. In power measurement for supplying power to a circuit that includes a load and a capacitor connected in parallel to the load, an instrument transformer that detects the power supply bus voltage amount of the power supply and a power supply that connects the circuit to the circuit. A current transformer is installed to derive the flowing current, and the current flowing only through the load is 1, the angular frequency of the power source is ω, the capacitance of the capacitor is 00, and the impedance of the wire from the power source to the load is resistance. r and reactance XK, 6r+, 1x. Iy=I((klXOOX(V-1x(!"+j3C
)))) A reactive power detection circuit characterized in that the circuit is configured to perform the following calculations. The current derived from the electrician is the distribution line impedance r + 3
given to the first multiplier to be multiplied by x. The voltage obtained by subtracting the output of the seventh multiplier from the detected voltage of the voltage quantity is input to the first multiplier where it is multiplied by the impedance/beadance of the capacitor -0ot-, and the voltage obtained by subtracting the output of the seventh multiplier from the detected voltage of the voltage quantity is inputted to the first multiplier, which is multiplied by the i/beadance of the capacitor. 2. The reactive power detection circuit according to claim 1, which is obtained by subtracting the output of the multiplier No. 2.
JP56196462A 1981-12-07 1981-12-07 Reactive power detecting circuit Granted JPS5899225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196462A JPS5899225A (en) 1981-12-07 1981-12-07 Reactive power detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196462A JPS5899225A (en) 1981-12-07 1981-12-07 Reactive power detecting circuit

Publications (2)

Publication Number Publication Date
JPS5899225A true JPS5899225A (en) 1983-06-13
JPH035614B2 JPH035614B2 (en) 1991-01-28

Family

ID=16358203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196462A Granted JPS5899225A (en) 1981-12-07 1981-12-07 Reactive power detecting circuit

Country Status (1)

Country Link
JP (1) JPS5899225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023503083A (en) * 2019-11-22 2023-01-26 フェースタウン・エルエルシー Power factor adjustment method and device for waveguide circuit and transmission line circuit, and power generation transmission line system using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152835U (en) * 1974-10-17 1976-04-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152835U (en) * 1974-10-17 1976-04-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023503083A (en) * 2019-11-22 2023-01-26 フェースタウン・エルエルシー Power factor adjustment method and device for waveguide circuit and transmission line circuit, and power generation transmission line system using the same

Also Published As

Publication number Publication date
JPH035614B2 (en) 1991-01-28

Similar Documents

Publication Publication Date Title
SE515107C2 (en) Reactive power compensation method and apparatus
US6924627B1 (en) Method of reactive power regulation and aparatus for producing electrical energy in an electrical network
US20040201283A1 (en) Parallel power supply system and control method thereof
JPS5899225A (en) Reactive power detecting circuit
Chinmay et al. Optimum design of dynamic voltage restorer for voltage sag mitigation in distribution network
JP4483622B2 (en) Three-phase four-wire load simulator
JP3343711B2 (en) Static var compensator
CN209562144U (en) A kind of frequency tracking apparatus for frequency converter back end current channel
US4198628A (en) Circuit arrangement for detecting grounds in a static converter
SE519413C2 (en) Equipment and method for exchanging power with an electric power grid in a shunt coupling and using such equipment
CA1220518A (en) Electrical shock prevention means for high voltage dc regulators
EP3200301B1 (en) Resonance suppression device and resonance suppression method
JP3504007B2 (en) Active filter control method and device
JPH0625951B2 (en) Reactive power compensator
Sharma et al. Power quality assessment and harmonic comparison of typical nonlinear electronic loads
CN110120655A (en) A kind of frequency-tracking system and method for frequency converter back end current channel
JP3041317B2 (en) DC arc furnace power supply
JPH08310279A (en) Reactive power compensating device
SU1098060A2 (en) Device for correcting error of single-step current transformer
JPS63181620A (en) Reactive power compensator
JP3125354B2 (en) Active filter control device
JPH0340761A (en) Output voltage control circuit for inverter
JPH0642183B2 (en) Coordinated operation control system of reactive power compensator
JPS59181928A (en) Parallel power supplying device to ac load system
JPH03212123A (en) Line compensation device with active filter