JPS5899125A - Rough melting method for optical glass - Google Patents

Rough melting method for optical glass

Info

Publication number
JPS5899125A
JPS5899125A JP19557481A JP19557481A JPS5899125A JP S5899125 A JPS5899125 A JP S5899125A JP 19557481 A JP19557481 A JP 19557481A JP 19557481 A JP19557481 A JP 19557481A JP S5899125 A JPS5899125 A JP S5899125A
Authority
JP
Japan
Prior art keywords
crucible
glass
platinum
refractory
optical glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19557481A
Other languages
Japanese (ja)
Inventor
Koji Kamiyama
神山 宏二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP19557481A priority Critical patent/JPS5899125A/en
Publication of JPS5899125A publication Critical patent/JPS5899125A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/033Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by using resistance heaters above or in the glass bath, i.e. by indirect resistance heating
    • C03B5/0334Pot furnaces; Core furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/033Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by using resistance heaters above or in the glass bath, i.e. by indirect resistance heating
    • C03B5/0336Shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/425Preventing corrosion or erosion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To prevent the deterioration of glass due to the penetration of platinum by melting starting materials for optical glass with a high PbO content with a roughly melting apparatus having a double structure composed of a refractory crucible and a platinum crucible so as to prevent the deterioration of the platinum crucible. CONSTITUTION:A roughly melting apparatus having a double structure composed of a refractory crucible 5 made of quartz or aluminous refractory and a platinum crucible 7 is put in an electric furnace 1 provided internally with a resistance heating element 2, and starting materials 9 for dense flint glass with a high PbO content or optical B2O3-PbO glass with a high PbO content are charged into the crucible 5. The materials 9 are roughly melted by heating to 1,000- 1,400 deg.C and poured into the outer crucible 7 from the bottom outlet 15 of the crucible 5. The roughly melted glass 10 stored once in the crucible 7 is poured into a water tank from the bottom nozzle 8 of the crucible 7. The erosion of the platinum crucible due to PbO is prevented, and homogenous optical glass contg. no unmelted starting material and undergoing no deterioration due to platinum is obtd.

Description

【発明の詳細な説明】 本発明は光学ガラス原料の粗動解方法(関する。[Detailed description of the invention] The present invention relates to a coarse dynamic solution method for optical glass raw materials.

l#に本発明は二重ルツボを用いる光学ガラスの粗動解
方法に関する。
The present invention relates to a coarse dynamic solution method for optical glass using a double crucible.

光学ガラスは一般に、光学ガラス原料を粘土ルツボ法、
白金ルツボ法又は連続融解法によって溶融することによ
り製造されるが、その融解工程において光学ガラス原料
がガラス化終了に要する時間が全融解工程の60〜50
%を占めるという欠点があった。又、PbOを比較的多
量に含む光学ガラス原料を直接白金ルツボに供給して融
解すると。
Optical glass is generally produced by using the clay crucible method as raw material for optical glass.
It is manufactured by melting by the platinum crucible method or continuous melting method, but the time required for the optical glass raw material to complete vitrification in the melting process is 60 to 50 minutes of the total melting process.
There was a drawback that it occupied %. Alternatively, if an optical glass raw material containing a relatively large amount of PbO is directly supplied to a platinum crucible and melted.

鉛と白金の合金化が生じ、白金ルツボが劣化したり、融
解ガラス中に白金が溶は込み黄味着色や失としてガラス
原料を予め粗融解し、粗融解したガラスを冷却固化し、
これを白金ルツボ中で再融解して光学ガラスを製造する
ことが行われている。
Alloying of lead and platinum may occur, causing deterioration of the platinum crucible, or melting of platinum into the molten glass, resulting in yellowing or loss.
This is remelted in a platinum crucible to produce optical glass.

このようにすることによって、(11原料のガラス化終
了に要する時間が短縮され(全融解工程の10〜2.0
%)、設備の効率化がはかれること、121Pb。
By doing this, the time required to complete the vitrification of (11 raw materials) is shortened (10 to 2.0 times the total melting process).
%), improving the efficiency of equipment, 121Pb.

を比較的多量に含むガラス原料を用いる場合にも前記の
如く白金ルツボが劣化することがなく白金ルツボの今命
を増すことができ、且つ白金が融解ガラス中和溶は込み
ガラスの黄味着色や失透を起こすの防止する等の効果が
得られる。
Even when glass raw materials containing relatively large amounts of Effects such as preventing the occurrence of devitrification and devitrification can be obtained.

ガラス原料を粗融解する方法として、白金ルツボ又は石
英ルツボ(ガラス原料を供給し、加熱、粗融解してルツ
ボに設けられたノズル又は穴から流下させる方法、白金
又は石英の筒状体の一端からガラス原料を供給し、これ
を加熱粗融解して他端から流下させる方法(特開昭51
−67310号公報参照)等が提案されている。
A method for roughly melting the glass raw material is a platinum crucible or a quartz crucible (a method in which the glass raw material is supplied, heated, coarsely melted, and allowed to flow down from a nozzle or hole provided in the crucible, or from one end of a cylindrical body of platinum or quartz). A method of supplying a glass raw material, heating it, roughly melting it, and flowing it down from the other end (Japanese Patent Application Laid-open No. 51
-67310) etc. have been proposed.

しかしながら、上記の如き方法では1例えば、PbO含
量が50%以上の重フリン・ト系ガラス又はB2O3−
PbO系の特殊ガラスを製造する場合に、ガラス材料を
白金ルツボ又は内面に白金を用いた筒状体を用いて粗融
解させると、前述した如き白金の劣化、ガラスの黄味着
色及び失透が生じる欠点がある。又1石英ルツボにガラ
ス原料を供給して粗融解し、これをルツボ底部の穴から
流下させる方法では流下穴が侵蝕によって大きくなり、
融解ガラスの流下量が増すことになる。流下量が増大す
ると、原料ガラスは十分な時間粗融解域に留まることが
できず、従って1例えばPbO含量が50%以上の重フ
リントガラスやB203−PbO系の特殊ガラスを製造
する場合には、ガラス原料の各成分又は素材の融解性に
かなりの差がある為に、融解し易いPt)O,B、03
.アルカリ酸化物等が優先的に融解し、融解し難い5t
02* uzoa等の未融解成分が粗融解ガラスに混入
してくる。このような未融解原料成分を含んだ粗融解ガ
ラスを原料として融解して光学ガラスを製造すると、未
融解、成分の分布の不均一に基因する屈折率変動が非常
に大きく、実用に適さない。さら[、筒状体の一端から
ガラス原料を供給し、他端から粗融解ガラスを流下さ゛
せる方式でも前記と同様に未融解物の混入を防止するの
は困難である。
However, in the above method, for example, heavy flint glass with a PbO content of 50% or more or B2O3-
When producing PbO-based special glass, if the glass material is crudely melted in a platinum crucible or a cylindrical body with platinum on the inner surface, the aforementioned deterioration of platinum, yellowing and devitrification of the glass will occur. There are drawbacks that arise. In addition, in the method of supplying glass raw material to a quartz crucible, roughly melting it, and letting it flow down through a hole at the bottom of the crucible, the flow hole becomes larger due to erosion.
This will increase the amount of molten glass flowing down. If the flow rate increases, the raw material glass cannot remain in the coarse melting region for a sufficient period of time. Therefore, for example, when producing heavy flint glass with a PbO content of 50% or more or B203-PbO type special glass, Since there are considerable differences in the meltability of each component or material of the glass raw material, Pt)O, B, 03 which is easy to melt.
.. Alkaline oxides etc. are preferentially melted and 5t is difficult to melt.
02* Unmelted components such as uzoa mix into the crude molten glass. When optical glass is manufactured by melting crude molten glass containing such unmelted raw material components as a raw material, the refractive index fluctuations due to unmelted components and uneven distribution of components are extremely large, making it unsuitable for practical use. Furthermore, even with a system in which glass raw materials are supplied from one end of the cylindrical body and crude molten glass is allowed to flow down from the other end, it is difficult to prevent the contamination of unmelted materials as described above.

本発明の目的は上記の如き欠点を伴うことなく光学ガラ
ス原料を粗融解する方法を提供するにある。
An object of the present invention is to provide a method for crudely melting optical glass raw materials without the above-mentioned drawbacks.

特に1本発明は、PbO含量の多い重7リントガラスや
B203−PbO系の特殊ガラスを製造する場合に、上
記の如き欠点を伴うことなくガラス原料を均質に粗融解
する方法を提供するにある。
Particularly, one object of the present invention is to provide a method for homogeneously and coarsely melting glass raw materials without the above-mentioned drawbacks when manufacturing heavy 7 lint glass with a high PbO content or B203-PbO-based special glass. .

本発明者等は上記の欠点を除き、均質な光学ガラスを得
るためのガラス原料Q)粗融解方法について種々研究の
結果、粗融解ガラスを流下させるためのノズルの付いた
白金ルツボの内@VC石英、アルミナ質耐火物、又はジ
ルコニア質耐火物よりなり、粗融解ガラスの流出孔を有
するルツボを配置し、光学ガラス原料を内側りルツボに
供給して加熱融解し、粗融解ガラスを流出口から外側の
白金ルツボに供給し、次いで白金ルツボのノズルから流
下させることによりと配り目的を達成できることを見出
し、た。
The present inventors removed the above-mentioned drawbacks, and as a result of various studies on the crude melting method of glass raw materials Q) to obtain a homogeneous optical glass, we found that a platinum crucible with a nozzle for flowing the crude molten glass @VC. A crucible made of quartz, alumina refractory, or zirconia refractory and having an outflow hole for crude molten glass is arranged, an optical glass raw material is supplied to the inner crucible, heated and melted, and the crude molten glass is passed through the outflow port. It was discovered that the distribution purpose could be achieved by supplying the material to the outer platinum crucible and then letting it flow down from the nozzle of the platinum crucible.

以下、本発明の実権例を添付図面を参照し、つり説明す
る。
Hereinafter, practical examples of the present invention will be explained with reference to the accompanying drawings.

第1図は本発明方法を実権する粗融解装置の1実権例を
示す概略図である。図で、電気炉1は例えば炭化ケイ素
発熱体の如き発熱体2VCよって加熱され、電気炉内の
温度は熱電対3により検出され、温度制御装置(図示せ
ず)により所望の粗融解温度5例えば1,0OOC〜1
.40DCに制御される。光学ガラス原料は原料供給装
置4により供給口16を通して(供給時は蓋14を開く
)連続的又は間欠的に内側の耐火性ルツボ5に供給され
る。ルツボ5は、例えば、石英、アルミナ質耐火物、ジ
ルコニア質耐火物、などによって作られている。供給さ
れた光学ガラス原料9はルツボ5内で粗融解され、粗融
解ガラスはルツボ5り底部に設けた流出孔15からルツ
ボ5の外11に配置された白金ルツボ7に入り、−坦こ
へに留められた粗融解ガラス10は白金ルツボ7り底部
に設けられたノズル8から流下する°。流下した粗融解
ガラス11は、例えば、水槽中で急冷、破砕後乾燥する
と、未融解原料成分を全く含まない均質な細粒状ガラ哀
が得られ、これを用いて白金ルツボで再融解することに
より均質な光学ガラスを優ることができる。なお、上記
白金ルツ、ボアは図示の如く、耐火物製支持体6vc支
持されており支持体6は敷耐火物12により炉底上に設
置されている。
FIG. 1 is a schematic diagram showing an example of a crude melting apparatus for carrying out the method of the present invention. In the figure, an electric furnace 1 is heated by a heating element 2VC, such as a silicon carbide heating element, the temperature inside the electric furnace is detected by a thermocouple 3, and a desired crude melting temperature 5, for example, is determined by a temperature control device (not shown). 1,0OOC~1
.. Controlled to 40DC. The optical glass raw material is continuously or intermittently supplied to the inner refractory crucible 5 by the raw material supply device 4 through the supply port 16 (the lid 14 is opened during supply). The crucible 5 is made of, for example, quartz, alumina refractory, zirconia refractory, or the like. The supplied optical glass raw material 9 is crudely melted in the crucible 5, and the crude molten glass enters the platinum crucible 7 placed outside 11 of the crucible 5 through an outflow hole 15 provided at the bottom of the crucible 5, and flows into the -tanko. The crude molten glass 10 held in place flows down from a nozzle 8 provided at the bottom of the platinum crucible 7. The crude molten glass 11 that has flowed down is, for example, rapidly cooled in a water tank, crushed and then dried to obtain homogeneous fine granular glass containing no unmelted raw material components, which is then remelted in a platinum crucible. Can be superior to homogeneous optical glass. As shown in the figure, the platinum bolt and bore are supported by a refractory support 6vc, and the support 6 is installed on the bottom of the furnace by a refractory 12.

次に、本発明方法により1例えばPbO含量50憾以上
の重フリントガラスを製造する場合にガラス原料を粗融
解する場合の実捲例を説明する。
Next, an actual winding example will be described in which a glass raw material is roughly melted when producing a heavy flint glass having a PbO content of 50 or more by the method of the present invention.

上記の如き二重ルツボ形の粗融解装置を用い、重量’−
+ y ) テ5t02 ’17%、  A−e203
2%。
Using the double crucible type crude melting device as described above, the weight '-
+ y) Te5t02'17%, A-e203
2%.

Pb064%、 Nano 1%、に203%、 Ti
O23%。
Pb064%, Nano 1%, 203%, Ti
O23%.

As2030.3%の組成よりなる光学ガラス原料を1
0〜25r−汗蒔の割合で容1120Aの石英ルツボ5
に供給し、炉温i、 o o o〜1,300t:’で
粗融解させ、外側の白金ルツボ7のノズル8から10〜
25”シーの流下量で均質な粗融解ガラスを得ることが
できた。この場合、1,000Kpの粗融解ガラスから
無作為K I KFのサンプルを10回採取して屈折率
を測定した場合の標準偏差は100X10−5であり、
従来方による場合の1/1o以下であった。ガラス原料
の粗融解に際しては、未融解物が混入することなく、融
解ガラスの流下量をできるだけ多くすることが望ましい
が、本発明では、上記した如く、10〜25 Ky、z
、  というかなり多くの流下量としても、未融解物の
混入しない均質な粗融解ガラスを優ることができた。
1 optical glass raw material having a composition of 0.3% As203
Quartz crucible 5 with a capacity of 1120A at a rate of 0 to 25r-sweat sowing
The material is roughly melted at a furnace temperature of i, o o o ~ 1,300 t:', and then passed through nozzles 8 to 10 of the outer platinum crucible 7.
It was possible to obtain homogeneous crude molten glass with a flow rate of 25" sea. In this case, random K I KF samples were taken 10 times from the 1,000 Kp crude molten glass and the refractive index was measured. The standard deviation is 100X10-5,
It was less than 1/1o of the conventional method. When crudely melting glass raw materials, it is desirable to increase the amount of molten glass flowing down as much as possible without mixing unmelted materials, but in the present invention, as described above, 10 to 25 Ky, z
Even at a considerably large flow rate of , it was possible to outperform homogeneous crude molten glass without contamination with unmelted materials.

以上のように重置騨宅は耐火物ルツボと白金ルツボの二
重構造の粗融解装置を用い内側の耐火物ルツボにガラス
原料を供給して融解し、これを−坦外側の白金ルツボに
移してから流下して取り出すようにしているので、Pb
O含量が50%以上の重フリントガラスや8203−P
bO系特殊ガラスを製造する場合でも、白金ルツボの劣
化、白金の混入による黄味着色や失透、耐火物ルツボの
流用孔の侵蝕による流下量の増大に起因する未融解成分
の混入等を防ぎ、均質な粗融解ガラスを得ることができ
る。
As mentioned above, the multi-layered crucible uses a crude melting device with a dual structure of a refractory crucible and a platinum crucible, supplies glass raw materials to the inner refractory crucible and melts it, and transfers it to the platinum crucible on the outside. The Pb
Heavy flint glass or 8203-P with an O content of 50% or more
Even when producing bO-based special glass, it prevents deterioration of the platinum crucible, yellowing and devitrification due to platinum contamination, and contamination of unmelted components caused by increased flow rate due to erosion of the refractory crucible diversion holes. , homogeneous crude molten glass can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の粗融解方法を実施するに用いる装置の
1実施例を示す概略図である。 1・・・電気炉     2・・・電熱体5・・・耐火
物ルツボ  7・・・白金ルツボ(はか6名) 昭和56年特許願第 1955744.i20発明の名
称 光学ガラスの粗融解方法 3、補正をする者 事件との関係:特許出願人 名称 (520)富士写真フィルム株式会社霞が関ビル
内郵便局 私書箱第49号 り別置の遥り 第  1  図
FIG. 1 is a schematic diagram showing one embodiment of an apparatus used to carry out the crude melting method of the present invention. 1... Electric furnace 2... Electric heating element 5... Refractory crucible 7... Platinum crucible (6 people) 1981 Patent Application No. 1955744. Name of the i20 invention: Rough melting method for optical glass 3, Person making the amendment Relationship to the case: Name of the patent applicant (520) Fuji Photo Film Co., Ltd. Kasumigaseki Building Post Office Post Office Box No. 49 Separate Haruka No. 1 figure

Claims (1)

【特許請求の範囲】[Claims] (1)ノズル付き白金ルツボとその内1111に配置さ
れた流出孔付き耐火物ルツボとよりなる二重ルツボ粗融
解装置に於て、内側のルツボに光学ガラス原料を供給し
て加熱融解し、融解したガラスを流出孔から一坦外側の
白金ルツボに導き、該白金ルツボのノズルより流下させ
ることを特徴とする光学ガラス原料の粗動解方法。 (21耐火物ルツボが、石英、アルミナ’H火物。 又はジルコニア質耐火物よりなる特許請求の範囲第(1
1項記載の粗動解方法。 (31光学ガラス原料が、 PbO含有量50%以上の
重フリントガラス又はB204− PbO系特殊ガラス
の原料である特許請求の範囲第(1)項記載の粗動解方
法。
(1) In a double crucible rough melting device consisting of a platinum crucible with a nozzle and a refractory crucible with an outflow hole placed in the crucible 1111, an optical glass raw material is supplied to the inner crucible and heated and melted. A method for coarsely dissolving optical glass raw materials, characterized in that the glass is introduced into a platinum crucible on the outer side through an outflow hole, and is caused to flow down from a nozzle of the platinum crucible. (21) The refractory crucible is made of quartz, alumina 'H refractory, or zirconia refractory.
The coarse motion solution method described in Section 1. (31) The coarse dynamic solution method according to claim (1), wherein the optical glass raw material is a heavy flint glass having a PbO content of 50% or more or a raw material for B204-PbO-based special glass.
JP19557481A 1981-12-07 1981-12-07 Rough melting method for optical glass Pending JPS5899125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19557481A JPS5899125A (en) 1981-12-07 1981-12-07 Rough melting method for optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19557481A JPS5899125A (en) 1981-12-07 1981-12-07 Rough melting method for optical glass

Publications (1)

Publication Number Publication Date
JPS5899125A true JPS5899125A (en) 1983-06-13

Family

ID=16343387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19557481A Pending JPS5899125A (en) 1981-12-07 1981-12-07 Rough melting method for optical glass

Country Status (1)

Country Link
JP (1) JPS5899125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106233A (en) * 1997-10-03 1999-04-20 Nikon Corp Low fluorescent optical glass and its production
CN102206034A (en) * 2010-03-30 2011-10-05 湖北新华光信息材料有限公司 Water stemming of discharge hole of quartz crucible material-preparation furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106233A (en) * 1997-10-03 1999-04-20 Nikon Corp Low fluorescent optical glass and its production
CN102206034A (en) * 2010-03-30 2011-10-05 湖北新华光信息材料有限公司 Water stemming of discharge hole of quartz crucible material-preparation furnace

Similar Documents

Publication Publication Date Title
CA1073213A (en) Method and apparatus for the manufacture of glass
KR850001508A (en) Method and apparatus for solidifying, refining and homogenizing glass
US20070144212A1 (en) Process for producing glass and glass-melting apparatus thereof
US2413037A (en) Electric glass melting furnace
DE4403161A1 (en) Melt-cast refractories with high zirconia content
PT92250B (en) METHOD FOR MODIFICATING PROPERTIES OF A BODY COMPOSED WITH METAL MATRIX
KR20070026516A (en) Improved recycling method for al-b4c composite materials
DE3419575A1 (en) METHOD AND DEVICE FOR MELTING LIQUIDIZATION OF MATERIAL BY A PLASMA
US4782497A (en) Electric melting furnace for glassifying high-radioactive waste
JPS5899125A (en) Rough melting method for optical glass
Hrma Melting of foaming batches: nuclear waste glass
PL163149B1 (en) Method of melting glass and furnace therefor
DE1809911A1 (en) Melting furnace
JP4478553B2 (en) Glass manufacturing method and glass melting apparatus
US3233994A (en) Method of forming refractory casting
JP2002328197A (en) Method of preventing deposition of platinum group in glass melting furnace
JPH072585Y2 (en) Glass furnace
DE2435455A1 (en) Tellurite glass prodn. in gold melting crucible - which is stirred with gold stirref under pure oxygen atmos
JP2000088998A (en) Glass melting furnace
CZ2012605A3 (en) Method of continuous glass melting under controlled convection of glass melt
JP2000028790A (en) Glass melting furnace
JP2002267797A (en) Bottom electrode for glass melting furnace
DE102006019647B4 (en) Method for dimensioning a rotatable device for producing a melt and rotatable device
JP2005060194A (en) Method of manufacturing optical glass
JPH0512262Y2 (en)