JPS5899038A - Optical and milimeter wave complementary communication system - Google Patents

Optical and milimeter wave complementary communication system

Info

Publication number
JPS5899038A
JPS5899038A JP56196947A JP19694781A JPS5899038A JP S5899038 A JPS5899038 A JP S5899038A JP 56196947 A JP56196947 A JP 56196947A JP 19694781 A JP19694781 A JP 19694781A JP S5899038 A JPS5899038 A JP S5899038A
Authority
JP
Japan
Prior art keywords
wave
light
millimeter
attenuation
millimeter wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56196947A
Other languages
Japanese (ja)
Inventor
Masatada Hata
畑 雅恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP56196947A priority Critical patent/JPS5899038A/en
Publication of JPS5899038A publication Critical patent/JPS5899038A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission

Abstract

PURPOSE:To imporve the reliability of lines and to extend the repeating section, by using the constitution of the communication system in which disadvantages of an optical wave and a millimeter wave on the propagation characteristics are complemented with each other. CONSTITUTION:Millimeter wave communication devices 2, 6 having a frequency band in which attenuation due to rainfall is larger than that in optical waves, are provided in addition to optical wave communication devices 1, 5, and the attenuation due to rain is covered with the optical systems 1, 5 and the attenuation due to mist and snow is compensated by the devices 2, 6. Based on information representing the state of line from a reception signal or meteorological information obtained from a weather sensor 8, signals of the optical or millimeter wave communication devices are selected, and the output signal is applied to an output terminal 10.

Description

【発明の詳細な説明】 本発明は、゛光波による空間伝搬通信方式の霧などによ
る視程の低下による回線障害を救済するために、ミリ波
無線方式を併用する通信方式、あるいは、ミリ波無線通
信方式の強降雨時の回線障害をバックアップするために
光波通信方式を併用する通信方式、ないしは、光波とミ
リ涙雨通信方式を併設して相補的に運用することを特徴
とし、通信回線の信頼度向上と中継区間の延長を可能と
する新しい通信方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a communication method that uses a millimeter-wave wireless method in combination with a millimeter-wave wireless method, or a millimeter-wave wireless A communication method that uses a light wave communication method in combination to back up line failures during heavy rain, or a communication method that uses light waves and a millimeter rain communication method to operate in a complementary manner, improving the reliability of communication lines. and a new communication method that makes it possible to extend the relay section.

従来、光波による空間伝搬通信方式が検討されているが
、空中に存在する波長と同程度の粒径の霧やスモッグに
よる散乱現象のために大きな減衰を生じるため、高い回
線信頼と長い中継区間は期待できないとされている。た
とえば、視程V(km)における光波の1 km当りの
減衰σは)’ (aB/kn)=15/V とされている。このため、視程170mの場合、1 k
m当り約100dBの減衰が生じることとな不。東京、
横浜2名古屋などの都市では、年間の約0.1チ(9時
間)が視程150〜200mであるとされており、光波
による0、 1%程度の高い回線信頼度の実現は困難と
なり、長い回線設定は実現し得なり実状にある。(五十
嵐隆、”レーザ波の伝搬とその利用の現状について”、
信学誌Vot59− A 1 )またいっぽう、30G
Hzをこえるミリ波電波は、強降雨時に雨滴による電波
の散乱が大きくなるため、降雨減衰の立場から、高信頼
度かつ長い中継区間の設定が実現しないうらみが存在し
ている。
Conventionally, space propagation communication systems using light waves have been considered, but high attenuation occurs due to scattering phenomena caused by fog and smog with particle sizes similar to the wavelength existing in the air, making it difficult to achieve high line reliability and long relay intervals. It is said that it cannot be expected. For example, the attenuation σ of a light wave per 1 km at a visibility V (km) is )' (aB/kn)=15/V. Therefore, when visibility is 170 m, 1 k
Approximately 100 dB of attenuation will occur per m. Tokyo,
In cities such as Yokohama 2 and Nagoya, visibility is said to be 150 to 200 meters for about 0.1 inch (9 hours) a year, making it difficult to achieve high line reliability of around 0.1% using light waves, and long Line setup is possible and is actually happening. (Takashi Igarashi, “On the current status of laser wave propagation and its use”,
IEICE Journal Vot59-A 1) On the other hand, 30G
Millimeter wave radio waves exceeding Hz are highly scattered by raindrops during heavy rainfall, so from the standpoint of rain attenuation, it is difficult to establish highly reliable and long relay sections.

本発明は、従来から知られている霧やスモッグに対して
光波が著しく減衰が犬きく、ミリ波では問題とされる程
度の減衰にならない事実に加えて、強降雨時における減
衰が光よりミリ波で大きくなる領域を明らかにすること
により、光波とミリ涙雨通信方式を併設して相互の欠点
を補償し合う構成により、回線信頼度の向上と、中継区
間の拡大および機器の特性の簡易化をはかることを特徴
とした通信方式に関する。
The present invention is based on the fact that light waves are significantly attenuated by fog and smog, which has been known in the past, but millimeter waves do not attenuate to the extent that is considered a problem. By clarifying the area that increases due to waves, we can improve line reliability, expand the relay area, and simplify the characteristics of equipment by installing optical wave and millimeter rain communication systems together and compensating for each other's shortcomings. This invention relates to a communication method characterized by the ability to measure.

光波の霧に対する減衰は時に100 dB/kmにおよ
ぶが、ミリ波電波においては、40〜50 GHzで0
、1 dB/km s  100 GHzではl dB
/ka弱と極めて少ないことが知られている。
The attenuation of light waves due to fog sometimes reaches 100 dB/km, but for millimeter wave radio waves, the attenuation is 0 at 40 to 50 GHz.
, 1 dB/km s 1 dB at 100 GHz
It is known that the amount is extremely low, at just under /ka.

ついで、降雨中の伝搬について検討する。この点が従来
明確に示されていなかった点であるが、降雨によるミリ
波の減衰について30〜150 GHzの範囲で理論値
を示し、さらにベル研究所で取得したレーザ波の降雨減
衰の実測値(T、S、Chu andD−C−Hogg
+ ’Effects of Precipitati
on onPropagation at O,63、
3,5、and 10.6 Microns”。
Next, we will consider propagation during rainfall. Although this point has not been clearly demonstrated in the past, we present theoretical values for the attenuation of millimeter waves due to rain in the range of 30 to 150 GHz, and also provide actual measured values of rain attenuation of laser waves obtained at Bell Laboratories. (T, S, Chu and D-C-Hogg
+ 'Effects of Precipitati
on onPropagation at O,63,
3,5, and 10.6 Microns”.

THE BELL SYSTEM TECHNICAL
 JOURNAL、 MAY−JtJNE1968)お
よび、実測値に6dBのマージンを付加した減衰を第1
図に示す。第1図中実線はミリ波、破線は可視光、一点
鎖線は可視光の実測値に6dBのマーノンを含ませたも
のである。なお、3.5μm。
THE BELL SYSTEM TECHNICAL
JOURNAL, MAY-JtJNE1968) and the attenuation with a 6 dB margin added to the actual measured value.
As shown in the figure. In FIG. 1, the solid line represents millimeter waves, the broken line represents visible light, and the dashed-dotted line represents actual measured values of visible light including 6 dB marnon. In addition, 3.5 μm.

10.5μmの赤外域の光波についても、はぼ同様の傾
向が示される。光波のこのような利点は、ミリ波通信で
問題となる強降雨域50〜150 +am/Hで特に顕
著でちるとともに、50〜150 GHzといった高い
周波数帯になれば、さらにその効果は著しい −ことが
わかる。この様にミリ波よりも可視光レーザ波の損失が
少ない理由として、雨滴粒径がミ1)波の波長に近いた
めミリ波での散乱効果が大きく、減衰が著しく増すのに
対して、光波に対しては、雨滴粒径が波長の数1,00
0倍と大きく、かつ水が透明球として吸収損失を与えな
いため透過するエネルギーが増すこと、及び、雨滴個数
は霧に比較し、単位体積中、例えば100万分の1程度
に少ないことによるものと説明づけられる。
A similar tendency is shown for light waves in the infrared region of 10.5 μm. These advantages of light waves are particularly noticeable in the heavy rainfall region of 50 to 150 + am/H, which is a problem in millimeter wave communications, and the effect is even more remarkable in higher frequency bands such as 50 to 150 GHz. I understand. The reason why the loss of visible laser waves is lower than that of millimeter waves is that the raindrop particle size is close to the wavelength of millimeter waves, so the scattering effect of millimeter waves is large, and the attenuation increases significantly, whereas optical waves For example, the raindrop size is 1,000 wavelengths.
This is due to the fact that the water is 0 times larger, and as the water is a transparent sphere, there is no absorption loss, so the amount of energy transmitted increases, and the number of raindrops is smaller than that of fog, for example, about 1/1 millionth of a unit volume. It can be explained.

よって、光波系に降雨減衰マージンを受けもつことがで
きる。第2図は、光波系の許容減衰マージンを・ぐラメ
ータとして、伝送距離と許容できる降雨強度R(rm/
 H)の関係を示す。第2図中、A(5) は許容マージン20 dB 、 Bは40 dB 、 
Cは60dBの場合を示す。
Therefore, the optical wave system can be provided with a rain attenuation margin. Figure 2 shows the transmission distance and allowable rainfall intensity R (rm/
H) shows the relationship. In Figure 2, A(5) has an allowable margin of 20 dB, B has an allowable margin of 40 dB,
C shows the case of 60 dB.

たとえば、0.1%値降雨強度が85w/Hとすると、
第3図のような許容伝送距離かえられる。
For example, if the 0.1% rainfall intensity is 85w/H,
The allowable transmission distance can be changed as shown in Figure 3.

以上の結果は、光波の霧による減衰から決定される許容
伝送距離(100dB/km )以上であることがわか
る。すなわち、ミリ波系が霧による減衰を受は持つこと
により、伝送距離の大幅な増加が得られる。
It can be seen that the above results are greater than the allowable transmission distance (100 dB/km 2 ) determined from the attenuation of light waves due to fog. In other words, since the millimeter wave system is attenuated by fog, the transmission distance can be significantly increased.

一方、ミリ波系に要求される霧に対する許容減衰量は、
先の記載のごとく、40〜50 GHzで0.1 dv
m −100GHzにおいても1dB/km弱と極めて
少ないため、伝送距離を第3図の様に定めた場合、全体
として約4 dBの減衰マージンでよいことがわかる。
On the other hand, the permissible attenuation amount for fog required for millimeter wave systems is
As mentioned above, 0.1 dv at 40-50 GHz
Even at m -100 GHz, the attenuation margin is extremely small at less than 1 dB/km, so if the transmission distance is determined as shown in FIG. 3, it can be seen that an overall attenuation margin of about 4 dB is sufficient.

なお、降雪のある地域についてみると、光波の方が、ミ
リ波系よりも減衰が大きいと考えられる。
Note that in areas with snowfall, it is thought that light waves have greater attenuation than millimeter waves.

よって、降雪による減衰もミリ波が負担するものと検討
してみる。ミリ波に対しては、霧よりも雪による減衰が
より問題となる。とくにべた雪濡雪(6) の場合に含水量が多り、ミリ波では損失が大きい。
Therefore, let's consider that millimeter waves also bear the burden of attenuation due to snowfall. For millimeter waves, attenuation due to snow is more of a problem than fog. In particular, wet snow (6) has a high moisture content, and the loss at millimeter waves is large.

一方、光波では細かなかわいた雪で損失が大きいと予想
される。
On the other hand, light waves are expected to experience large losses due to fine, dry snow.

通常、降雪強度は、水に換算して1 ttan / 1
0公租度が最も多いとされるが、これによって、50G
Hz前後の周波数で5〜6 dB/kms 80〜12
0GHzにおいては、約10dB/kmの減衰マージン
を考慮すればよいとされる。(西辻、平山゛降雪による
電波異常減衰について“、信学誌Vot、 54−B、
屋10)したがって、雪の多い地域では、ミリ波系に1
0dB/に+nの減衰マージンを考慮するものとする。
Normally, the intensity of snowfall is 1 ttan / 1 in terms of water.
It is said that 0 public tax is the most common, but due to this, 50G
5-6 dB/kms at frequencies around Hz 80-12
At 0 GHz, an attenuation margin of approximately 10 dB/km should be considered. (Nishitsugu, Hirayama “Abnormal attenuation of radio waves due to snowfall”, IEICE Journal Vot, 54-B,
10) Therefore, in areas with a lot of snow, 1
An attenuation margin of 0 dB/+n shall be considered.

いっぽう、ミリ波系単独の場合、100 GHzにおい
て、R=85mm/ T(で所要降雨減衰が3QdB/
kmに達するので、光波とミリ波相補通信方式の場合、
ミリ波系に必要とされる許容減衰マージンは、非常に小
さな値でよいことになる。また、光波系に要求される所
要減衰量は、85鱈/Hの降雨に対し、16 dB/k
m t 6 dBの設計マージンをみても22dB/k
mである)で、ミリ波単独の場合よりも少ない所要減衰
量ごよく、また、光波単独の場合に要求され光波による
相補通信方式による効果は明らかである。このように光
波通信装置の霧や雪による回線障害を、光波系の数分の
1の減衰マージンをもつ簡易なミリ波等無線装置により
バックアップすることによシ、回線信頼度を改善した通
信方式を実現できる。
On the other hand, in the case of a millimeter wave system alone, at 100 GHz, the required rain attenuation is 3QdB/T (R = 85mm/T).
km, so in the case of light wave and millimeter wave complementary communication systems,
This means that the allowable attenuation margin required for millimeter wave systems can be a very small value. In addition, the required attenuation amount required for the light wave system is 16 dB/k for a rainfall of 85 dB/h.
Considering the design margin of m t 6 dB, it is 22 dB/k.
m), the required attenuation is smaller than that required for millimeter waves alone, and the effect of the complementary communication system using light waves, which is required in the case of light waves alone, is obvious. In this way, a communication system that improves line reliability by backing up line failures caused by fog or snow in light wave communication equipment with simple millimeter wave or other wireless equipment that has an attenuation margin that is a fraction of that of light wave systems. can be realized.

第4図に本通信方式の構成例を示す。1は光波通信装置
の送信部、2はミリ波通信装置の送信部を示す。伝送す
べき情報は端子3より加えられ、送信部スイッチ4によ
りいずれかの送信部1又は2を選択して加えられる。5
は光波通信装置の受信部をあられし、6はミリ波通信装
置の受信部をる情報たとえば受信信号レベル、維音し村
ルあるいは誤り率といった回線の状態をあられす情報又
は視程計、降雨強度計といった気象センサ8から得られ
る気象情報をもとに光波又はミリ波通信装置の信号を選
択する回路である。受信部選択回路7は受信部スイッチ
9で選択し、出力端子10に出力信号を供給する。
FIG. 4 shows an example of the configuration of this communication system. Reference numeral 1 indicates a transmitter of a light wave communication device, and reference numeral 2 indicates a transmitter of a millimeter wave communication device. Information to be transmitted is applied from the terminal 3, and is applied to either the transmitter 1 or 2 by selecting the transmitter switch 4. 5
6 indicates the receiving section of the light wave communication device, and 6 indicates information indicating the receiving section of the millimeter wave communication device, such as information indicating the state of the line such as received signal level, noise level, or error rate, visibility meter, and rainfall intensity. This circuit selects a signal for a light wave or millimeter wave communication device based on weather information obtained from a weather sensor 8 such as a meter. The receiver selection circuit 7 makes a selection using the receiver switch 9 and supplies an output signal to the output terminal 10 .

送信部1,2にも光波、ミリ波を選択する送信部選択回
路1ノをもうけて必要でない送信部1又は2の動作をと
めることができる。この制御信号を12で示す。とくに
、他の回線と干渉の生じやすいミリ波系を使用しない場
合、送信しない様に制御することは周波数帯の有効利用
につながる効果がある。この送信部選択回路11の動作
を決定づける情報としては、双方向通信を仮定すれば送
信部1,2に付帯して存在する受信部(図3には省略し
て示されていない)よりの回線状態をあられす信号14
と、又は気象センサ13の情報により行うことができる
。なお両局での制御状態については通常もうけられる両
局間の制御回線を通じて相互に情報を交換し、動作の向
上を行うことは通常の通信方式と同様である。
The transmitters 1 and 2 are also provided with a transmitter selection circuit 1 for selecting light waves and millimeter waves, so that unnecessary operations of the transmitter 1 or 2 can be stopped. This control signal is indicated by 12. In particular, when not using a millimeter wave system that tends to cause interference with other lines, controlling the transmission so as not to transmit has the effect of leading to effective use of the frequency band. Assuming bidirectional communication, the information that determines the operation of the transmitting section selection circuit 11 is the line from the receiving section (not shown in FIG. 3) attached to the transmitting sections 1 and 2. Condition hail signal 14
This can be done by using information from the weather sensor 13, or by using information from the weather sensor 13. Regarding the control status of both stations, information is mutually exchanged through a normally established control line between the two stations to improve the operation, which is the same as in a normal communication system.

以上説明したように、光波とミリ波の伝搬特性上の弱点
を相互に補償し合う通信方式構成とすることにより) (9) (1)  回線信頼度を、それぞれ単独の場合に較べ、
1桁以上改善できる可能がある。
As explained above, by creating a communication system configuration that mutually compensates for the weaknesses in the propagation characteristics of light waves and millimeter waves) (9) (1) Compared to the case of each separately, the line reliability is
There is a possibility that it can be improved by more than one order of magnitude.

(11)  同一回線信頼度に対して、伝送距離を2倍
以」;とする可能性がある。
(11) For the same line reliability, the transmission distance may be doubled or more.

(i; )  光波、ミリ波双方の通信装置に対して所
要減衰量が小さくなるので、装置の経済化が実現できる
。とくにミリ波系の所要減衰量が非常に小さくなるので
、経済化でき併設による損失を軽減できる。
(i;) Since the amount of attenuation required for both light wave and millimeter wave communication devices is reduced, the device can be made more economical. In particular, the amount of attenuation required for millimeter wave systems is extremely small, making it possible to save money and reduce losses due to parallel installation.

’ (iv)  従来、降雨減衰のために実用性につき
疑問視されていた50〜150 GHzなどのミリ波電
波の通信系への利用の道を開くことが可能となる。
(iv) It becomes possible to open the way for the use of millimeter wave radio waves such as 50 to 150 GHz, whose practicality has been questioned in the past due to rain attenuation, in communication systems.

(V)  通常バックアップ装置を通信系では必要1 
 とするが、光波、ミリ波両方式が装置障害時の救済用
としても利用できる。
(V) A backup device is usually required in communication systems1
However, both light wave and millimeter wave types can also be used for relief in the event of equipment failure.

(vi)  霧や強降雨の時間率は、一般的に年間の数
チ以下と考えられるので、(a)光波を主として動作さ
せ、霧の時にミリ波を従として2  バックアップする
方式とするか、(b)ミリ波(10) 金主として動作させ、降雨時に光波に切換えるか、(c
)両方式を同時に動作させておき、良い回線を選択する
か、3つの運用方式が考えられる。このbずれの動作方
式を選択するかは、気象条件と、ミリ波電波の利用状況
により選択することが可能である。
(vi) Since the rate of fog and heavy rainfall is generally considered to be less than a few inches per year, (a) Should we adopt a method in which light waves are used primarily and millimeter waves are used as backup during foggy conditions? (b) Millimeter waves (10) Either operate as a gold main and switch to light waves when it rains, or (c
) There are three possible operation methods: operate both systems at the same time and select the best line. The selection of this b-shift operation method can be made depending on weather conditions and the usage status of millimeter wave radio waves.

(vii)  前記(vi) (a)の運用方式では、
降雨減衰によって他の回線との分離ができ、多ルートの
設定、や同一周波数の再利用ができる。
(vii) In the operation method of (vi) (a) above,
It can be separated from other lines by rain attenuation, making it possible to set up multiple routes and reuse the same frequency.

(Vlil)  ミIJ波系の所要減衰が小さくできる
ので、送信出力が小さくでき、相互回線での干渉を軽減
できる他、回路損失の大きいミリ波帯の利用が可能とな
る。
(Vlil) Since the required attenuation of the millimeter-IJ wave system can be reduced, the transmission output can be reduced, interference in mutual lines can be reduced, and the millimeter wave band, which has large circuit loss, can be used.

本発明によれば、ミリ波や光波空間伝搬方式の欠点が相
互に補間されるので、回線信頼度や中継区間距離が改善
され、実用的な通信方式として、交換局間中継伝送方式
、都市内オフィス間通信などとして多くの利用が可能に
なる。
According to the present invention, the shortcomings of millimeter waves and light wave spatial propagation systems are mutually interpolated, so line reliability and relay section distance are improved. It can be used for many purposes such as inter-office communication.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は降雨中伝搬時の減衰特性をミ’)波と光波につ
bて比較して示す図、 第2図は、光波通信系の許容減衰マーノンをパラメータ
として、伝送距離対許容降雨強度の関係を示す図、 第3図は、降雨減衰から決定される光波の伝送距離を示
す図、 第4図は、本発明の一実施例を示す通信系の構成図であ
る。 !、2・・・送信部、4,9・・・スイッチ、5,6・
・・受信部、7,11・・・選択回路1.8,1.9・
・・気象センサ。
Figure 1 shows a comparison of the attenuation characteristics during propagation in rain for mi') waves and light waves. Figure 2 shows the transmission distance versus allowable rainfall intensity using the allowable attenuation of the light wave communication system as a parameter. FIG. 3 is a diagram showing the transmission distance of light waves determined from rain attenuation. FIG. 4 is a diagram showing the configuration of a communication system according to an embodiment of the present invention. ! , 2... Transmission unit, 4, 9... Switch, 5, 6...
... Receiving section, 7, 11... Selection circuit 1.8, 1.9.
...Weather sensor.

Claims (1)

【特許請求の範囲】 (リ 降雨減衰が光波より大きくなる周波数帯のミリ波
通信装置を光波通信装置に併設して、降雨減衰を光波系
に分担させ、霧や雪による減衰をミリ波系に分担せしめ
ることを特徴とする光波ミリ波相補通信方式。 (2)  光波通信装置の霧や雪による回線障害を、光
波系の減衰マージンよりも少ないミIJ m無線装置に
よりバックアップすることを特徴とする特許請求の範囲
第1項記載の光波ミリ波相補通信方式。 (3)  光波通信装置とミリ波無線装置を併設し、光
波系を主としミリ波無線系を従として運用し、若しくは
ミリ波無線系を主として光波系を従として運用し又は光
波系、ミリ波無線系をともに動作運用し、良好な回線を
選択することを特徴とする特許請求の範囲第1項記載の
光波ミリ波相補通信方式。 (4)降雨減衰が光波より大きくなる周波数帯のミリ波
通信装置を光波通信装置に併設して、降雨減衰を光波系
に分担させ、霧や雪による減衰をミリ波系が分担せしめ
て、かつ、受信信号からの回線の状態をあられす情報又
は気象センサから得られる気象情報により、光波通信装
置とミリ波通信装置とを切換使用することを特徴とする
光波ミリ波相補通信方式。
[Scope of Claims] (Li) A millimeter wave communication device in a frequency band where rainfall attenuation is greater than light waves is attached to the light wave communication device, and the rain attenuation is shared with the light wave system, and the attenuation due to fog and snow is transferred to the millimeter wave system. (2) A light wave millimeter wave complementary communication system is characterized in that line failures caused by fog or snow in light wave communication equipment are backed up by a MiIJm wireless device that has a smaller attenuation margin than the light wave system. A light wave millimeter wave complementary communication system according to claim 1. (3) A light wave communication device and a millimeter wave radio device are installed together, and the light wave system is operated as the main system and the millimeter wave radio system is operated as the secondary, or the millimeter wave radio A light wave millimeter wave complementary communication system according to claim 1, characterized in that a light wave system is mainly operated as a slave system, or a light wave system and a millimeter wave radio system are operated together, and a good line is selected. (4) Installing a millimeter-wave communication device in a frequency band where rainfall attenuation is greater than that of light waves alongside the light-wave communication device, allowing the light-wave system to share the rain attenuation, and the millimeter-wave system to share the attenuation due to fog and snow. Further, a light wave millimeter wave complementary communication system is characterized in that the light wave communication device and the millimeter wave communication device are switched and used based on information indicating the state of a line from a received signal or weather information obtained from a weather sensor.
JP56196947A 1981-12-09 1981-12-09 Optical and milimeter wave complementary communication system Pending JPS5899038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196947A JPS5899038A (en) 1981-12-09 1981-12-09 Optical and milimeter wave complementary communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196947A JPS5899038A (en) 1981-12-09 1981-12-09 Optical and milimeter wave complementary communication system

Publications (1)

Publication Number Publication Date
JPS5899038A true JPS5899038A (en) 1983-06-13

Family

ID=16366299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196947A Pending JPS5899038A (en) 1981-12-09 1981-12-09 Optical and milimeter wave complementary communication system

Country Status (1)

Country Link
JP (1) JPS5899038A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234636A (en) * 1985-04-11 1986-10-18 Tadashi Iizuka Optical communication equipment
JPS63184422A (en) * 1986-06-26 1988-07-29 Manabu Koda Receiver
EP0338765A2 (en) * 1988-04-19 1989-10-25 Victor Company Of Japan, Limited Radio communication system for data transmission and reception
JPH0447492U (en) * 1990-08-30 1992-04-22
WO1995005709A1 (en) * 1993-08-13 1995-02-23 Gec Plessey Semiconductors, Inc. Improved ir/rf radio transceiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234636A (en) * 1985-04-11 1986-10-18 Tadashi Iizuka Optical communication equipment
JPS63184422A (en) * 1986-06-26 1988-07-29 Manabu Koda Receiver
EP0338765A2 (en) * 1988-04-19 1989-10-25 Victor Company Of Japan, Limited Radio communication system for data transmission and reception
JPH0447492U (en) * 1990-08-30 1992-04-22
WO1995005709A1 (en) * 1993-08-13 1995-02-23 Gec Plessey Semiconductors, Inc. Improved ir/rf radio transceiver

Similar Documents

Publication Publication Date Title
US6889009B2 (en) Integrated environmental control and management system for free-space optical communication systems
JPS6261431A (en) Transmission power control system
Semplak et al. Some measurements of attenuation by rainfall at 18.5 GHz
JPS5899038A (en) Optical and milimeter wave complementary communication system
JPS6243623B2 (en)
Weibel et al. Propagation studies in millimeter-wave link systems
Fedi Prediction of attenuation due to rainfall on terrestrial links
Dudzinsky Atmospheric effects on terrestrial millimeter-wave communications
Bassey et al. UHF Wave Propagation Losses Beyond 40 Percent Fresnel Zone Radius in South-South, Nigeria
KR100204941B1 (en) Repeater monitoring method
EP1137198A2 (en) Method and apparatus for downlink communication resource control
CA2325430A1 (en) Method for checking an fm/cw type radio altimeter, and radio altimeter designed for the implementation of this method
JPS60144029A (en) Radio equipment
Giger 4-GC transmission degradation due to rain at the andover, maine, satellite station
JPS63245025A (en) Mobile radio channel control system
Gusler et al. Some Calculations on Coupling Between Satellite Communications and Terrestrial Radio‐Relay Systems Due to Scattering by Rain
Telford Tropospheric scatter system evaluation
Cannon et al. Operational experience with a tropospheric-scatter radio-relay link
Poonam et al. Rain rate statistics and fade distribution of millimeter waves in Indian continents
JPH0227857B2 (en)
Hill HF communication during ionospheric storms
CN117040585A (en) Frequency band optimization method and simulation system for satellite-to-ground data transmission
Kotsch Wireless LAN over microwave
CN103297990A (en) 4G digital enclave system
Pattison et al. Field testing a microwave channel