JPS5898686A - Device for controlling discharge pressure or flow amount of pump in constant - Google Patents

Device for controlling discharge pressure or flow amount of pump in constant

Info

Publication number
JPS5898686A
JPS5898686A JP19674881A JP19674881A JPS5898686A JP S5898686 A JPS5898686 A JP S5898686A JP 19674881 A JP19674881 A JP 19674881A JP 19674881 A JP19674881 A JP 19674881A JP S5898686 A JPS5898686 A JP S5898686A
Authority
JP
Japan
Prior art keywords
gain
pressure
flow rate
pump
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19674881A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishida
石田 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP19674881A priority Critical patent/JPS5898686A/en
Publication of JPS5898686A publication Critical patent/JPS5898686A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Flow Control (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To uniform a loop gain and improve the response property of the device by a method wherein a square-law function generator is provided between an adjusting meter and an invertor in the system controlling the discharge pressure or the amount of the pump. CONSTITUTION:The output of the adjusting meter 8 is squared by the square-law function generator 12 and is introduced into the invertor 9. The gain between the adjusting meter 8 and the invertor 9 is proportional to the output N of the adjusting meter 8, therefore, when the revolving number N is reduced, the gain is reduced and when the revolving number N is increased, the gain is increased. According to this method, when the gain is summed with the gain of the pump controlled in the pressure or the amount of flow, it becomes constant. Therefore, if the adjusting gain is determined at any arbitrary operating point, the response property at the other operating point will never be deteriorated and there is no anxiety that a cycling phenomenon is caused.

Description

【発明の詳細な説明】 本発明はポンプ吐出圧力又は流量の一定制御を行う制御
装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a control device that performs constant control of pump discharge pressure or flow rate.

ポンプ吐出圧力又は流量の一定制御は、従来。Constant control of pump discharge pressure or flow rate is conventional.

塾1図に示すようなフィードバック制御によって行なわ
れていた。
This was done using feedback control as shown in Figure 1.

即ち、カップリング3を介して電動機IKより駆動され
るポンプ2の吐出管4に圧力又は流量検出器5を設け、
+の検出値を変換器6により圧力又は流量に比例した電
気信号に変換してフィートノ9ツクし、圧力又Fi流量
設定器7による設定値との偏差をPIDli節計8に大
計8せ、その出力を回転数指令としてインバータ9(可
変速駆動装置)に与え、電動機1をその指令に応じ次局
波数と電圧によって駆動することにより一定吐出圧力又
は一定吐出流量制御が実現されるようにしたものである
That is, a pressure or flow rate detector 5 is provided in the discharge pipe 4 of the pump 2 driven by the electric motor IK via the coupling 3,
The detected value of + is converted into an electrical signal proportional to the pressure or flow rate by the converter 6, and the deviation from the set value by the pressure or Fi flow rate setting device 7 is set to a total of 8 to the PIDli meter 8. The output is given to the inverter 9 (variable speed drive device) as a rotation speed command, and the electric motor 1 is driven by the next wave number and voltage according to the command, thereby realizing constant discharge pressure or constant discharge flow rate control. It is something.

なお、PIDii4節計8はPゲイン(比例ゲイン〕を
予め設定できるが、運転中は一定の4のである。
Note that the P gain (proportional gain) of the PIDii4 meter 8 can be set in advance, but it is a constant value of 4 during operation.

また検出器5として用いる圧力計又は流量計は圧力又は
流量を電気信号に変えるものであるが、その入出力比は
一般に一定なので、ゲインは一定である。
Further, the pressure gauge or flow meter used as the detector 5 converts pressure or flow rate into an electrical signal, and since its input/output ratio is generally constant, the gain is constant.

また、インバータ94b、速芙指令の入力に対する出力
周波数の比が一定であるのでゲインは一定である。
Further, since the ratio of the output frequency to the input of the speed change command to the inverter 94b is constant, the gain is constant.

電動機1は入力周波数に対する回転数の比が殆んど一定
とみなせるので、ゲインは一定である。
Since the ratio of the rotational speed to the input frequency of the electric motor 1 can be considered to be almost constant, the gain is constant.

ポンプについては、圧力又は流量制御系では。For pumps, in pressure or flow control systems.

回転数に対する圧力又は流量の変化率が制御ループにお
けるポンプのゲインであり、運転状1ill(flL通
又は圧力)によって変化することが知られている。
It is known that the rate of change in pressure or flow rate with respect to rotational speed is the gain of the pump in the control loop, and changes depending on the operating condition 1ill (flL flow or pressure).

従って、従来装置のPID調節計8.インバータ9、電
動機1.ポンプ2及び検出i!5を含むループゲイン(
フィードバック制御の閉ループのゲインをいう)は、一
定圧力又は一定流量運転中でおっても、負荷の状態、即
ち、 fItit又は圧力の大きさによって、変化する
ことになる、 しかし、今迄、その変わり方が明らかにされていなかっ
たので、PID調節計8のPゲインを決めようとする時
、従来は先ず使用される流量(又は圧力)の全範囲にわ
九ってPゲインを決め、このうち最も安全な(最も小さ
いという意)Pゲインに基準をしいて決められていた。
Therefore, the PID controller of the conventional device 8. Inverter 9, electric motor 1. Pump 2 and detection i! Loop gain including 5 (
(referring to the closed-loop gain of feedback control) will change depending on the load condition, i.e., fItit or the magnitude of the pressure, even during constant pressure or constant flow operation.However, until now, no change has been made. Conventionally, when trying to determine the P gain of the PID controller 8, the P gain was determined by first determining the P gain over the entire range of flow rate (or pressure) used, and then It was determined based on the safest (meaning the smallest) P gain.

七の几め、ループゲインが最も小さくなる流量(又は圧
力)の時は応答性が患くなるという欠点があった。
Seventh point, there was a drawback that the response was poor at the flow rate (or pressure) where the loop gain was the smallest.

ま九曲記の手間を省くため、ある流量(又は圧力)Kつ
いてのみしか、Pゲインを求めて設定しなかった場合で
は、他の流量(又は圧力)ではループゲインが高くなり
すぎてサイクリングを起し。
In order to save you the trouble of cycling, if you set the P gain only for a certain flow rate (or pressure) K, the loop gain will become too high for other flow rates (or pressures) and you will not be able to cycle. Wake up.

装置11KM損を与える危険があつ九すした。There was a risk of 11 km of equipment being damaged.

そこで檜々実験研究の結果、その原因はポンプ特性と負
荷特性に起因していることがわがつ九ので、それを相殺
させることによって全使用範四で応答性を工<シ、圧力
や流量の変動型を少なくすることに成功したものである
。即ち、この檀の圧力、流量制御系では1回転数の大き
さに反比例してポンプのゲインが変化し1回転数が下が
ればゲインを上がり1回転数が上がればゲインが下がる
ので1回転数が下がった時はゲインを下げ5回転数が上
がった時はゲインを上げる作用のある2乗関数発生器1
に調節計8とインバータ9間に設けることにより、ルー
プゲインを均一にして応答性のよい制御系とすることに
成功したものである。
As a result of Hinoki's experimental research, we have found that the cause of this is due to the pump characteristics and load characteristics, so by canceling them out, we can improve responsiveness in all usage ranges. This has succeeded in reducing the variable type. In other words, in this pressure and flow rate control system, the gain of the pump changes in inverse proportion to the number of revolutions, and when the number of revolutions decreases, the gain increases, and when the number of revolutions increases, the gain decreases, so the number of revolutions increases. Square function generator 1 that has the effect of lowering the gain when the number of revolutions decreases and increasing the gain when the number of rotations increases.
By installing the controller between the controller 8 and the inverter 9, we succeeded in making the loop gain uniform and creating a control system with good responsiveness.

以下本発明の2.3の実施例について説明すれば次の通
りである。
Embodiments 2.3 of the present invention will be described below.

第2図は本発明の一実施例のブロック図で、第1図に示
す従来装置におけるPID調節計8とインバータ9間に
2乗関数発生器12を設けたものである。従って、第1
図の従来装置と同一部分は同一符号を付しである。
FIG. 2 is a block diagram of an embodiment of the present invention, in which a square function generator 12 is provided between the PID controller 8 and the inverter 9 in the conventional device shown in FIG. Therefore, the first
The same parts as those of the conventional device shown in the figure are given the same reference numerals.

こ\で1本発明の特長及び効果の理解を容易にするため
、第1図に示した従来装置の動作につりで説明する。
In order to facilitate understanding of the features and effects of the present invention, the operation of the conventional device shown in FIG. 1 will be explained below.

まず、圧力制御される場合について説明する。First, a case where pressure is controlled will be explained.

ポンプ特性が次式 %式%( 但し、H:圧力 N:回転数 Q:流量 a、b、C:定数 でよく近似されることは公知であり、うず巻ポンプの特
性の多くは、(1)式の定数Cが小さく、これを無視し
て(2)式で近似することができる。
It is well known that the pump characteristics are well approximated by the following formula % formula % (where H: pressure N: rotation speed Q: flow rate a, b, C: constant, and many of the characteristics of a centrifugal pump are expressed as (1 ) is small, and can be ignored and approximated by equation (2).

H=aN”−bQ”  ・・・・・・・・・・・・・・
・・・・   (21一方、負荷特性は抵抗損失圧力が
流量の2乗に比例するという次式 %式% 但しαは定数 の関係で衆わされることが公知である。(2、(31式
は例えば第3図 のそれぞれN1.J(負荷の損失圧力
)のような曲線である、そして圧カ一定制御されていれ
ば、運転点は同図中AI 、A2 t−結ぶ H=Hm
線上をたどる。(但しH4は設定圧力)、それは第1図
 において説明されるが、ごく一般的な制御法であるの
でこ\では省略する。
H=aN”-bQ”・・・・・・・・・・・・・・・
(21) On the other hand, it is known that the load characteristic is expressed by the following formula in which the resistance loss pressure is proportional to the square of the flow rate. However, α is a constant. (2, (31 For example, the equation is a curve such as N1.J (Load pressure loss) in Figure 3, and if the pressure is controlled to be constant, the operating point is AI, A2 t-connection H = Hm in the figure.
Follow the line. (However, H4 is the set pressure), which is explained in Fig. 1, but since it is a very common control method, it will be omitted here.

ここで運転点に対して、ポンプのゲインすなわちNに対
するHo変化率がどのようになるか明らかにする。
Here, the pump gain, ie, the rate of change of Ho with respect to N, will be clarified with respect to the operating point.

第3図中、運転点がム1の時回転数Nが変わればA1−
B2の抵抗特性曲線に&って移動する。ム1〜B2曲線
上の運転点はH−Nの関係で示すと嬉略図の点A1を通
る曲線となる。これは+21 、133式からQを消去
して求められ1次式のように2次曲線となる。
In Figure 3, when the operating point is M1, if the rotational speed N changes, A1-
Move along the resistance characteristic curve of B2. The operating points on the curves M1 to B2 are represented by the H-N relationship and become a curve that passes through point A1 on the diagram. This is obtained by eliminating Q from the +21 and 133 equations, resulting in a quadratic curve like a linear equation.

1(=+ HtI Nm/ (b+αン ・・・・・・
・・・・・・・・・ (◆一方第3図において負荷特性
がム2〜B10曲鎧の時1回転数はN2となり、運転点
はH=Hm であるA2点となる。ム2〜B10曲線上
の運転点はH−Nの関係では第4図のム2を通る2次曲
−となりH−Hsの時の運転点は同図の点A2である。
1(=+ HtI Nm/ (b+αn...)
・・・・・・・・・ (◆On the other hand, in Fig. 3, when the load characteristic is M2~B10 curved armor, the number of revolutions is N2, and the operating point is point A2 where H=Hm.Mu2~ The operating point on the B10 curve is a quadratic curve passing through M2 in FIG. 4 in the H-N relationship, and the operating point in the H-Hs relationship is point A2 in the same figure.

第4図の点ム1.A2の傾きが、H=Hsと制御されて
いる時のそれぞれの運転点の制御ループにおけるポンプ
のゲインである。
Point 1 in Figure 4. The slope of A2 is the pump gain in the control loop at each operating point when H=Hs is controlled.

制御ループにおけるポンプのゲインとは回転数に対する
圧力の変化率のことである。
The pump gain in the control loop is the rate of change in pressure with respect to rotational speed.

第4図のム1.ム2点の傾きすなわちdj(/dNをグ
ラフにすると第6図のようになる。第4図及び第5図か
ら圧力制御されている時のd H/d NはNの大きさ
に反比例していることがわかる。
M1 in Figure 4. The slope of the two points, dj (/dN), is graphed as shown in Figure 6. From Figures 4 and 5, dH/dN when pressure is controlled is inversely proportional to the magnitude of N. It can be seen that

これらのことを(21〜(4)式を用いて説明すると次
のようになる。
These matters can be explained using equations (21 to (4)) as follows.

(41式によりHとNの関係が示されるが、負荷特性が
一定の時、すなわ−ちαが一定の時(旬をNで微分する
と(51式となる。
(The relationship between H and N is shown by Equation 41, but when the load characteristics are constant, that is, when α is constant (differentiating the peak by N) (Equation 51 is obtained).

d H/ls = 2 aαN/(b+α)(51一方
(4)式からαにクリて解くと(6)式となる。
d H/ls = 2 aαN/(b+α) (51 On the other hand, if we solve for α from equation (4), we get equation (6).

α= bH/(aNLH)         (11J
ここでH=Hs  とおくと(1)式が得られる。
α= bH/(aNLH) (11J
Here, by setting H=Hs, equation (1) is obtained.

α()I=H,)= bHa/(aN”−us)   
   (J)これは、H=Hmと制御されている時、N
がわかれは職#特性を示す定数αがわかることをpわし
ている。(5)及び(77式よ)(81式がdH/dN
(H=Hs)= 2Hs/N     (83得られる
。これがH=H* と制御されている時のポンプのゲイ
ン、すなわち回転数に対する圧力p変化率であり、先に
述べた第5図の曲線と一致している。
α()I=H,)=bHa/(aN”-us)
(J) This means that when H=Hm is controlled, N
The difference is that the constant α indicating job #characteristics can be found. (5) and (formula 77) (formula 81 is dH/dN
(H=Hs)=2Hs/N (83 is obtained. This is the gain of the pump when it is controlled as H=H*, that is, the rate of change in pressure p with respect to the rotation speed, and the curve shown in Fig. 5 mentioned earlier. is consistent with

(8)式は、 dH/dN(kl−14m)が設定玉石
の大きさに比例していることも表わしているが、これは
第4図のム1〜A2を結ぶH=Hiのmlを上下させる
ことによりそれぞれの点の傾きが増減することとも一致
している。
Equation (8) also shows that dH/dN (kl-14m) is proportional to the size of the set boulder, but this means that the ml of H = Hi connecting Mu1 to A2 in Figure 4 is This is also consistent with the fact that the slope of each point increases or decreases by moving it up or down.

以上のように圧カー足側#tすると、負荷の状11に応
じてポンプ2のゲインが変化しそれが回転数の大きさに
反比例しているので、この制御系の11節計8の比例ゲ
インを決める時は、  dH/dN が最も大きくなる
よりなNが蛾も小さい所で決めねばならない、そして、
そのようにして調節ゲインを決めた場合、負荷が変動し
Nが大きくなって9(と、  dH/dN fなわちポ
ンプのゲインが小さくなるので応答性が悪くなるわけで
ある。
As described above, when the pressure car leg side #t is turned on, the gain of the pump 2 changes according to the load condition 11, and it is inversely proportional to the rotation speed, so the 11-node 8 of this control system When determining the gain, it must be determined at a point where N is the smallest, so that dH/dN is the largest, and,
If the adjustment gain is determined in this way, the load will fluctuate and N will increase, resulting in a decrease in dH/dNf, that is, the pump gain, resulting in poor responsiveness.

又逆に最も小さいNO所で調節ゲインを決めたと思って
いたが、央はもつと小さいNの所で運転されることがあ
つ九というような場合、そこに運転点がくると、過大ゲ
インの友め制御系がサイクリングをおこし、H,Q、N
のそれぞれが振動して機器に損傷を与えることになる。
On the other hand, I thought that the adjustment gain was determined at the lowest NO point, but if the center is often operated at a small N point, if the operating point comes to that point, it may result in an excessive gain. The friend control system causes cycling, H, Q, N
Each of these will vibrate and damage the equipment.

しかし、一般には、  dH/dN  が運転点によっ
て変わるといりことしか知られていなかったので、安全
をみて調節ゲインが小さめにとられており、応答性を悪
くして使用されていた。
However, since it was generally known that dH/dN varied depending on the operating point, the adjustment gain was set to a small value for safety reasons, resulting in poor response.

以上圧力制御について説明したが流量制御についても同
様のことが言える。これを数式上でのみ説明する。 +
21 、 +31式からHを消去すると(9)式が得ら
れる。
Although pressure control has been described above, the same can be said about flow rate control. This will be explained only mathematically. +
21, +31 Equation (9) is obtained by eliminating H from the equation.

Q −/Ja/ (α+b)・N(9)これをNについ
て微分すると(10)式が得られる。
Q −/Ja/ (α+b)·N (9) When this is differentiated with respect to N, equation (10) is obtained.

d Q / dN ”占X四訂   (10)一方(9
)からαについて解くと(11)が得られ、 Q=Q%
と α=(aN” −bQ” ) / Q”       
(11)おくと(12)が得られる。
d Q / dN “Zan X 4th edition (10) On the other hand (9
) and solve for α, we get (11), Q=Q%
and α=(aN"-bQ")/Q"
(11), we get (12).

α(Q=Qs) =(aN寞−bQ:)/cP、   
(12)これはQ=Ql と制御されている時Nがわか
れば負荷特性を示す定数αがわかることt−衆わしてい
る。(10)、(12)より(13)が得られる。これ
がQ=Q島と制御されている時の d Q/ dN (Q= Q s) = Q s/N 
    (13)ポンプのゲインすなわち回転数に対す
る流量の変化率であり、圧力制御の場合と同様回転数に
反比例、設定値に比例していることを示している。
α(Q=Qs) = (aN寞−bQ:)/cP,
(12) This means that when controlled as Q=Ql, if N is known, the constant α indicating the load characteristics can be found. (13) is obtained from (10) and (12). When this is controlled as Q=Q island, d Q/ dN (Q= Q s) = Q s/N
(13) This is the gain of the pump, that is, the rate of change of the flow rate with respect to the rotational speed, and indicates that it is inversely proportional to the rotational speed and proportional to the set value, as in the case of pressure control.

これらは、圧力制御の場合の説明図と対比して示した第
6図及び第1図管用いても同様に説明することができる
These can be similarly explained using the tubes shown in FIG. 6 and FIG. 1, which are shown in comparison with explanatory diagrams for pressure control.

以上のように圧力・流量制御系では1回転数の大きさに
反比例してポンプのゲイン(dH/dN 又はdQ/d
N)  が変化し1回転数が下がればゲインが上がり、
回転数が上がればゲインが下がる0本発明はこの点に着
目し1回転数が下がればゲインを下げ1回転数が上がれ
ばゲインを上げるようなものを制御系に加えてやること
により均一なループゲインとして応答性のよい制御系に
した本のである。
As mentioned above, in the pressure/flow control system, the pump gain (dH/dN or dQ/d
N) changes and the number of revolutions decreases, the gain increases,
The present invention focuses on this point and creates a uniform loop by adding something to the control system that lowers the gain when the number of revolutions goes down and increases it when the number of revolutions goes up. This is a book that has a control system with good responsiveness in terms of gain.

即ち、第2図に示した実施例では調節計8出力を2乗関
数発生器1zを通してインバータ9に導くことにより実
現したものである。
That is, in the embodiment shown in FIG. 2, this is realized by guiding the output of the controller 8 to the inverter 9 through the square function generator 1z.

第1図の従来装置の場合、A筒針8の出力はN指令でそ
のtまインバータ9ON設定入力となっているので、1
111jittlの出力信号に対するインバータ90入
力信号のゲインはN/N=1である。
In the case of the conventional device shown in Fig. 1, the output of the A cylinder needle 8 is the N command and the inverter 9 ON setting input until that time.
The gain of the inverter 90 input signal with respect to the output signal of 111jittl is N/N=1.

これに対し第2@に示した本発明の場合、調節計8の出
力t−2乗してインバータ90入力としているので、#
14節計8の出力信号に対するインバータ9の入力信号
のゲインはN!/N = Nとなる。すなわち、調節計
8からインバータ9に至る間のゲインがNに比例するの
で1回転数Nが下がればゲインが下がり1回転数Nが上
がればゲインが上がる本のとしたことになる。
On the other hand, in the case of the present invention shown in the second @, the output of the controller 8 is raised to the power of t-2 and is input to the inverter 90, so #
The gain of the input signal of the inverter 9 with respect to the output signal of the 14-section total 8 is N! /N = N. That is, since the gain from the controller 8 to the inverter 9 is proportional to N, if the number of revolutions N decreases, the gain decreases, and if the number of revolutions N increases, the gain increases.

つまりこうすることにより、圧力自流量制御されたポン
プのゲインと合計すると、(1)圧力制御の場合NX2
Ha/N=2Hs  (Ill  流量制御の場合Nx
 Q a / N二Qa  と一定となる。
In other words, by doing this, when summed up with the gain of the pump with pressure self-flow control, (1) NX2 in the case of pressure control
Ha/N=2Hs (Nx for Ill flow rate control
It becomes constant as Qa/N2Qa.

そこで、任意の運転点で調節ゲインを決めたとしても、
他の運転点で応答性が悪くなることはないし、サイクリ
ング現象を起こす恐れもない、それ故、任意の運転点に
おいて、ある一定の調節ゲイン調整法で調節すればよく
、余裕をとって小さめに調節する必要もない。
Therefore, even if the adjustment gain is determined at an arbitrary operating point,
Responsiveness will not deteriorate at other operating points, and there is no risk of cycling.Therefore, at any operating point, it is only necessary to adjust using a certain adjustment gain adjustment method, and set the gain to a smaller value with a margin. No need to adjust.

以上、インノ9−タ入力信号Cc−ポンプONとみなし
てきたが、ポンプでは比較的Nが大きい所で使用される
ことが多く、モータのすべりも極趨に大きくなることも
ないので本件方式の有効性がそこなわれることはない、 第8図は本発明の異なる実施例を示すもので。
Above, we have assumed that the input signal Cc is the pump ON, but pumps are often used in places where N is relatively large, and motor slippage does not become extremely large, so this method is not suitable. Figure 8 shows a different embodiment of the invention.

前記(S及び(13)式かられかるように、ポンプゲイ
ンは設定値に比例するので、第2図に示した実施例にさ
らに設定値と反比例するゲイン1にもつ可変ゲインアン
プ13を付加し九ものである。
As can be seen from equations (S and (13) above, the pump gain is proportional to the set value, so a variable gain amplifier 13 having a gain of 1 which is inversely proportional to the set value is added to the embodiment shown in FIG. 2. Nine things.

この可変ゲインアンプ13Fiオペアンプの反転増幅器
14の入力側抵抗を可変抵抗Rとし、これを圧力(流量
)設定器1′と連動させ、設定値が小さくなると可変ゲ
インアンプ13の抵抗も小さくし、設定値を大きくする
と可変ゲインアンプ13の抵抗も大きくなるようにした
ものである。このように構成した理由は1反転増巾器1
4のゲインが2個の抵抗几、rで決まり、ゲインがチェ
となっているからである。なお1図では反転増巾器14
をもちいているので、もう1個の反転増巾器15を使っ
ている。
The input side resistance of the inverting amplifier 14 of this variable gain amplifier 13Fi operational amplifier is a variable resistor R, and this is linked with the pressure (flow rate) setting device 1', so that when the set value becomes smaller, the resistance of the variable gain amplifier 13 is also reduced, and the setting When the value is increased, the resistance of the variable gain amplifier 13 is also increased. The reason for this configuration is that 1 inverting amplifier 1
This is because the gain of 4 is determined by the two resistors, R and R, and the gain is CH. In addition, in Figure 1, the inverting amplifier 14
, so another inverting amplifier 15 is used.

第8図は、第8図に示した実施例と同様、設定値と反比
例するゲインとする友め1割算器16をさらに入れたも
ので、2乗関数発生器12の出力を圧力(流量)設定器
7°の出力信号で割算するようにしたものである。
Similar to the embodiment shown in FIG. 8, FIG. 8 further includes a companion divider 16 whose gain is inversely proportional to the set value, and the output of the square function generator 12 is converted to pressure (flow rate). ) is designed to be divided by the output signal of the setting device 7°.

以上のように本発明装置lは、任意の運転点で調節ゲイ
ンを決めれば、他の運転点でもその時と同じ応答性が得
られるので、安全側に設定する必要もなく全域に亘って
応答性を良くすることができる。そのため制御量の変動
量を少なくすることができ、極めて良好な運転性能を得
ることができるもので、実用上ポンプ吐出出力又は流量
の一定制御装置として優れたものである。
As described above, with the device of the present invention, if the adjustment gain is determined at any operating point, the same responsiveness can be obtained at other operating points as well, so there is no need to set it on the safe side, and the responsiveness is maintained over the entire range. can be improved. Therefore, it is possible to reduce the amount of variation in the control amount and obtain extremely good operating performance, making it excellent in practice as a constant control device for pump discharge output or flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置のブロック図、第2図は本発明の一実
施例のブロック図、塾3図〜第7図は従来装置の問題点
を説明するための図で、第3図はポンプ負荷特性図、第
4図は圧力@流量特性図。 第5図は回転数対圧力変化率特性図、第6図は回転数対
流量特性図、第7図は回転数対圧力変化率特性図、第8
図及び第9図は夫々本発明の実施例のブロック図である
。 1・・・電動機、    2・・・ボ/プ。 3・・・カップリング、  4・・・吐出管。 5・・・検出器、     6・・・変換器、7・・・
設定器、     8・・・PID調節計。 9・・・インバータ、12・・・2乗関数発生器。
Fig. 1 is a block diagram of a conventional device, Fig. 2 is a block diagram of an embodiment of the present invention, Figs. 3 to 7 are diagrams for explaining problems with the conventional device, and Fig. 3 is a pump Load characteristic diagram, Figure 4 is pressure @ flow rate characteristic diagram. Figure 5 is a graph of rotation speed vs. pressure change rate, Figure 6 is a graph of rotation speed vs. flow rate, Figure 7 is a graph of rotation speed vs. pressure change rate, and Figure 8 is a graph of rotation speed vs. pressure change rate.
9 and 9 are block diagrams of embodiments of the present invention, respectively. 1...Electric motor, 2...B/P. 3...Coupling, 4...Discharge pipe. 5...Detector, 6...Converter, 7...
Setting device, 8...PID controller. 9...Inverter, 12... Square function generator.

Claims (2)

【特許請求の範囲】[Claims] (1)可変速駆動装置によつて制御される電動機によっ
て駆動されるポンプと、その吐出1IIVc赫けた圧力
又Fi流量の検出器と、この検出器の負帰還信号と圧力
又は流量の設定値との偏差信号を入力信号として制御信
号を調節する調節計とを備え、この調節計の出力によっ
て岐記可変速駆動装置を制御するポンプ吐出圧力又はf
IIt童の一定制御装置において、前記調節針と可変速
駆動装置の間[2乗関数発生器を設けたことを特徴とす
るポンプ吐出圧力又は流量の一定制御装置。
(1) A pump driven by an electric motor controlled by a variable speed drive, a detector for its discharge 1IIVc high pressure or Fi flow rate, and a negative feedback signal of this detector and a set value for the pressure or flow rate. and a controller that adjusts the control signal using the deviation signal of
A constant control device for pump discharge pressure or flow rate, characterized in that a square function generator is provided between the adjustment needle and the variable speed drive device.
(2)  可変速度駆動装置によって制御される電動機
によって駆動されるポンプと、その吐出側に設けた圧力
又は流量の検出器と、この検出器の負帰還信号と圧力又
は15!童の設定器の設定値との偏差信号を入力信号と
して制御信号を調節する調節針とを備え、この調節針の
出力によって前記可変速駆動装置を制御するポンプ吐出
圧力又は流量の一定制御装置におりて、前記調節針と可
変速駆動装置の間に、2乗関数発生器と、設定器と連動
して設定値と反比例するゲインをもつ可変ゲインアンプ
と反転増巾器15を設けたことを特徴とするポンプ吐出
圧力又は流量の一定制御装置。 (31可変速度駆動装置によって制御される電動機によ
って駆動されるポンプと、その吐出側に設は九圧力又は
流量の検出器と、この検出器の負帰還信号と圧力又は流
量の設定器の設定値との偏差信号を入力信号として制御
信号を調整する調節針とを備え、この調節針の出力によ
って前記可変速駆動装置を制御するポンプ吐出圧力又r
!a量の一定制御装置において、前記調節針と可変速駆
動装置の関に、2乗関数発生器と、前記設定器の出力信
号で前記関数発生器の出力信号を割算する割算器を設け
たことを%黴とするポンプ吐出圧力又は流量の一定制御
装置。
(2) A pump driven by an electric motor controlled by a variable speed drive, a pressure or flow rate detector provided on its discharge side, and a negative feedback signal of this detector and a pressure or 15! and an adjustment needle that adjusts a control signal using a deviation signal from a set value of a setter as an input signal, and a pump discharge pressure or flow rate constant control device that controls the variable speed drive device by the output of the adjustment needle. In addition, a square function generator, a variable gain amplifier and an inverting amplifier 15 having a gain inversely proportional to the setting value are provided between the adjustment needle and the variable speed drive device in conjunction with the setting device. A constant control device for pump discharge pressure or flow rate. (31) A pump driven by an electric motor controlled by a variable speed drive, a pressure or flow rate detector installed on its discharge side, a negative feedback signal of this detector and a setting value of a pressure or flow rate setter. and an adjustment needle that adjusts the control signal using a deviation signal between the pump discharge pressure and r
! In the constant control device for the amount a, a square function generator and a divider for dividing the output signal of the function generator by the output signal of the setting device are provided between the adjustment needle and the variable speed drive device. A constant control device for the pump discharge pressure or flow rate to reduce the amount of mold.
JP19674881A 1981-12-09 1981-12-09 Device for controlling discharge pressure or flow amount of pump in constant Pending JPS5898686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19674881A JPS5898686A (en) 1981-12-09 1981-12-09 Device for controlling discharge pressure or flow amount of pump in constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19674881A JPS5898686A (en) 1981-12-09 1981-12-09 Device for controlling discharge pressure or flow amount of pump in constant

Publications (1)

Publication Number Publication Date
JPS5898686A true JPS5898686A (en) 1983-06-11

Family

ID=16362947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19674881A Pending JPS5898686A (en) 1981-12-09 1981-12-09 Device for controlling discharge pressure or flow amount of pump in constant

Country Status (1)

Country Link
JP (1) JPS5898686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033617A (en) * 1983-08-03 1985-02-21 Fuji Electric Co Ltd Monitoring device of pump operation
JPS62165597A (en) * 1986-01-16 1987-07-22 Toshiba Corp Flow rate detecting method for variable-speed pump
JPS62189617U (en) * 1986-05-23 1987-12-02
JPH0267478A (en) * 1988-08-31 1990-03-07 Shimadzu Corp Constant pressure controller for feed pump
JP2013519815A (en) * 2010-02-12 2013-05-30 アルバイラー・ゲーエムベーハー Positive displacement pump operation control device, pump system, and operating method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124202A (en) * 1976-04-12 1977-10-19 Yaskawa Electric Mfg Co Ltd Pressure control sytem for centrifugal
JPS53139201A (en) * 1977-05-11 1978-12-05 Ebara Corp Water distributing pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124202A (en) * 1976-04-12 1977-10-19 Yaskawa Electric Mfg Co Ltd Pressure control sytem for centrifugal
JPS53139201A (en) * 1977-05-11 1978-12-05 Ebara Corp Water distributing pump device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033617A (en) * 1983-08-03 1985-02-21 Fuji Electric Co Ltd Monitoring device of pump operation
JPS62165597A (en) * 1986-01-16 1987-07-22 Toshiba Corp Flow rate detecting method for variable-speed pump
JPS62189617U (en) * 1986-05-23 1987-12-02
JPH0267478A (en) * 1988-08-31 1990-03-07 Shimadzu Corp Constant pressure controller for feed pump
JP2013519815A (en) * 2010-02-12 2013-05-30 アルバイラー・ゲーエムベーハー Positive displacement pump operation control device, pump system, and operating method thereof
US9404482B2 (en) 2010-02-12 2016-08-02 Allweiler Gmbh Operation control device for limiting the amount a positive displacement pump over-or undershoots a target operating parameter value, pump system and method for operating such
US9797398B2 (en) 2010-02-12 2017-10-24 Allweiler Gmbh Operation control device for limiting the amount a positive displacement pump over or undershoots a target operating parameter value, pump system and method for operating such

Similar Documents

Publication Publication Date Title
US4298310A (en) Process and apparatus for prevention of surging in turbocompressors
JPS63100276A (en) Controller for variable speed water wheel generator
US4164034A (en) Compressor surge control with pressure rate of change control
KR890010415A (en) Variable speed pumping system
US4255089A (en) Method of controlling series fans driving a variable load
US4104876A (en) Fan R. P. M. control loop stabilization using high rotor speed
JPS5898686A (en) Device for controlling discharge pressure or flow amount of pump in constant
CN101393425A (en) Parameter regulation system and method for controlling DC generator speed by PID
JPS63131844A (en) Revolving speed control device for internal combustion engine
JPS5840002B2 (en) Turbine Seigyo Cairo
JPH02294537A (en) Engine idling regulation
KR870001551B1 (en) Adaptive gain compressor surge control system
US3520318A (en) Controller with asymmetrical feedback time constant
JP3004072B2 (en) Control device for actuator with friction of automobile
JPS62103403A (en) Method and device for controlling steam turbine of power plant
US3633597A (en) Flow rate control method
US5699267A (en) Hot gas expander power recovery and control
JPH07103202A (en) Valve positioner
JPH05118280A (en) Operation control system for variable speed water supply device
JPS59170912A (en) Flow rate control device
CN108953587B (en) Excitation self-adjusting extremum search controller for continuously variable transmission and construction method
JPH11311590A (en) Exhaust gas pressure adjusting device
JPH11287195A (en) Characteristic control device for variable speed driven turbo type pump
JPS5947155B2 (en) Pump control method
JPS62259968A (en) Tension controller