JPS589828A - Heat-recovery in glass smelting furnace - Google Patents

Heat-recovery in glass smelting furnace

Info

Publication number
JPS589828A
JPS589828A JP56104967A JP10496781A JPS589828A JP S589828 A JPS589828 A JP S589828A JP 56104967 A JP56104967 A JP 56104967A JP 10496781 A JP10496781 A JP 10496781A JP S589828 A JPS589828 A JP S589828A
Authority
JP
Japan
Prior art keywords
glass
heat
ceramic
preheated
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56104967A
Other languages
Japanese (ja)
Inventor
Shiro Takahashi
四郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56104967A priority Critical patent/JPS589828A/en
Publication of JPS589828A publication Critical patent/JPS589828A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To improve the thermal efficiency of a glass smelting apparatus furnished with a regenerator or a recuperator, by utilizing the hot exhaust gas of the glass smelting furnace furnished for the preheating of the glass raw material and the combustion air using ceramic spheres as a heat medium. CONSTITUTION:Hot gas 5 exhausted from the glass smelting furnace 1 is heat- exchanged and accumulated in the regenerator 3. A part of the gas discharged from the regenerator 3 is introduced into the ceramic sphere pre-heater 8 to the ceramic spheres used as the heat medium. A part of the heated ceramic sphere is introduced into the secondary air preheater 9 to preheat the secondary air 4. The preheated secondary air is further heated in another regenerator 2 of the smelting furnace 1, and used as the combustion air for the furnace 1. The remaining part of the ceramic spheres is utilized for the preheating of the raw material glass batch 16 in the rotary heat-exchanger 10, and returned to the ceramic sphere preheater 8. The remaining part of the exhaust gas discharged from the regenerator 8 is transferred to the glass cullet preheater 15 and utilized for the preheating of the raw material glass cullet.

Description

【発明の詳細な説明】 本I!明は蓄熱室又は換熱室を備えたガラス溶融炉の熱
回収方法に関する。
[Detailed Description of the Invention] Book I! The present invention relates to a heat recovery method for a glass melting furnace equipped with a heat storage chamber or a heat exchange chamber.

従来、大量生温されるガラスの熔融に蟲っては、熱j!
駅の丸め蓄熱室又は換熱室を備えたタンク炉が用いられ
る。燃料としては通雷重餉が用いられ蓄熱l1lOタン
ク炉では、炉の後半の熔解部の壁のポー)K取シ付けら
れたバーナーから重油が噴、射されボートから吹出され
る予熱されえ働鉤用の二次空気によって燃焼される。燃
鋒排ガスは対内するボートから熱回収装置である蓄熱室
に入り室内のチェッカーブリックを加熱し先後、煙道、
a喪を経て大気中に放出される。換熱蓋のタンク炉では
チェッカーブリックの代シにレキエペレーターチ二−ブ
を用い排ガスは二次空気を加熱した後、煙道、aiwを
経て大気中に放出される。蓄熱室又は換熱室から排出さ
れた排ガスは通常45G−6!!O℃の低温になってい
るので、この排ガス・、からO熱回収は、廃熱ボイラー
において低圧蒸気を生滅することによって行なわれてい
る1度であって、ガラス溶融炉自体の系へ熱エネルギー
として還元することは殆んど行なわれていない。このよ
うな低温の排ガスからの熱の回収は、設備I!に比較し
て熱の■収効率が低い難点がある。
Conventionally, the problem with melting glass in large quantities at lukewarm temperature is the heat!
Tank furnaces with station round heat storage or heat exchanger chambers are used. Lightning-stripped heavy oil is used as fuel, and in the heat storage l1lO tank furnace, heavy oil is injected from a burner attached to the wall of the melting section in the latter half of the furnace, and is blown out from the boat. It is combusted by secondary air for the hook. The exhaust gas from the inboard boat enters the heat storage chamber, which is a heat recovery device, and heats the checker brick inside the room, and then goes to the flue,
It is released into the atmosphere after a mourning process. In a tank furnace with a heat exchanger lid, a requieperator chimney is used instead of a checker brick, and the exhaust gas is discharged into the atmosphere through a flue and an AIW after heating the secondary air. The exhaust gas discharged from the heat storage room or heat exchange room is usually 45G-6! ! Since the temperature is as low as 0°C, O heat recovery from this exhaust gas is carried out by generating and extinguishing low-pressure steam in the waste heat boiler, and the thermal energy is transferred to the system of the glass melting furnace itself. There is almost no attempt to restore it as such. Recovery of heat from such low-temperature exhaust gas is possible using equipment I! The disadvantage is that the heat collection efficiency is low compared to the conventional method.

本発明の目的は、本尭―看が完に開発し、轡願昭5!−
20854号Kll示した熱媒体としてセラ2ツク球を
用いる回転式熱交換装置及び特公昭49−29284号
に開示されるガラスカレットの予熱装置等を組み合せる
ととくより比較的簡単な設備の増膜により、ガラス溶融
炉の排ガスから熱回収を行ない、wAIILされた熱エ
ネルギーをガースの熔融に直接還元使用できるようにす
ることである。
The object of the present invention is that it was completely developed by Mr. −
It is possible to increase the film thickness of relatively simple equipment by combining the rotary heat exchanger using ceramic balls as the heating medium shown in No. 20854 Kll and the glass cullet preheating device disclosed in Japanese Patent Publication No. 49-29284. The objective is to recover heat from the exhaust gas of the glass melting furnace, and to make it possible to directly reduce and use the thermal energy generated by wAIIL for melting the girth.

本発明のガラス溶融炉の熱回収方法は、蓄熱室又は換熱
寓を備えたガラス溶融炉の燃焼排ガスから熱を回収する
に轟り、 蓄熱室又は換熱室から排出された排ガスの一部をガラス
カレット予熱装置に導きカレットと接触させるととによ
シカレットを予熱する工薯曽記排ガスの他の一部を、熱
媒体として循環使用するセラ2ツク球の予熱装置に導き
、セラミック球と11I触させることによってセl)1
ツク球を予熱する工S: 予熱されたセラきツク球の一部を回転式熱交換装置に導
入しガラスパッチと向流的に接触せしめてガラスパッチ
を予熱する工程; 前記予熱されたセラミック球の他の一部を二次空気予熱
装置に導入し、二次空気と接触せ【2めて二次空気を予
熱する工@: 前記予熱されたガラスカレット及び予熱され良ガラスバ
ッチをガラス溶融炉に送入する工程:及び 前記予熱され九二次空気を蓄熱室又は換熱室を過って炉
の燃鉤空閤へ送入する工程 からなる。
The heat recovery method for a glass melting furnace of the present invention is for recovering heat from the combustion exhaust gas of a glass melting furnace equipped with a heat storage chamber or a heat exchanger, and includes a part of the exhaust gas discharged from the heat storage chamber or the heat exchanger. The other part of the exhaust gas is led to a preheating device for ceramic balls, which is circulated and used as a heat medium, and is brought into contact with ceramic balls. Cell by touching 11I)1
Preheating the ceramic bulb S: A step of introducing a part of the preheated ceramic bulb into a rotary heat exchanger and bringing it into countercurrent contact with the glass patch to preheat the glass patch; The preheated ceramic bulb Another part of the glass cullet is introduced into a secondary air preheating device and brought into contact with the secondary air. and a step of feeding the preheated secondary air into the combustion chamber of the furnace through a heat storage chamber or a heat exchange chamber.

本発明によれば、蓄熱室又は換熱室を備えたガラス溶融
炉の燃焼排ガスから熱を1牧するに当り、蓄熱室又は換
熱朧の中間又は終端部から、後述の予熱装置を通すとと
kよ〕昇温され良二次9気を使用するととKよ〉過電よ
り高温の排ガスを取り出11、その一部を前記カレット
予熱装置に導きカレットの予熱を、他の大部分を熱媒体
として循環使用するセラ2ツク球予熱装置(移動層産熱
交換装置)に導き一定簾量速度で下降するセラミック球
と向流的に熱交換を行なわせ、該予熱装置から排出きれ
る予熱されたセラ2ツク球の流れを二分しこの一方を前
記回転式熱交換装置に導いて原料パッチの予熱を行うと
ともに1他方を二次空気予熱装置(セラ2ツク球予熱羨
置と同型の移動層型熱交換装蓋)K導き、ここで常温の
二次空気と熱交換せしめることkより、従来予熱される
ことなく蓄(資)熱室に送入されていた二次空気を予熱
しこれによってボート(吹出)から炉の燃焼空間に吹き
出される二次空気の最終温度を上昇せしめ従って蓄(a
熱室から排出される排ガス温度を上昇させ、より効率的
な熱交換を行なわせる。
According to the present invention, when heat is extracted from the combustion exhaust gas of a glass melting furnace equipped with a heat storage chamber or a heat exchange chamber, if the heat is passed through the preheating device described below from the middle or end of the heat storage chamber or heat exchange chamber. If you use a high-temperature secondary 9 gas, then take out the high temperature exhaust gas 11 from the overcharge, and introduce a part of it to the cullet preheating device to preheat the cullet, and heat the majority of the other part. The preheated ceramic balls are guided to a ceramic ball preheating device (moving bed heat exchanger) which is circulated as a medium, and are exchanged countercurrently with the ceramic balls that descend at a constant screen rate, and the preheated balls are discharged from the preheating device. The flow of the two ceramic spheres is divided into two, one of which is guided to the rotary heat exchanger to preheat the raw material patch, and the other is guided to a secondary air preheating device (a moving bed type similar to the two ceramic sphere preheating device). By introducing the heat exchanger (heat exchanger cover) and exchanging heat with the secondary air at room temperature, the secondary air, which conventionally was sent to the heat storage chamber without being preheated, is preheated and the boat heats up. increases the final temperature of the secondary air blown into the combustion space of the furnace from the
This increases the temperature of the exhaust gas discharged from the heat chamber, allowing for more efficient heat exchange.

一般にガラス溶融炉の排ガスの水当量は原料(パッチ十
カレット)の水当量(結晶水の分−に要する熱量、水分
の蒸発潜熱も含めて)よシ充分大きいのが畳通であるの
で、単位時間蟲りの排ガスの容量、セラミック球の循環
重量を各熱交換装置に適正に配分するととKよシ、原料
のみならず二次空気も所定温暖まで昇温させることが可
能である。以上によシ回転式熱交換装置を中心として、
従来提案されている排ガスを利用するガラス原料の予熱
方法にみられる設備の大蓋化による初期投資、メンテナ
ンス費用の増大、原料の汚染、原料のセグリゲーション
、排ガス処110m[雑化岬の諸難点をすべて解決し九
排ガス利用によるコンパクトで高効率な排熱a収を完成
することができた。
In general, the water equivalent of the exhaust gas from a glass melting furnace is sufficiently larger than the water equivalent of the raw material (patch 10 cullets) (including the amount of heat required for crystallization water and the latent heat of vaporization of water), so the unit is If the volume of the exhaust gas and the circulating weight of the ceramic bulbs are appropriately distributed to each heat exchange device, it is possible to raise the temperature of not only the raw material but also the secondary air to a predetermined temperature. Focusing on the above rotary heat exchange equipment,
Previously proposed methods for preheating glass raw materials using exhaust gas require initial investment due to larger equipment lids, increased maintenance costs, contamination of raw materials, segregation of raw materials, and 110m exhaust gas treatment facilities [the various drawbacks of Misaka Misaki] By solving all of these problems, we were able to complete a compact and highly efficient waste heat collection system using nine exhaust gases.

本発明の詳細を第1図の70−シート、s2図、第S図
の各装置の概略断−図に従って説明する。
The details of the present invention will be explained with reference to the schematic cross-sectional views of each device in the 70-sheet of FIG. 1, S2, and S of FIG.

第1図はサイドボート式蓄熱室を備えたガラス溶融炉に
おいて本発明を奥論する場合の70−シートを示す。
FIG. 1 shows a 70-sheet for implementing the invention in a glass melting furnace with a side boat type regenerator.

図において1はガラス溶融炉の熔解槽を示[1,2及び
5#′i炉の両側に設けられた蓄熱室を示す。
In the figure, 1 indicates the melting tank of the glass melting furnace [1, 2, and 5 #'i indicates the heat storage chambers provided on both sides of the furnace.

4け熔解槽の上部の燃焼空間に、蓄熱室2を過って供給
される二次空気、5は燃焼空間よ抄蓄熱室3を通って排
出される燃焼排ガスを示す。
Secondary air is supplied to the combustion space in the upper part of the four-layer melting tank through the heat storage chamber 2, and 5 indicates the combustion exhaust gas discharged from the combustion space through the heat storage chamber 3.

6及び7は排ガス及び二次空気の交換弁を示す。6 and 7 indicate exhaust gas and secondary air exchange valves.

排ガスS#i蓄熱室3を通)交換弁6を経てセラミック
球の予熱装置8に入シ、仁こでセラ2ツク球と接触しこ
れを予熱する。セラ2ツク球予熱装置8は、鮪2図に示
すように1移動層雇熱交換装置であり、土部の投入口2
1より70〜150℃のセラミック球が定量的に供給さ
れこれは遂次下方に向けて落下する。−1蓄熱童5よシ
排出された排ガス5が1.装置の中間部に設けられ九排
ガスの入口22よシ装置内に導入され、セラミック球と
向流的に接@L2、これを所望の温度通常SOO〜70
0″Ctで予熱する。予熱されたセラミック球は装置底
部のセラミック球の出口23より装置外へ排出される。
The exhaust gas S#i passes through the heat storage chamber 3) and enters the ceramic bulb preheating device 8 via the exchange valve 6, where it comes into contact with the ceramic bulb and preheats it. The cellar two-ball preheating device 8 is a single moving bed heat exchange device as shown in Fig.
1, ceramic balls at a temperature of 70 to 150°C are supplied quantitatively and successively fall downward. -1 The exhaust gas 5 discharged from the heat storage device 5 is 1. The exhaust gas is introduced into the device through the inlet 22 provided in the middle of the device, and is brought into contact with the ceramic bulb in countercurrent @L2, and then heated to a desired temperature, usually SOO ~ 70°C.
Preheating is performed at 0''Ct. The preheated ceramic sphere is discharged from the apparatus through the ceramic sphere outlet 23 at the bottom of the apparatus.

−1排ガスは120〜2001m:まで冷却され排ガス
の出口24よりファン14に吸引されてaclsに達す
る。
-1 exhaust gas is cooled to 120 to 2001 m: and is sucked into the fan 14 from the exhaust gas outlet 24 to reach the acls.

常温の二次空気4け77ン13により吸引されて二次9
気予熱装置9に入る。二次空気予熱装置9は、セラミッ
ク球予熱装置8と同様に移動層型熱交換装蓋であシ、セ
ラミック球予熱装置8から排出された予熱されたセラ2
ツク球が上部の投入口25より装置内に入り、底部の出
口27に向って落下する。二次空気は入口26よシ入シ
、セラミック球と向流的に接触し、所望の温度通常15
0〜2501: まで予熱され、出口28よ〕交換弁7
を経て蓄熱室2に入る。このように二次空気が予熱され
ているため排ガスの温度も又上昇し蓄熱室3の出口にお
いて排ガスの温度は常温空気を使用する場合450〜6
50℃であるのに対し40fl〜800℃に遍する。
The secondary air is sucked in by 4 77 tons of room temperature secondary air 13.
Enter the air preheating device 9. The secondary air preheating device 9 is a moving bed type heat exchanger lid similar to the ceramic ball preheating device 8, and the preheated cellar 2 discharged from the ceramic ball preheating device 8 is used as a secondary air preheating device 9.
The pick ball enters the device through the input port 25 at the top and falls toward the outlet 27 at the bottom. Secondary air enters through the inlet 26 and contacts the ceramic sphere countercurrently to a desired temperature typically 15
0 to 2501: preheated to outlet 28] Exchange valve 7
It then enters heat storage chamber 2. Since the secondary air is preheated in this way, the temperature of the exhaust gas also rises, and the temperature of the exhaust gas at the outlet of the heat storage chamber 3 is 450 to 60℃ when room temperature air is used.
While it is 50°C, it ranges from 40fl to 800°C.

15はガラスカレット1アO予熱装量を示し、これはW
llIO移動層熱交換装置であシ、上部の投入口2!よ
りガラスカレットが投入され底部の出口31より排出さ
れる。一方、蓄熱IISからの排ガスの一部が、装置の
ガスの入口30よ妙入抄、内部のガラスカレット17と
向流的に接触しカレットを約450〜550℃に予熱L
7た後、排ガスの出口32より出て煙突18に向う。予
熱されたガラスカレットけ2キサ−19に送られる。
15 indicates the glass cullet 1A O preheating charge, which is W
llIO moving bed heat exchanger, upper input port 2! Glass cullet is introduced into the chamber and discharged from the outlet 31 at the bottom. On the other hand, a part of the exhaust gas from the heat storage IIS contacts the gas inlet 30 of the device countercurrently with the internal glass cullet 17, preheating the cullet to about 450 to 550°C.
After 7 hours, the exhaust gas exits from the exhaust gas outlet 32 and heads toward the chimney 18. The glass cullet is sent to a preheated glass cullet 2 xer 19.

10は特願昭56−20854号に詳細に説明されてい
る回転式熱交換装置である。ガラスパッチ16はパッチ
ホッパー11より、スクリューフィーダーS5によ)!
1!置の一端よ妙羨置内に送入される。一方、予熱され
たセラミック球12が装置の他端のスクリューフィーダ
ー54により装置内に供給される。装置は、#l311
1に示す如く、円筒形の外筒35と、これKよって包囲
され一体的に回転する網目構造の個壁を有する内@s6
とから構成され、内筒と外筒とを回転させることによっ
てセラミック球を内筒の他端へ向けて進行させると共に
ガラスパッチを内筒の網目を通過させて外筒と内筒との
間を竜う2ツク球と逆方向に移動させる。そのため、前
記内筒は内部にスクリュー羽@syを有E2、内筒の同
転KfPなってセラミック球を進行させる。一方ガラス
パッチはパッチの出口に向けて111m!につけられた
傾斜と回転によって移動する。
10 is a rotary heat exchanger described in detail in Japanese Patent Application No. 56-20854. Glass patch 16 is sent from patch hopper 11 to screw feeder S5)!
1! One end of the station is sent to the Myoki station. Meanwhile, preheated ceramic spheres 12 are fed into the apparatus by a screw feeder 54 at the other end of the apparatus. The device is #l311
As shown in FIG. 1, a cylindrical outer tube 35 and an inner wall having a mesh structure that is surrounded by the outer tube K and rotates integrally with each other are provided.
By rotating the inner cylinder and the outer cylinder, the ceramic sphere is advanced toward the other end of the inner cylinder, and the glass patch is passed through the mesh of the inner cylinder to pass between the outer cylinder and the inner cylinder. Move it in the opposite direction to the two dragon balls. Therefore, the inner cylinder has a screw blade @sy inside E2, and the inner cylinder rotates KfP to advance the ceramic sphere. On the other hand, the glass patch is 111m towards the exit of the patch! It moves by tilting and rotating.

オた前記外筒と内筒との間には、外筒と半径方角に+’
lfrする複数のセグメント板3Bが設けられ、ヒれけ
前記内筒を支持すると共に外筒の回転に伴なってセグメ
ント板に仕切られた各仕切室内のガラスパッチが順次内
筒内へ落下し、セラ2ツク球と接触し予熱される。
Additionally, there is a space between the outer cylinder and the inner cylinder that is +'
A plurality of segment plates 3B are provided to support the inner cylinder, and as the outer cylinder rotates, the glass patches in each partition chamber partitioned by the segment plates sequentially fall into the inner cylinder. It comes into contact with the ceramic bulb and is preheated.

約500〜700℃の予熱されたセラミック球は、ガラ
スパッチと接触し、とれを400〜600℃に予熱する
。この結果約100℃に降温寧れたセラ2ツク球は、球
お出口5!よりコンベヤーにより、セラミック球の予熱
装置8に戻される循環系を構成する、 一方予熱されたガラスパッチは、パッチの排出口40よ
りコンベヤーによ1)ill?サー19に送られ、ここ
で加熱され九ガラスカレットと拠金された後、ガラス溶
融炉の投入口前に設けられ九原料ホッパー20に送入さ
れる。
The ceramic sphere, preheated to about 500-700°C, contacts the glass patch and preheats the tube to 400-600°C. As a result, the temperature of the two-seater ball has dropped to about 100℃, and the ball is ready for exit 5! 1) ill? The raw material cullet is sent to the glass melting furnace 19, where it is heated and charged with glass cullet, and then fed into the raw material hopper 20 provided in front of the input port of the glass melting furnace.

〔実施例〕〔Example〕

200 ’/、  の金体能力のサイドポート式蓄熱臘
ガラス溶融炉で従来の方法でびんガラスを製造する場合
、重油の使用量はS 2 ”/、 、ガラス引出量は2
00 ′r/Dであ)ガラス1−轟夛の重油使用量は1
60tであった。
When manufacturing bottle glass by the conventional method in a side-port type heat storage glass melting furnace with a metal body capacity of 200'/, the amount of heavy oil used is S2'/, and the glass withdrawal amount is 2.
00 'r/D) Glass 1 - The amount of heavy oil used in Todoroki is 1
It was 60 tons.

このような状況のガラス溶融炉で本発明の方法に従って
熱・回収装置を付設しガラスを学童した。
In a glass melting furnace under such conditions, a heat recovery device was attached according to the method of the present invention, and glass was made into a glass melting furnace.

蓄熱室出口で約650℃の排ガス14,00ONdlH
のうち12.100 Md1M tセラミツク球予熱装
置へ、1,90ONシ4をガラスカレット予熱装置へ導
き循環量14.80047’l+のセラきツク球、処理
量2.5004/Hのガラスカレットと熱交換を行なわ
せ、セラずツク球を100・→600℃600℃カレッ
ト→500℃まで昇温した。排ガスはl5g1℃に降温
しえ6600℃まで昇温されえ竜うミック球の金曽職量
14,800砺勺ノ中竜!・11 Kp/Hを回転式熱
交換装置へ、翫400イを二次空気予熱装置へ導き、処
理量7. S OOKv’F10パッチを50°→50
0℃、1zsooNII//uの二次空気をsO・→2
00℃まで昇温することかできた。一方セラ2ツク球は
400℃→100℃まで降温して排出され予熱装置へ戻
す循環系を構成させた。崗、使用したセラミック球は平
均球@9−O→ら球である。二次空気温度を200℃ま
で昇温した結果として通常SaO℃の排ガス温度を上記
450tl:まで上昇させその顕熱を高めよ抄効呆的な
熱交換を行なわせることができえ。
Exhaust gas at approximately 650℃ at the outlet of the heat storage chamber 14,00ONdlH
Of these, 12.100 Md1M t ceramic sphere preheating device, 1,90ON 4 was guided to the glass cullet preheating device, ceramic ball with circulation volume 14.80047'+, glass cullet with processing amount 2.5004/H and heat. The temperature of the ceramic bulb was raised from 100°C to 600°C, 600°C to 500°C. The temperature of the exhaust gas drops to 15g1℃ and rises to 6600℃.・11 Kp/H is guided to the rotary heat exchanger, 400 yen is guided to the secondary air preheating device, and the throughput is 7. S OOKv'F10 patch 50° → 50
0℃, 1zsooNII//u secondary air sO → 2
It was possible to raise the temperature to 00°C. On the other hand, the temperature of the ceramic bulb was lowered from 400°C to 100°C, and a circulation system was constructed in which it was discharged and returned to the preheating device. The ceramic ball used is an average ball @9-O→ra ball. As a result of raising the secondary air temperature to 200°C, it is possible to raise the exhaust gas temperature, which is normally SaO°C, to the above-mentioned 450 tl, increase its sensible heat, and perform efficient heat exchange.

以上の条件の下で連続的にガラス溶融炉の運転を行った
とζろ定常状態でガラス引出量20OVを保つためには
重油の使用量は2 & y Jl/Dまで減少すること
が判った。ガラス1t6n轟りの重油使用量(燃料原単
位)は1ssstである。
It was found that when the glass melting furnace was operated continuously under the above conditions, the amount of heavy oil used was reduced to 2 & y Jl/D in order to maintain a glass draw-out amount of 20 OV in a steady state. The amount of heavy oil used (fuel consumption rate) for the glass 1t6n Todoroki is 1ssst.

以上の操業条件と結果を爽論例として従来法と比較して
表−1に示す。
Table 1 shows the above operating conditions and results in comparison with the conventional method as an example.

1!−1 本発明の@転式熱交換装置を使用したガラスパッチ予・
熱系041色は次の過)。
1! -1 Glass patch preparation using the @ rotary heat exchanger of the present invention
Thermal system 041 color is as follows).

(1)  排ガスと原料om*@xより(直接接触法に
比し) 1)原料の変質やセグリグーシ璽ンがない。
(1) From the exhaust gas and raw material om*@x (compared to the direct contact method) 1) There is no deterioration of the raw material or separation.

原料の変質は熱媒体であるセラ2ツタ球の材質を原料成
分の一部或いは轟合履威に近いものを選ぶことKjl避
叶られる。
The deterioration of the raw material can be avoided by selecting a material for the heat medium, the cera 2 ivy bulb, that is a part of the raw material components or one that is similar to the heat exchanger.

2)#ガス処理の煩雑化が避けられる。2) #Complicated gas processing can be avoided.

直接接触法でも原料パッチをペレット化した充填層方式
では・この間層はなく、設備も比較的コンバク)Kなる
が、その前段のペレット化設備及びメンテナンスの費用
が大きく、ペレット化に水分を導入するとその分が予熱
時の熱消費をもたらす。
Even with the direct contact method, the packed bed method in which the raw material patch is pelletized has no intervening layer and the equipment is relatively compact), but the cost of the pelletizing equipment and maintenance in the previous stage is high, and it is difficult to introduce water into pellets. This amount results in heat consumption during preheating.

一般の直接接触方式では大量の排ガス中にパッチ微粉が
飛散し、排ガス全量を最終段でIkl[してやらないと
豪毅の排ガス部層設備へ送り込めない。
In the general direct contact method, patch fine powder is scattered in a large amount of exhaust gas, and the entire amount of exhaust gas cannot be sent to the exhaust gas section equipment unless it is Ikl [Ikl] in the final stage.

(2)  一種の間接接触方式であるが、他の間接接輪
に比し 1)一種の間##接触方式であるが排ガスとセラミツク
球、セラ2ツク球とパッチの直接接触方式を二段に構成
した直接接触方式ともいえる。
(2) It is a kind of indirect contact method, but compared to other indirect contact wheels, 1) It is a kind of ## contact method, but it is a two-stage direct contact method between the exhaust gas and the ceramic ball, and the ceramic ball and the patch. It can also be said to be a direct contact method.

セラ2ツク球の球径を揃え、形状を球形に@えることk
よシセラ2ツク球予熱装置O圧損増加を押えると共に1
排ガスとの接戦面積の大き一直螢蒙触を行わせるととK
よ)熱交換効率を高め設備はコンバクですむ。
Making the diameter of the two spheres uniform and making the shape spherical
Yoshisera 2-Tsuku ball preheating device O suppresses the increase in pressure loss and 1
If you have a large direct contact area with exhaust gas,
) Improves heat exchange efficiency and requires only a combination of equipment.

1転式熱交換鋏置においてはセラ2ツク球の!!面積の
大きいこと、原料とO向流・直接・反復*@による高い
熱交換効率によシ、矢張り設備はコンパクトなものにな
る。
For single-turn heat exchange scissors, there are two Cera bulbs! ! Due to the large area and high heat exchange efficiency due to the raw material and O countercurrent flow, direct flow, and repetition *@, the Yabari equipment becomes compact.

従って傭のlIJ**@方式に比し、2段であっても陵
備社コンパクトで熱交換効率はより高い。
Therefore, compared to the conventional lIJ**@ method, even with two stages, it is more compact and has higher heat exchange efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

slmは本発明方線を説明する70−シート、菖2図は
本発明方法に用いられる装置の断釦図、第3図は、92
図のA −A’断−図を示す。 1・・・・・・熔解槽  2.3・・・・・・蓄熱塵4
・・・・・・ 二次空気  5・・・・・・排ガス6.
7・・・・交換弁   8・・・・セラミック球予熱装
置9・・・・・・二次空気予熱装置 10・・・・・・ 1転式熱交換羨置
slm is a 70-sheet explaining the direction of the present invention, Diagram 2 is a cutaway diagram of the apparatus used in the method of the present invention, and Figure 3 is a 92-sheet.
The A-A' section of the figure is shown. 1... Melting tank 2.3... Heat storage dust 4
...Secondary air 5...Exhaust gas6.
7... Exchange valve 8... Ceramic bulb preheating device 9... Secondary air preheating device 10... Single transfer heat exchanger

Claims (1)

【特許請求の範囲】 (1)  蓄熱室又は換熱電を備えたガラス溶融炉の働
愉排ガスから熱を1釈するに蟲り、 蓄熱室又は換熱童から排出され九排ガスの一部をガラス
カレット予熱装置に導きカレツFと接触させるととによ
りカレットを予熱する工@富 前記排ガスの他の一部を、熱媒体として循11*用する
セラミック球の予熱装置に導き、セラ2ツク球とII触
させることKよってセラミッタ球を予熱する工程;  
    ′予熱宴れたセラ2ツク球の一部を回転式熱交
IIIIllI置に導入しガラスバッチと向流的Kl!
、軸せしめてバラスパッチを予熱する工寝;曽記予熱さ
れたセラ2ツク球の伽の一部を二次空気予熱装置に導入
し、二次空気とIII触せしめて二次空気を予熱する工
程; 前記予熱されたガラスカレット及び予熱されたガラスバ
ッチをガラス溶融炉に送入するl1;及び 前記予熱された二次空気を蓄熱室又は換熱富を過って炉
の燃焼空間へ送入する工程からなゐガラス溶融炉の熱回
収方法。 (坤 前記ガラスカレット予熱装置は移動層タイプO熱
交換装置であり、上方よ)ガラスカレットが供給され、
下方よシ排ガスが送入され、俵置内+ガラスカレットは
向流的に排ガスと接触し予熱される特許−求の範m第1
項記載の方法。    ′ (3)  前記セラミック球の予熱装置は移動層臘熱交
換装置てあシ、装置の上方から供給されはぼ一定の速度
で下降するセラ2ツク球は装置め下方よ)送入され九排
ガスと向流的に接触し予熱される特許請求の範lI第1
項記載の方法。 ■ 前記二次空気の予熱装置は移動層産熱交換装置であ
り、装置め下方より送入された二次空気は、装置の上方
から供給され下降する予熱されたセラミック球と向流的
に接触し予熱される特許請求の範囲第1項記載の方法。 (5)  前記1転式熱交換装置は、円筒形の外筒と、
これKよって包囲され一体的に回転する網目構造の側壁
を有する内情とから構成され該内情の一端よ)予熱され
た熱媒体であるセラ2ツク球が供給され、該内情の他端
よりガラスパッチが供給され、前記内情と外筒とを回転
させることによって該セラミック球を内情の他端へ向け
て進行させると共に該ガラスパッチを内筒の網目を通過
させて外筒と内情との閏をセラミック球と逆方崗に移動
させるようになっている特許請求の範囲第1項記載の方
法。 (&)  前記内情は内部にスクリュー羽根を清し、内
筒の回転に停なってセラ2ツタ球を進行させると共に前
配外曽と内筒との間には、外筒を半径方向に分断する複
数のセグメント板が設けられ鋏セグメント板が前記内筒
を支持すると共に外筒の囲板に伴なってセグメント板に
仕切られた各仕切室内のガラスパッチが順次内情内へ落
下供給される特許請求の範囲第5項記載の方法。
[Scope of Claims] (1) To remove heat from the working exhaust gas of a glass melting furnace equipped with a heat storage chamber or heat exchanger, and to convert a part of the exhaust gas discharged from the heat storage chamber or heat exchanger into glass. The other part of the exhaust gas is introduced into the cullet preheating device and brought into contact with the cullet F, and the other part of the exhaust gas is introduced into the preheating device for the ceramic balls used as a heat medium, and the cullet is brought into contact with the cullet F. II. Preheating the ceramic sphere by touching it;
'A part of the preheated ceramic bulb is introduced into the rotary heat exchanger IIIlllI and the glass batch is counter-currently heated.
A process of preheating the ballast patch by tightening the shaft; A process of introducing a part of the preheated ceramic bulb into the secondary air preheating device and bringing it into contact with the secondary air to preheat the secondary air. feeding the preheated glass cullet and the preheated glass batch into a glass melting furnace l1; and feeding the preheated secondary air into the combustion space of the furnace through a heat storage chamber or heat exchanger. A heat recovery method for a glass melting furnace that does not involve any process. (Kon) The glass cullet preheating device is a moving bed type O heat exchange device, and the glass cullet is supplied,
Patent-requested range m 1 in which exhaust gas is fed downward, and the glass cullet in the straw rack comes into contact with the exhaust gas countercurrently and is preheated.
The method described in section. (3) The preheating device for the ceramic balls is a moving bed heat exchanger, and the ceramic balls are supplied from above the device and descend at a constant speed. Claim lI No. 1, which is preheated by contacting countercurrently with
The method described in section. ■ The secondary air preheating device is a moving bed heat exchange device, and the secondary air introduced from below the device comes into countercurrent contact with preheated ceramic spheres supplied from above the device and descending. 2. A method according to claim 1, wherein the method is preheated. (5) The single-transformer heat exchange device includes a cylindrical outer cylinder;
This is composed of an inner wall having a side wall of a mesh structure that is surrounded by the inner wall and rotates integrally, and a ceramic bulb, which is a preheated heat medium, is supplied from one end of the inner wall, and a glass patch is supplied from the other end of the inner wall. is supplied, and by rotating the inner tube and the outer tube, the ceramic sphere is advanced toward the other end of the inner tube, and the glass patch is passed through the mesh of the inner tube to connect the outer tube and the inner tube to the ceramic sphere. The method according to claim 1, wherein the ball is moved in a direction opposite to the ball. (&) The above-mentioned details include cleaning the screw blade inside, stopping the rotation of the inner cylinder to advance the two cera balls, and separating the outer cylinder in the radial direction between the front outer ring and the inner cylinder. A patent in which a plurality of segment plates are provided, and the scissors segment plate supports the inner cylinder, and along with the surrounding plate of the outer cylinder, the glass patches in each partition chamber partitioned by the segment plates are sequentially dropped and supplied into the inner cylinder. The method according to claim 5.
JP56104967A 1981-07-07 1981-07-07 Heat-recovery in glass smelting furnace Pending JPS589828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56104967A JPS589828A (en) 1981-07-07 1981-07-07 Heat-recovery in glass smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56104967A JPS589828A (en) 1981-07-07 1981-07-07 Heat-recovery in glass smelting furnace

Publications (1)

Publication Number Publication Date
JPS589828A true JPS589828A (en) 1983-01-20

Family

ID=14394870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56104967A Pending JPS589828A (en) 1981-07-07 1981-07-07 Heat-recovery in glass smelting furnace

Country Status (1)

Country Link
JP (1) JPS589828A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120465A (en) * 1985-11-20 1987-06-01 Hitachi Metals Ltd Wear resistant iron-base sintered sliding material
JPS63303031A (en) * 1987-05-30 1988-12-09 Nippon Piston Ring Co Ltd Vane for compressor
JPS63303030A (en) * 1987-05-30 1988-12-09 Nippon Piston Ring Co Ltd Locker arm
CN102795757A (en) * 2012-08-27 2012-11-28 中国建材国际工程集团有限公司 Method for applying low-heat value gas to combustion in melting furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120465A (en) * 1985-11-20 1987-06-01 Hitachi Metals Ltd Wear resistant iron-base sintered sliding material
JPS63303031A (en) * 1987-05-30 1988-12-09 Nippon Piston Ring Co Ltd Vane for compressor
JPS63303030A (en) * 1987-05-30 1988-12-09 Nippon Piston Ring Co Ltd Locker arm
JPH0431018B2 (en) * 1987-05-30 1992-05-25
JPH0431019B2 (en) * 1987-05-30 1992-05-25
CN102795757A (en) * 2012-08-27 2012-11-28 中国建材国际工程集团有限公司 Method for applying low-heat value gas to combustion in melting furnace

Similar Documents

Publication Publication Date Title
CN104066816B (en) Dry distillation of coal device
US4434004A (en) Method for recovery and recycling of heat from hot gases in metallurigical processing
CN105458164B (en) A kind of quick roasting regeneration system of energy-saving filler cooled casting model powder
CN105478662B (en) A kind of quick roasting regeneration system of energy-saving airduct cooled casting model powder
NO784010L (en) METHOD AND APPARATUS FOR GLASS MANUFACTURING
JPH051060B2 (en)
SU1243618A3 (en) Method of preparing charge for glassmaking and device for effecting same
CN105499484B (en) A kind of quick roasting regeneration system of energy-saving coil pipe cooled casting model powder
JPS589828A (en) Heat-recovery in glass smelting furnace
JP3322338B2 (en) Charcoal and activated carbon production equipment
CN107806769A (en) A kind of heat energy recycle method and device of fusion metallurgy slag
CA2255032A1 (en) Reclaiming foundry sand by gravity flow system
US3888302A (en) Method for removing deposits from interior surfaces of regenerative heat exchangers
CN110375546A (en) The double-deck novel and multifunctional rotary hearth furnace system
US4292064A (en) Glass batch feeding using a fluidized bed for predrying agglomerates
US1923866A (en) Sulphur bearing ore furnace
JP2001272180A (en) Heat exchanger
CN209383701U (en) The system for handling corn stover
JPS5826036A (en) Heat exchange type recovering method for heat from glass melting furnace
NO167269B (en) TOOLS FOR CHAINING AND REMOVING CHAINS, CHAIN ASSEMBLY AND RINGS FOR WHEELS WHEELS.
JPS58132078A (en) Method for drying coal
US2086561A (en) Apparatus for revivifying spent decolorizing materials
JP2001233610A (en) Production arrangement for charcoal and activated carbon
CN109974015A (en) A kind of waste gas treatment process
JPH01501244A (en) Kiln plant for making solid materials containing fuel useful