JPS5898289A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPS5898289A
JPS5898289A JP56195580A JP19558081A JPS5898289A JP S5898289 A JPS5898289 A JP S5898289A JP 56195580 A JP56195580 A JP 56195580A JP 19558081 A JP19558081 A JP 19558081A JP S5898289 A JPS5898289 A JP S5898289A
Authority
JP
Japan
Prior art keywords
layer
recording medium
information recording
optical information
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56195580A
Other languages
Japanese (ja)
Inventor
Shinichi Nishi
眞一 西
Takuo Sato
佐藤 拓生
Fumio Shimada
文生 島田
Kinu Houmoto
法元 きぬ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP56195580A priority Critical patent/JPS5898289A/en
Publication of JPS5898289A publication Critical patent/JPS5898289A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/251Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials dispersed in an organic matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a recording medium having excellent storability of recorded information as well as a great regenerated SN ratio by adding a coloring substance to convert recording lasers into heat and a high molecular compound to the lasers adsorption layer of an optical information recording medium. CONSTITUTION:On the surface of a base plate 1, a reflection layer 2 of a metal deposit film and a light transmissive heat-insulating layer 3 of SiO2, polymethyl methacrylate, etc., are formed, and then a laser absorptive layer 4 containing a coloring substance and a high molecular compound is formed on said layers. The coloring substance used includes colloidal metal fine particles of Cu, Ag, etc., a carbonaceous substance of carbon black, etc., or inorganic pigments composed primarily of heavy metal salts. Also, the high molecular compound used as a dispersion medium for the coloring substance is a thermoplastic resin (e.g., polystyrene, polymethylmethacrylate, etc.) or a self-oxidizing compound (e.g., methyl cellulose, etc.). These are uniformly dispersed with a water-soluble binder, a surfactant, etc., and then coated on a heat-insulating layer 3.

Description

【発明の詳細な説明】 本発明は反射層、熱絶縁層および有機物を主成分とする
レーザ光吸収層を有する光学的情報記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical information recording medium having a reflective layer, a thermally insulating layer, and a laser light absorbing layer mainly composed of an organic substance.

高照度かつ短時間露光を与え得るレーザ光を用いる情報
の高密度記録媒体において、情報の書自込み直後に1後
処理なしに直接読み取ることができるr DRAW J
 (Direct Read After Write
 )時性を有する媒体の有用性がコンピューター、デー
ターファイル、V、T、R,、オーディオディスク、複
製記碌媒体等の分野で、近年盛んに指摘されて龜た。ま
た、DRAM記録媒体の材料に関する研究も数多く報告
され℃いる。
In a high-density information recording medium that uses a laser beam that can provide high-intensity and short-time exposure, it is possible to directly read information without any post-processing immediately after writing it.r DRAW J
(Direct Read After Write
) The usefulness of time-sensitive media has been widely pointed out in recent years in the fields of computers, data files, V, T, R, audio discs, duplication recording media, etc. Furthermore, many studies on materials for DRAM recording media have been reported.

従来、知られているレーザ光による記録媒体での記録層
の多くはA’ s Rh h Au s Or等の反射
性金属薄膜や、Te%Bi、Be等の非結晶性金属、ま
たはその酸化物であり、或いはSe −Te −As、
 Te−As等のカルコゲン系化合物の蒸着薄膜である
。これらの記録ノーにレーザ光を照射して、そのエネル
ギーにより記録層を融解蒸発させる原理に基づいて、ピ
ット(四部)形成を行い、情報を記録するものが多い。
Conventionally, many of the recording layers in known laser beam recording media are made of reflective metal thin films such as A' s Rh h Au s Or, amorphous metals such as Te%Bi, Be, or their oxides. or Se-Te-As,
This is a vapor-deposited thin film of a chalcogen compound such as Te-As. In many cases, information is recorded by forming pits (four parts) based on the principle of irradiating these recording layers with a laser beam and melting and vaporizing the recording layer using the energy.

特に再生が反射方式である従来の光学的情報記録媒体に
おいては、前記記録層に形成されたピット部の反射率が
未配録部分に比べて、相対的に小さい場合が多い。
Particularly in conventional optical information recording media in which reproduction is performed using a reflection method, the reflectance of pit portions formed in the recording layer is often relatively lower than that of unrecorded portions.

また、かがる記録媒体においては、記録用レーザ光も少
なからず反射されるので、記録用レーザ光のエネルギー
を充分に使い切れ得す、そのため、高出力レーザ光発生
装置を用いなければならないという欠点を有する。故に
、かかる記録媒体の未記録部分での記録用レーザ光の効
率を向上させるために、未記録部分の表面をできるだけ
低反射性にすると、例えば5反射率を30%以下としだ
場合には、記録層に形成されたビット部分と未記録部分
との反射率の差をそれ程大きくすることができない。こ
れは結果として情報の記録再生特性即ち、信号対雑音比
(8N比)が大きくならないと言う欠点に通ずる。
In addition, since a considerable amount of the recording laser beam is reflected in a dark recording medium, the energy of the recording laser beam cannot be fully used up, which has the disadvantage of requiring the use of a high-output laser beam generator. has. Therefore, in order to improve the efficiency of the recording laser beam in the unrecorded part of such a recording medium, if the surface of the unrecorded part is made as low as possible in reflectance, for example, when the reflectance is set to 30% or less, It is not possible to make the difference in reflectance between the bit portion formed in the recording layer and the unrecorded portion so large. This results in the disadvantage that the information recording and reproducing characteristics, that is, the signal-to-noise ratio (8N ratio) does not become large.

以上の従来技術の欠点の解決方法の1つとしては、再生
時のレーザ光が照射された記録部分の反射率を未記録部
分に比べて相対的に増大させる材料、または構造とした
記録層を採用することである。
One way to solve the above-mentioned drawbacks of the prior art is to create a recording layer made of a material or structure that increases the reflectance of recorded areas irradiated with laser light during reproduction relative to unrecorded areas. It is to adopt.

P、W、8pongのアメリカ合衆13i1特杵第4.
097.895号明細書に記載されているように1基板
に支持された反射鳴止の色素層がレーザ光の照射により
融解、除去されて形成されるビット部分の反射率が上昇
することKより記録される例が示されている。前述の記
録層として、レーザ光を吸収する色素の他K Te等の
非結晶性金属、またはその酸化物、およびTi等の低融
点の金属を用いる例が知られている。
P, W, 8pong American Union 13i1 Special Pestle No. 4.
As described in the specification of No. 097.895, the reflection stopper dye layer supported on one substrate is melted and removed by laser light irradiation, and the reflectance of the bit portion formed increases. An example of what is recorded is shown. As the above-mentioned recording layer, examples are known in which, in addition to a dye that absorbs laser light, an amorphous metal such as KTe or an oxide thereof, and a low melting point metal such as Ti are used.

しかしながら、これら記録材料#′iはとんど真空蒸*
gたはスパッタリング等で形成しなければなりず、所謂
バッチ方式の製造であ之ために大量生産には必ずしも向
いていない。
However, these recording materials #'i are mostly vacuum vaporized*
The film must be formed by sputtering or the like, and is manufactured by a so-called batch method, which is not necessarily suitable for mass production.

史に上記方法で作製された色素蒸着膜は膜強度が極端に
弱く、何らかの保繰手段、例えばプラスチックの保護層
を必要とする等の不都合があった。
Historically, dye-deposited films produced by the above-mentioned methods had extremely low film strength and required some kind of preservation means, for example, a plastic protective layer.

Te蒸着膜も空気中の酸素または水分の影響により酸化
されやすく、蒸着膜表面やピント部の表面特性が変化す
ることから、再生信号のドP7プアウトの発生が懸念さ
れ、情報の保存性が問題となっている。かつ、上述の問
題点が通常のプラスチック保護層を用いても、七の通気
性のために完全には解決されていないという欠点を有す
る。更にl1le自身の毒性が、記録媒体の製造現場の
環境上のみならず、使用時や保存時での取扱い上、かつ
数層的に環境に及ぼす影響が懸念されること等があ1ハ
極めて致命的な短所となっている。
Te vapor-deposited film is also easily oxidized by the influence of oxygen or moisture in the air, and the surface characteristics of the vapor-deposited film surface and the focus area change, so there is a concern that dope P7 drop-out of the reproduced signal will occur, and the preservation of information will be a problem. It becomes. In addition, the above-mentioned problems have not been completely solved even with the use of a conventional plastic protective layer due to its poor air permeability. Furthermore, there are concerns that the toxicity of l1le itself may have an impact on the environment not only at the manufacturing site of recording media, but also on the environment during use and storage, and on multiple levels. This is a disadvantage.

また、Ti等の蒸着金属層を用いた三層構成の光ティス
フでは、金属層の高い熱伝導性のために記録感度が低い
という欠点を有する。
Furthermore, a three-layer optical disk using a vapor-deposited metal layer such as Ti has a drawback of low recording sensitivity due to the high thermal conductivity of the metal layer.

本発明の目的は、かかる従来技術の欠点乃至不都合を改
善し、無害かつ酸化、劣化等が無く、記録情報の保存性
に優れており、しかも高感度で再生SN比が大きくとれ
る光学的情報記録媒体を提供することにある。
The purpose of the present invention is to improve the drawbacks and inconveniences of the prior art, and to provide an optical information recording system that is harmless, free from oxidation, deterioration, etc., has excellent storage stability of recorded information, and is highly sensitive and has a large reproduction signal-to-noise ratio. The goal is to provide a medium.

本発明の上記目的は、再生用レーザ光を反射する層と咳
反射層を侵い、かつ記録用レーザ光を高度に吸収するレ
ーザ光吸収層の間に、両レーザ光を透過する熱絶縁層を
有する光学的情報記録媒体において、前記レーザ光吸収
層が、少なくとも記録用レーザ光を熱に変換する着色物
質及び高分子化合物を含有することを特徴とする光学的
情報記録媒体によって達成される。
The above object of the present invention is to provide a thermal insulating layer that transmits both laser beams between a layer that reflects reproduction laser beams and a laser beam absorption layer that corrodes the cough reflection layer and highly absorbs recording laser beams. This is achieved by an optical information recording medium characterized in that the laser light absorption layer contains at least a colored substance and a polymer compound that convert recording laser light into heat.

本発明の好ましい一実施態様に従えば、前記着色物質が
コロイド状金属微粒子であることを%徴とする光学的情
報記録媒体であり、または、着色物質がカーボンブラッ
クであることを特徴とする光学的情報記録媒体であり、
もしくは着色物質がグラファイトであることを特徴とす
る光学的情報記録媒体である。また他の好ましい一実施
態様に従えば、前記高分子化合物が熱可塑性樹脂である
ことを特徴とする光学的情報記録媒体であり、または、
高分子化合物が自己酸化性化合物であることを特徴とす
る光学的情報記録媒体である。
According to a preferred embodiment of the present invention, there is provided an optical information recording medium characterized in that the colored substance is colloidal metal fine particles, or the colored substance is carbon black. It is an information recording medium,
Alternatively, it is an optical information recording medium characterized in that the colored substance is graphite. According to another preferred embodiment, the optical information recording medium is characterized in that the polymer compound is a thermoplastic resin, or
An optical information recording medium characterized in that the polymer compound is a self-oxidizing compound.

本発明における記録用レーザ光を高度に吸収するレーザ
光吸収層は、有機物を主成分とする層で・bつて、光を
熱に変換する着色物質から周囲の分散媒、すなわち高分
子化合物へ熱が伝わり、融解またはblow off 
(ふき飛ばし)によりビットが形成される。
The laser light absorption layer that highly absorbs recording laser light in the present invention is a layer mainly composed of an organic substance. is transmitted, melting or blow off
Bits are formed by (blowing).

該レーザ光吸収層の記録用レーザ光の波長における反射
率は、蒸着金属層等に比べて極めて小さく、かつ前記着
色物質および分散媒である高分子化合物の熱伝導率が小
さいために、低出力のレーザ光で充分記録可能であると
いう利点を有する。
The reflectance of the laser light absorption layer at the wavelength of the recording laser light is extremely small compared to the vapor-deposited metal layer, etc., and the thermal conductivity of the coloring substance and the polymer compound as the dispersion medium is low, resulting in low output. It has the advantage that sufficient recording can be performed with a laser beam of .

また、TeやBiの様な毒性はなく、かつ色素蒸着膜に
比べ表面強度が極めて大きく、取扱いが容易であるとい
う利点を鳴する。
Furthermore, it has the advantage of not being toxic like Te or Bi, and having extremely high surface strength compared to dye-deposited films and being easy to handle.

本発明のレーザ光吸収1−に含有される着色物質とし”
’(&:K 、カーボンブラック、グラファイト等の炭
素系物質、無機顔料、およびフタμシアニンおよびその
誘導体等の有機顔料またはコロイド状金属微粒子を用い
ることができる。これらは1又は2以上組合せて用いえ
る。
As the colored substance contained in the laser light absorption 1- of the present invention,
'(&:K) Carbon-based substances such as carbon black and graphite, inorganic pigments, organic pigments such as phthalocyanine and derivatives thereof, or colloidal metal fine particles can be used. One or more of these can be used in combination. I can say that.

また、本発明のレーザ光吸収層に含弔される高分子化合
物としては、熱により融解除去されやすい熱可塑性樹脂
、または熱によりblow offされやすい自己酸化
性高分子化合物を用いるのが、艮好なピット形成のため
に好ましい。これらは1又は2以上組合せて用いえる。
Further, as the polymer compound contained in the laser light absorption layer of the present invention, it is preferable to use a thermoplastic resin that is easily melted and removed by heat, or a self-oxidizing polymer compound that is easy to blow off by heat. preferred for pit formation. These may be used singly or in combination.

本発明によれば、前記着色物質を分散させた高分子化合
物を含有するレーザ光吸収層が、分散溶液な塗布するこ
とにより形成され孤得るために、記録媒体を安価で連続
的流れ作業体制で製造できるという利点も併せ有する。
According to the present invention, since the laser light absorbing layer containing the polymer compound in which the coloring substance is dispersed is formed by coating a dispersion solution, the recording medium can be manufactured at low cost and in a continuous assembly line. It also has the advantage of being manufacturable.

本発明に係る情報記録媒体への記録は、例えば以下の様
に行なわれる。すなわち、記録の場合、入力電気信号に
より変調された記録用レーザ光によりレーザ光吸収層に
ピット(開孔)があけられることにより記録が行なわれ
る。再生は、再生用レーザ光を照射して行なわれるが、
この時、該レーザ光の前記ビット部分での反射は、下層
の反射11表面での反射であるので、他の未照射部分に
比べ℃、相対的に大きくなCハ従っ℃、高感度で再生S
N比が大きな情報配録の反射層み取りができるものとな
る。
Recording on the information recording medium according to the present invention is performed, for example, as follows. That is, in the case of recording, recording is performed by making pits (openings) in the laser light absorption layer using a recording laser beam modulated by an input electrical signal. Reproduction is performed by irradiating a reproduction laser beam,
At this time, since the reflection of the laser beam on the bit part is a reflection on the surface of the lower reflective layer 11, C is relatively large compared to other unirradiated parts, so it is reproduced with high sensitivity. S
This makes it possible to remove the reflective layer of an information recording with a large N ratio.

ここで用いるレーザの種類は、着色物質を含有するレー
ザ光吸収層の分光吸収特性により決定されるが、例えば
数ミリワットないし数十ミリワット出力のHe−Ne5
 He  Cd 等のガスレーザ、A r sKr等の
イオンレーザ、または半導体レーザが用−゛られる。
The type of laser used here is determined by the spectral absorption characteristics of the laser light absorption layer containing a colored substance, and for example, He-Ne5 with an output of several milliwatts to several tens of milliwatts.
A gas laser such as HeCd, an ion laser such as ArsKr, or a semiconductor laser is used.

以下、本発明に係る光学的情報記録媒体の具体例につい
て、図面に基づき詳細に説明フる。
Hereinafter, specific examples of the optical information recording medium according to the present invention will be explained in detail based on the drawings.

は透光性熱絶縁層、4はレーザ光吸収層を示す。4 represents a transparent thermal insulating layer, and 4 represents a laser light absorption layer.

基板1は表面の平滑性および寸度安定性に優れたもので
あればよく、例えばガラス、金属、セラミックまたは樹
脂等が具体例として挙げられるが、これらは透明、半透
明または不透明であってもかまわない。
The substrate 1 may be any material as long as it has excellent surface smoothness and dimensional stability, and specific examples include glass, metal, ceramic, or resin, but these may be transparent, translucent, or opaque. I don't mind.

反射層2は記録用および再生用レーザ光の波長の入射光
の相当部分を反射するものであり、一般に高反射率を示
すkl、 Ag、 Auの様な金属から形成される。該
反射層2は入射光の50%な反射する様に基板l上に真
空蒸着法により200〜1000Aの膜厚に被着される
The reflective layer 2 reflects a considerable portion of the incident light having the wavelength of recording and reproducing laser light, and is generally made of a metal such as Kl, Ag, or Au, which exhibits a high reflectance. The reflective layer 2 is deposited on the substrate 1 to a thickness of 200 to 1000 Å by vacuum deposition so as to reflect 50% of the incident light.

透光性熱絶縁層3はレーザ光吸収層4上での記録エネル
ギー閾値を減少させるために反射層2に比べ℃熱伝導率
が充分に小さく、またレーザ光、特に再生用レーザ光の
波長の光を実質的に適過する物質である。例えば、8i
0□、 MgF’、、 WO2等の無機材料、または透
明シリコン樹脂、ポリエチレン、ポリエステル系および
アクリル系の炭化水素系間分子、フルオロカーボン系高
分子からなる慎脂等の有機材料が用いられる。特に5i
02.ポリメチルメタクリレート(PMMA )が好ま
しい。
In order to reduce the recording energy threshold on the laser light absorption layer 4, the translucent thermal insulating layer 3 has a sufficiently low thermal conductivity in °C compared to the reflective layer 2, and also It is a material that substantially allows light to pass through. For example, 8i
Inorganic materials such as 0□, MgF', WO2, etc., or organic materials such as transparent silicone resin, polyethylene, polyester-based and acrylic-based hydrocarbon intermolecules, and fluorocarbon-based polymers and the like are used. Especially 5i
02. Polymethyl methacrylate (PMMA) is preferred.

前記透光性熱絶縁層3は光反射層2上に蒸着法、グロー
放電流、または溶液塗布法等により、設けりれ、七の1
lillは100λないし10μである。
The light-transmitting thermal insulating layer 3 is provided on the light-reflecting layer 2 by a vapor deposition method, a glow discharge current, a solution coating method, etc.
lill is 100λ to 10μ.

10 rl A未満では熱絶縁効果が充分でなく、記録
エネルギー閾値の増大を引き起こす。干渉を用いる再生
方式の場合には、透光性熱絶縁層3と光吸収層(記録層
)4の膜厚の和が、再生用レーザ光波艮のn/4倍(n
は整数)となる様に熱絶縁層3の膜厚が定められ、He
−Neレーザ(6328A)を再生用光源とすれば、そ
の膜厚は約1500λとするのが好ましい。
If it is less than 10 rl A, the thermal insulation effect will not be sufficient, causing an increase in the recording energy threshold. In the case of a reproduction method using interference, the sum of the film thicknesses of the transparent thermal insulation layer 3 and the light absorption layer (recording layer) 4 is n/4 times (n
is an integer), and the thickness of the thermal insulating layer 3 is determined so that He
If a -Ne laser (6328A) is used as a light source for reproduction, its film thickness is preferably about 1500λ.

本発明のレーザ光吸収層に含まれる、光を熱に変える着
色物質は、例えばOu s Ag s Au % N1
%Pd、 Pt、 Co、 Rh、  Ir、 F”e
、 Mn、 Or、T i等のコロイド状金属微粒子、
カーボンブラックやグラファイト等の炭素系物質、憲金
禍の塩を主成物とする無機顔料、例えば鉛系、鉄系、カ
ドミウム系、コバルト系、群青、紺青等の顔料、および
有機顔料、例えばアントラキノン系、アンスpン系、ア
ゾ系、フタルシアニン系の顔料等を用いることができる
The colored substance that converts light into heat and is included in the laser light absorption layer of the present invention is, for example, Ou s Ag s Au % N1
%Pd, Pt, Co, Rh, Ir, F”e
, colloidal metal fine particles such as Mn, Or, Ti, etc.
Carbon-based substances such as carbon black and graphite, inorganic pigments whose main constituents are salts of kenkinmagaku, such as lead-based, iron-based, cadmium-based, cobalt-based, ultramarine blue and deep blue pigments, and organic pigments such as anthraquinone. System, anthic P -ry, azo, and Futhalcianin pigments can be used.

金属の微粒子を用いる場合の好ましい金属の種類は、分
散媒としての高分子の種類や、分散微粒子の粒径に依存
するが、1つの好ましい実施態様によれば、平均粒径3
00λの〜微粒子をゼラチン中に分散させたレーザ光吸
収層とされる。ここに用いられる金属は一種類とは限ら
ず、員その他二種類以上の金属の混合分散層を記録層と
することも可能であり、この混合金属物が主成分となる
ことも可能であるが、一般には、高分子バインダー50
重量%以上中に分散して用いる。
The preferred type of metal when using metal fine particles depends on the type of polymer used as a dispersion medium and the particle size of the dispersed fine particles, but according to one preferred embodiment, the average particle size is 3.
The laser light absorbing layer is made by dispersing microparticles of ~00λ in gelatin. The metal used here is not limited to one type, and it is also possible to use a mixed and dispersed layer of two or more metals as the recording layer, and it is also possible for this mixed metal to be the main component. , generally a polymeric binder 50
It is used by dispersing it in % by weight or more.

また、カーボンブラックやグラファイト等も好ましい着
色物質の1つとして用いられる。これらの具体例として
は、公知のものを好ましく用いることができ、例えばカ
ーボンブラック(参30゜参40%参50)(三菱化成
工業株式会社a)を挙げることができる。
Further, carbon black, graphite, etc. are also used as one of the preferred coloring substances. As specific examples of these, known ones can be preferably used, such as carbon black (30°, 40%, 50) (Mitsubishi Chemical Corporation a).

前記着色物質を分散する分散媒としての高分子化合物は
、熱可塑性樹脂で、適度な軟化点、好ましくは20〜3
0℃(室温)より10’Cから200℃高い軟化点を有
することが望ましく、レーザ光吸収層中において、前記
熱可塑性樹脂は、着色物質の粒子間で適度な結着性を南
することが望ましい。前d己熱可塑性樹脂は粒状分散媒
であり、エマルジョノ形態であって、該エマルジョンの
熱可塑性樹脂は、任意の粒径のものが使用されるが、0
001μ〜100μの粒径、好ましくは0.01μ〜1
μの粒径を持つことが望ましい。
The polymer compound as a dispersion medium for dispersing the colored substance is a thermoplastic resin with an appropriate softening point, preferably 20 to 3.
It is desirable that the thermoplastic resin has a softening point 10 to 200 degrees Celsius higher than 0 degrees Celsius (room temperature), and in the laser light absorption layer, the thermoplastic resin has the ability to maintain appropriate binding properties between particles of the colored substance. desirable. The thermoplastic resin is a granular dispersion medium and is in the form of an emulsion, and the thermoplastic resin in the emulsion can have any particle size, but
Particle size from 0.01μ to 100μ, preferably from 0.01μ to 1
It is desirable to have a particle size of μ.

以上のような特性を有する熱可塑性樹脂として、ポリス
チレン、ポリメチルメタクリレート、ポリエチルメタク
リレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
酢酸ビニル、ポリアクリ−ニトリル、ポリビニルアルコ
ール、あるいはビニル基、あるいはビニリデン基を有す
る単量体の重合体もしくは共重合体、種々のフイオノマ
ー樹脂等の高分子物質があげられる。これらの熱可塑性
樹脂口のうち特に、塩化ビニリデンとアクリ−トリルの
共重合体が良い特性を示すことが確認されている。
Thermoplastic resins having the above characteristics include polystyrene, polymethyl methacrylate, polyethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyacrynitrile, polyvinyl alcohol, or having a vinyl group or a vinylidene group. Examples include polymeric substances such as monomeric polymers or copolymers, and various ionomer resins. Among these thermoplastic resins, it has been confirmed that a copolymer of vinylidene chloride and acrytolyl exhibits particularly good properties.

本発明に用いられる熱可塑性樹脂は、水溶性あるいは油
浴性のエマルジョンの形態で提供される。
The thermoplastic resin used in the present invention is provided in the form of a water-soluble or oil-bath emulsion.

特に、水溶性エマルジョンを用いた場合、水系塗布が可
能となるため、有害な有機溶媒を使用せずにすむという
工業上の利点を有・する。
In particular, when a water-soluble emulsion is used, water-based coating is possible, which has the industrial advantage of not requiring the use of harmful organic solvents.

本発明におけるレーザ光吸収層には、必要に応じ、可塑
剤、水溶性のバインダー、界面活性剤などの任意の添加
剤を含んでもよい。塗布性および被膜性を向上させる意
味で、木造性バインダーを添加すると効果があることが
あるが、水浴性のバインダーを含む場合には、感度が低
下する傾向があるので、添加量は最小1IilKとどめ
る必要がある。
The laser light absorption layer in the present invention may contain arbitrary additives such as a plasticizer, a water-soluble binder, and a surfactant, if necessary. Adding a wooden binder may be effective in improving coating properties and film properties, but if a water-bathable binder is included, the sensitivity tends to decrease, so the amount added should be kept at a minimum of 1IilK. There is a need.

前記水浴性パインターとしてはポリビニルアルコール、
ポリビニルビルリドン、ポリビニルアミン、ポリエチレ
ンオキサイド吟の合成親水性重合体、あるいはゼラチン
、膠、カゼイン、ゼイン、ヒドロキシエチルセルルーズ
、カルボキシメチルセルルーズ等の天然、あるいは変性
天然親水性コルイド等が使用できる。添加量は熱可塑性
樹脂に対し、重量比で1:1以下が望ましい。
The water bathing pinter is polyvinyl alcohol,
Synthetic hydrophilic polymers such as polyvinylpyridone, polyvinylamine, and polyethylene oxide, or natural or modified natural hydrophilic colloids such as gelatin, glue, casein, zein, hydroxyethyl cellulose, and carboxymethyl cellulose can be used. The amount added is preferably 1:1 or less by weight to the thermoplastic resin.

本発明のレーザ光吸収層中で前記着色物質を分散する別
の高分子化合物として自己酸化性化合物、例えばメチル
セルロース、エチルセルロース、ニトロセルロース、ヒ
ドロキシプpビルメチルセルp−ス、セルー−スアセテ
ート、セルロースアセテートブチレート、ヒドロキシプ
pピルメチルセルp−スフタレート、セル戸−スジアセ
テート、カルボキシメチルセルロース等が挙げられるが
、使用される自己酸性化合物はこれらに限らない。
Self-oxidizing compounds such as methyl cellulose, ethyl cellulose, nitrocellulose, hydroxypropylene methylcellulose, cellulose acetate, cellulose can be used as another polymer compound for dispersing the coloring substance in the laser light absorbing layer of the present invention. Examples of the self-acidic compound used include, but are not limited to, acetate butyrate, hydroxypropylene methylcell p-sphthalate, cellulose diacetate, carboxymethylcellulose, and the like.

これらの自己酸化性化合物の中で、ニド−セルロースあ
るいはヒドロキシプロピルメチルセルロースが特に好ま
しい。
Among these autooxidizing compounds, nido-cellulose or hydroxypropylmethylcellulose is particularly preferred.

本発明の好ましい実施態様に従えば、レーザ光吸収層は
、熱可盟性樹脂のエマルション、または自己酸化性化合
物の1重量部に対し、着色物質0.001〜1000重
量部、好ましくは0.1〜10重量部の重量比で混合し
、必要に応じ、水溶性バインダー、可塑剤、あるいは界
面活性剤等を添加した後、ボールミル、超音波分散等の
手段により、均一分散し、熱絶縁層上に塗布することに
よって得られる。
According to a preferred embodiment of the present invention, the laser light absorbing layer contains 0.001 to 1000 parts by weight, preferably 0.001 to 1000 parts by weight, of a coloring substance per 1 part by weight of the thermoplastic resin emulsion or self-oxidizing compound. After mixing at a weight ratio of 1 to 10 parts by weight and adding a water-soluble binder, plasticizer, surfactant, etc. as necessary, the mixture is uniformly dispersed by means such as a ball mill or ultrasonic dispersion to form a thermal insulation layer. Obtained by applying on top.

塗布方法はワイヤーバー塗布、スピンナー塗布、ディッ
プ塗布、エアーナイフ塗布、ビード塗布、カーテン塗布
等を用いることができ、七の膜厚は。
The coating method can be wire bar coating, spinner coating, dip coating, air knife coating, bead coating, curtain coating, etc., and the film thickness is 7.

500Aないし1μの範囲であり、特に100OA〜5
000A8度が好ましい。すなわち、500A未満″′
Q社安定な薄膜を得るのが困難であり、一方、1μを越
える場合では、厚すぎて記録エネルギーが大きくなり実
用上好ましくない。
500A to 1μ, especially 100OA to 5
000A 8 degrees is preferred. i.e. less than 500A"'
Company Q It is difficult to obtain a stable thin film, and on the other hand, if it exceeds 1 μm, it is too thick and the recording energy becomes large, which is not preferred in practice.

光を熱に変える着色物質として、金属のコルイド状微粒
子を用いた光学的情報記fI&媒体は、諌コロイド状黴
粒子の分散した高分子溶液を適尚な基板上に塗布して得
られるが、膜強度の増大および膜厚の減少のために記録
前に熱処通を施して膜を硬化させることができる。加熱
は分散層全面に均一に行なわれる様に輻射方式が好まし
いが対流式オープンや接触式熱源による加熱方式も用い
られる。加熱温度と加熱時間は、分散層の収縮硬化に伴
う反射率の増大が最小となる様に選ばれ、分散金属によ
っても異なるが、250℃、3分間が標準的である。加
熱雰囲気拡常圧または減圧下で分散金属の酸化反応を抑
制する必要がある場合以外は酸素を含んだ空気中で加熱
処理が行なわれる。
An optical information recording medium using colloidal particles of metal as a colored substance that converts light into heat can be obtained by coating a polymer solution in which colloidal mold particles are dispersed on a suitable substrate. In order to increase the film strength and reduce the film thickness, the film can be hardened by heat treatment before recording. A radiation method is preferable so that the heating can be performed uniformly over the entire surface of the dispersion layer, but a heating method using a convection type open or contact type heat source may also be used. The heating temperature and heating time are selected so as to minimize the increase in reflectance due to contraction and hardening of the dispersion layer, and although they vary depending on the dispersion metal, 250° C. and 3 minutes are standard. Heating atmosphere The heat treatment is performed in air containing oxygen unless it is necessary to suppress the oxidation reaction of the dispersed metal under expanded pressure or reduced pressure.

情報記録層としての前記レーザ光吸収層上藺の反射率は
20%以下、好ましくは10%以下であり、光学濃度は
少なくとも1.0以上であることが望ましい。
The reflectance of the laser light absorbing layer serving as the information recording layer is preferably 20% or less, preferably 10% or less, and the optical density is desirably at least 1.0 or more.

また本発明に係る記録媒体には、その保麟のために、レ
ーザ光吸収層上に8i02等の無機材料や天然または合
成高分子からなる有機材料から成る保曖層を設けること
も有用である。
Further, in the recording medium according to the present invention, it is also useful to provide a preservation layer made of an inorganic material such as 8i02 or an organic material made of a natural or synthetic polymer on the laser light absorption layer for preservation. .

本発明に係る光学的情報記録媒体は、経時安定性に優れ
使用環境、保存環境等の条件変動が多少有っても、良好
な書き込み配碌、反射読み取りが安定して得られるもの
で高感度でSN比が大きな光学的情報記録媒体である。
The optical information recording medium according to the present invention has excellent stability over time, and even if there are slight fluctuations in conditions such as usage environment and storage environment, good writing alignment and reflective reading can be stably obtained, and it has high sensitivity. It is an optical information recording medium with a high signal-to-noise ratio.

第2図は本発明に係る光学的情報記録媒体への記録を模
式化して示す拡大横断面図である。即ち、デジタル情報
により変調されたレーザ光の照射により融解、除去され
たビット部分5においては、再生用入射レーザ光は反射
層20表面で高度に反射され、未照射部分6の非反射性
に比べて充分な反射率の差を生じ、高いSN比の再生信
号が得られる。かかる特性を有する本発明に係る情報記
録[体は、コンピュータ・データーファイル、デジタル
・オーディオディスク、Im像伝送及び静止画侭の複製
記録等の好適な光学的情報記録媒体として使用で龜るも
のである。
FIG. 2 is an enlarged cross-sectional view schematically showing recording on an optical information recording medium according to the present invention. That is, in the bit portion 5 that has been melted and removed by irradiation with laser light modulated by digital information, the incident laser beam for reproduction is highly reflected on the surface of the reflective layer 20, and compared to the non-reflectivity of the unirradiated portion 6. This produces a sufficient difference in reflectance, and a reproduced signal with a high S/N ratio can be obtained. The information recording medium according to the present invention having such characteristics can be used as a suitable optical information recording medium for computer data files, digital audio discs, IM image transmission, still image reproduction recording, etc. be.

以下実施例を挙けて、本発明を具体的かつ詳細に説明す
る。
EXAMPLES The present invention will be explained specifically and in detail with reference to Examples below.

実施例1 平滑性に優れた1、 6.厚のガラス基板上に1人り反
射層を約200;の膜厚となる様に10−’Torrで
真空蒸着し、その上にポリメチルメタクリレ−) (P
MMA)の1096アセチルアセトン溶液をバー塗布し
、膜厚1.0μの透光性熱絶縁層を設けた試料を得た。
Example 1 Excellent smoothness 1, 6. A reflective layer was vacuum-deposited on a thick glass substrate to a thickness of approximately 200 mm at 10 Torr, and then polymethyl methacrylate (P)
A sample was obtained by coating a 1096 acetylacetone solution of MMA) with a light-transmitting heat insulating layer having a thickness of 1.0 μm.

前記試料上にコロイド状銀粒子のゼラチン分散水溶液を
バー塗布した。分散液はAgNO3をデキストリンによ
り還元することにより得られ、銀のゼラチンに対する重
量比は32%であり、コロイド状銀粒子の粒径は300
Aであった。乾燥膜厚が約1.5μで黄色透明な分散層
は遠赤外線輻射ヒーターを用いて250℃で3分間加熱
処理することKより、不透明で淡緑色の、反射率12%
の表面を与えた。
A gelatin-dispersed aqueous solution of colloidal silver particles was bar coated onto the sample. The dispersion was obtained by reducing AgNO3 with dextrin, the weight ratio of silver to gelatin was 32%, and the particle size of colloidal silver particles was 300%.
It was A. The yellow transparent dispersion layer with a dry film thickness of about 1.5μ is heated at 250℃ for 3 minutes using a far-infrared radiant heater to form an opaque, pale green color with a reflectance of 12%.
gave the surface of

上述の様にして製造した本発明に係る記録媒体の試料を
線速1j 5 m / seeで回転させ、記録面上に
おいて10mWのパワーで1.4μ直径のHe −Ne
ガスレーザ光(6328A)を用いて記録した。入力信
号は2MHzの矩形波信号を用い、音響光学変調素子に
よりレーザ光を変調した。
A sample of the recording medium according to the present invention manufactured as described above was rotated at a linear velocity of 1j 5 m/see, and He-Ne with a diameter of 1.4 μ was applied to the recording surface with a power of 10 mW.
Recording was performed using gas laser light (6328A). A 2 MHz rectangular wave signal was used as the input signal, and the laser light was modulated by an acousto-optic modulator.

再生は記録時と同様の光学系、および1.5mWのパワ
ーのHe−Neレーザ光を用いて行ない、再生信号コン
トラスト比は0.65なる値を得た。なお、再生信号コ
ントラスト比とは、ピット部分および非ビット部分から
の再生用レーザ光の反射光強度の差と和の比として定義
される。
Reproduction was performed using the same optical system as used during recording and a He--Ne laser beam with a power of 1.5 mW, and a reproduction signal contrast ratio of 0.65 was obtained. Note that the reproduced signal contrast ratio is defined as the ratio of the difference and the sum of the reflected light intensities of the reproduction laser beam from the pit portion and the non-bit portion.

この良好な再生信号は、ビデオ信号等の情報記録再生に
おいて、8N比50dB以上に相当する。
This good reproduction signal corresponds to an 8N ratio of 50 dB or more in recording and reproducing information such as video signals.

実施例2 平滑性に優れた1、6−厚のガラス基板上に、約2oo
;Lの膜厚となる様に〜反射層を10−”fort) 
(PMMA)のlθ%アセチルアセトン解液ケバー塗布
し、膜厚1.θμの透光性熱絶縁層を設けた試料を得た
Example 2 On a 1,6-thick glass substrate with excellent smoothness, about 2 oo
;The reflective layer is made to have a film thickness of L ~ 10-”fort)
(PMMA) was coated with lθ% acetylacetone solution solution, and the film thickness was 1. A sample provided with a transparent heat insulating layer of θμ was obtained.

前記試料上に精密写真用の平均粒径300λのヨウ臭化
銀乳剤を乾燥膜厚0.2μとなる様に塗布し、適当な露
光を与え、勇健、定着等の通常の写真的操作を経てフィ
ラメント状の黒化銀を含んだゼラチン薄膜を設けた。該
レーザ光吸収層の光学濃度は0.4であった。
A silver iodobromide emulsion with an average grain size of 300λ for precision photography was coated on the sample to give a dry film thickness of 0.2 μm, appropriate exposure was given, and normal photographic operations such as testing and fixing were carried out. After that, a thin gelatin film containing filamentous blackened silver was provided. The optical density of the laser light absorption layer was 0.4.

実施例1と同様の記録再生装置を用いて記録、再生を行
ない、0.75なる良好な再生信号コントラスト比を得
た。
Recording and reproduction were performed using the same recording and reproducing apparatus as in Example 1, and a good reproduced signal contrast ratio of 0.75 was obtained.

実施例3 実施例2における光透過性熱絶縁層とし工、ポリメチル
メタクリレート(PMMA)のかわりにスパッタリング
法によりzoooXの膜厚のsi鳴を設け、他は実施例
2と同様にして記録媒体を製造した。
Example 3 A recording medium was prepared in the same manner as in Example 2, except that instead of using polymethyl methacrylate (PMMA) as the light-transmissive heat insulating layer in Example 2, a film with a thickness of zoooX was provided by sputtering. Manufactured.

実施例1と同様の記録再生装置を用いて記録再生を行な
い、0.70なる良好な再生信号コントラスト比を得た
Recording and reproduction were performed using the same recording and reproduction apparatus as in Example 1, and a good reproduction signal contrast ratio of 0.70 was obtained.

実施例4 レーザ光吸収層以外は実施例1と同様に製造し、熱絶縁
層上に0u(L+17 Agcua Br6.、 IQ
I  なる組成の感光性ハpゲン化鋼を主成分とする乳
剤層を乾燥膜厚0.2μとなる橡に適宜塗布法により設
ける。適当な露光の後メトールーL−アスコルビン酸系
現像液で10分間現偉し、定着処理して反射率6%の銅
鏡表面を得た。該記録層はゼラチン中に1とAgを含有
する微粒子混合分散層である。
Example 4 Except for the laser light absorption layer, it was manufactured in the same manner as in Example 1, and 0u (L+17 Agcua Br6., IQ
An emulsion layer containing photosensitive halogenated steel having the composition I as a main component is provided by an appropriate coating method on a layer having a dry film thickness of 0.2 μm. After appropriate exposure, it was developed for 10 minutes with a methol-L-ascorbic acid developer and fixed to obtain a copper mirror surface with a reflectance of 6%. The recording layer is a fine particle mixed and dispersed layer containing 1 and Ag in gelatin.

実施例1と同様の記録再生装置を用いて記録再生を行な
い、0.65なる良好な再生信号コントラスト比を得た
Recording and reproduction were performed using the same recording and reproduction apparatus as in Example 1, and a good reproduction signal contrast ratio of 0.65 was obtained.

実施例5 レーザ光吸収層以外は実施例1と同様に製造し、熱絶縁
層上に20 OA41のPd微粒子が分散したスチレン
−ビニルピリジン共重合体のジエチレングリコールジメ
チルエーテル溶液を塗布して01μのレーザ光吸収層と
した。
Example 5 A diethylene glycol dimethyl ether solution of a styrene-vinylpyridine copolymer in which Pd fine particles of 20 OA41 were dispersed was applied onto the heat insulating layer, and a laser beam of 01μ was produced in the same manner as in Example 1 except for the laser light absorption layer. It was used as an absorbent layer.

実施例1と同様の記録再生装置を用いて記録再生を行な
い、0.7なる良好な再生信号コントラスト比を得た。
Recording and reproduction were performed using the same recording and reproduction apparatus as in Example 1, and a good reproduction signal contrast ratio of 0.7 was obtained.

実施例6 レーザ光吸収層以外は実施例1と同様に製造し、熱絶縁
層上に下記の組成の分散液を塗布した。
Example 6 A dispersion liquid having the following composition was applied onto the heat insulating layer, except for the laser light absorbing layer, which was manufactured in the same manner as in Example 1.

〔レーザ光吸収層用分散液組成〕[Dispersion liquid composition for laser light absorption layer]

前記重量比から成る組成物なガラスピーズな用いて10
分間分散した後、乾燥膜厚が0.2μとなる様に塗布し
た。
A composition comprising glass beads having the above weight ratio of 10
After being dispersed for a minute, it was coated to a dry film thickness of 0.2 μm.

実施例1と同様の記録再生装置を用いて記録再生を行な
い、0.60なる良好な再生信号コントラスト比を得た
Recording and reproduction were performed using the same recording and reproduction apparatus as in Example 1, and a good reproduction signal contrast ratio of 0.60 was obtained.

実施例7 レーザ光吸収層用塗布液組成を下記の様に変えた以外は
すべて実施例6と同様にして記録媒体を製造した。
Example 7 A recording medium was manufactured in the same manner as in Example 6 except that the composition of the coating liquid for the laser light absorption layer was changed as shown below.

(レーザ光吸収層用分散液組成〕 用いて5分間分散した後、乾燥膜厚が0.2μとなる様
に塗布した。
(Dispersion liquid composition for laser light absorption layer) After dispersing for 5 minutes, the coating was applied so that the dry film thickness was 0.2μ.

実施例1と同様の記録再生装置を用いて記録再生を行な
い、0.65なる良好な再生信号フントラスト比を得た
Recording and reproduction were carried out using the same recording and reproduction apparatus as in Example 1, and a good reproduced signal weight loss ratio of 0.65 was obtained.

【図面の簡単な説明】 第1図は本発明に係る光学的情報記録媒体の一実施例を
示す拡大横断面図であり、第2図は記録済の媒体の拡大
横断面図である。 図中、1は基板、2は反射層、3は光透過性熱絶縁層、
4はレーザ光吸収層、5は記録されたピット、6は未記
鎌部分表面を各々示す。 第  1  図 第  2  図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged cross-sectional view showing an embodiment of an optical information recording medium according to the present invention, and FIG. 2 is an enlarged cross-sectional view of the recorded medium. In the figure, 1 is a substrate, 2 is a reflective layer, 3 is a light-transmissive thermal insulation layer,
Reference numeral 4 indicates a laser light absorption layer, 5 indicates a recorded pit, and 6 indicates an unrecorded sickle portion surface. Figure 1 Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)p+生開用レーザ光反射する層と、該反射層を横
い、かつ記録用レーザ光を高度に吸収するレーザ光吸収
層の間に1両レーザ光を透過する熱絶縁層を有する光学
的情報記録媒体において、前記レーザ光吸収層が、少な
くとも記録用レーザ光を熱に変換する着色物質及び高分
子化合物を金山することを%徴とする光学的情報記録媒
体。
(1) A thermal insulating layer that transmits both laser beams is provided between a layer that reflects the p+ raw laser beam and a laser beam absorption layer that crosses the reflective layer and highly absorbs the recording laser beam. An optical information recording medium characterized in that the laser light absorption layer contains at least a colored substance and a polymer compound that convert recording laser light into heat.
(2)着色物質がコロイド状金属微粒子であることを特
徴とする特許請求の範囲第1項記載の光学的情報記録媒
体。
(2) The optical information recording medium according to claim 1, wherein the colored substance is colloidal metal fine particles.
(3)着色物質がカーボンブランクであることを特徴と
する特許請求の範囲第1項記載の光学的情報記録媒体。
(3) The optical information recording medium according to claim 1, wherein the colored substance is a carbon blank.
(4)  fi色物質がグラファイトであることを特徴
とする特許請求の範囲第1項記載の光学的情報記録媒体
(4) The optical information recording medium according to claim 1, wherein the fi color substance is graphite.
(5)高分子化合物が熱可塑性樹脂であることを特徴と
する特許請求の範囲第1項記載の光学的情報記録媒体。
(5) The optical information recording medium according to claim 1, wherein the polymer compound is a thermoplastic resin.
(6)  高分子化合物が自己酸化性化合物であること
を特徴とする特許請求の範囲第1項記載の光学的情報記
録媒体。
(6) The optical information recording medium according to claim 1, wherein the polymer compound is a self-oxidizing compound.
JP56195580A 1981-12-07 1981-12-07 Optical information recording medium Pending JPS5898289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195580A JPS5898289A (en) 1981-12-07 1981-12-07 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195580A JPS5898289A (en) 1981-12-07 1981-12-07 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPS5898289A true JPS5898289A (en) 1983-06-11

Family

ID=16343494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195580A Pending JPS5898289A (en) 1981-12-07 1981-12-07 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS5898289A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500641A (en) * 1982-04-15 1984-04-12 バロ−ス・コ−ポレ−ション Optical storage systems using new multilayer optical media
JPS5990246A (en) * 1982-11-15 1984-05-24 Nippon Telegr & Teleph Corp <Ntt> Laser recording medium
JPS59171686A (en) * 1983-03-18 1984-09-28 Hitachi Ltd Recording member
JPS63145087A (en) * 1986-12-09 1988-06-17 Dainippon Printing Co Ltd Optical recording material
JPH0766563B2 (en) * 1984-07-06 1995-07-19 スト−リツジ テクノロジ− コ−ポレイシヨン Optical memory structure
WO2002100444A1 (en) * 2001-06-08 2002-12-19 Biosphere Medical Inc. Colloidal metal labelled microparticles, their production and use
US7297448B2 (en) * 2000-05-23 2007-11-20 Aprilis, Inc. Data storage medium comprising colloidal metal and preparation process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346019A (en) * 1976-10-08 1978-04-25 Canon Inc Recoading medium
JPS5593488A (en) * 1979-01-10 1980-07-15 Nec Corp Laser recording film
JPS55132293A (en) * 1979-04-02 1980-10-14 Konishiroku Photo Ind Co Ltd Forming method for material plate for printing and printing plate
JPS5637188A (en) * 1979-06-13 1981-04-10 Discovision Ass Recording method and recording device
JPS5649296A (en) * 1979-07-06 1981-05-02 Drexler Tech Reflective data recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346019A (en) * 1976-10-08 1978-04-25 Canon Inc Recoading medium
JPS5593488A (en) * 1979-01-10 1980-07-15 Nec Corp Laser recording film
JPS55132293A (en) * 1979-04-02 1980-10-14 Konishiroku Photo Ind Co Ltd Forming method for material plate for printing and printing plate
JPS5637188A (en) * 1979-06-13 1981-04-10 Discovision Ass Recording method and recording device
JPS5649296A (en) * 1979-07-06 1981-05-02 Drexler Tech Reflective data recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500641A (en) * 1982-04-15 1984-04-12 バロ−ス・コ−ポレ−ション Optical storage systems using new multilayer optical media
JPS5990246A (en) * 1982-11-15 1984-05-24 Nippon Telegr & Teleph Corp <Ntt> Laser recording medium
JPS59171686A (en) * 1983-03-18 1984-09-28 Hitachi Ltd Recording member
JPH0452235B2 (en) * 1983-03-18 1992-08-21 Hitachi Ltd
JPH0766563B2 (en) * 1984-07-06 1995-07-19 スト−リツジ テクノロジ− コ−ポレイシヨン Optical memory structure
JPS63145087A (en) * 1986-12-09 1988-06-17 Dainippon Printing Co Ltd Optical recording material
US7297448B2 (en) * 2000-05-23 2007-11-20 Aprilis, Inc. Data storage medium comprising colloidal metal and preparation process thereof
WO2002100444A1 (en) * 2001-06-08 2002-12-19 Biosphere Medical Inc. Colloidal metal labelled microparticles, their production and use

Similar Documents

Publication Publication Date Title
US4314260A (en) Laser pyrographic reflective recording layer in a carbon containing absorptive matrix
CA1140755A (en) Medium for recording by thermal deformation
JPS59229756A (en) Reproduction of information recorded on recording medium
JPH0350339B2 (en)
US4809022A (en) Direct read after write optical storage medium
JPS5898289A (en) Optical information recording medium
JPS60253036A (en) Light recording layer
US4963901A (en) Direct read after write optical storage medium and information storage system
JPH0640161A (en) Optical recording medium
JPS5933191A (en) Optical information recording medium
JPS6145437A (en) Optical recording medium
CA1143475A (en) Laser pyrographic reflective recording medium
EP0130026A1 (en) High contrast thin film optical recording medium
JPH0827979B2 (en) Optical information recording medium
JPH0538879A (en) Light recording medium
JPH0538878A (en) Light recording medium
JPH04211990A (en) Infrared laser beam sensitive recording material
JPH07186530A (en) Optical recording medium
JP2591939B2 (en) Optical recording method and optical recording medium
JPH07137448A (en) Photorecording medium and manufacture thereof
JPH0156679B2 (en)
JPS58224791A (en) Optical information recording medium
JPS5912898A (en) Optical information recording medium
JP2648586B2 (en) recoding media
JPS5853036A (en) Method and medium for optical information recording