JPS589784B2 - Zirconia cutting tool material - Google Patents

Zirconia cutting tool material

Info

Publication number
JPS589784B2
JPS589784B2 JP54045567A JP4556779A JPS589784B2 JP S589784 B2 JPS589784 B2 JP S589784B2 JP 54045567 A JP54045567 A JP 54045567A JP 4556779 A JP4556779 A JP 4556779A JP S589784 B2 JPS589784 B2 JP S589784B2
Authority
JP
Japan
Prior art keywords
phase
tetragonal
equiaxed
mol
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54045567A
Other languages
Japanese (ja)
Other versions
JPS55140762A (en
Inventor
弘義 高木
夏雄 梅田
利夫 河波
憲一 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP54045567A priority Critical patent/JPS589784B2/en
Publication of JPS55140762A publication Critical patent/JPS55140762A/en
Publication of JPS589784B2 publication Critical patent/JPS589784B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crushing And Grinding (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は、ジルコニアにイットリウム、カルシウム及び
マグネシウムの酸化物の一種又は二種以上をドープした
ジルコニア固溶体の焼結体からなる金属用切削工具材に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal cutting tool material comprising a sintered body of a zirconia solid solution in which zirconia is doped with one or more of oxides of yttrium, calcium, and magnesium.

従来、高速度切削用工具材料としてセラミックスが注目
されており、すでにAl2O3、Al2O3−Tic、
Al2O3−TiN、サーメット等を用いた工具が開発
されている。
Ceramics have been attracting attention as tool materials for high-speed cutting, and Al2O3, Al2O3-Tic,
Tools using Al2O3-TiN, cermet, etc. have been developed.

しかしながら、これ等の工具は、鋳鉄、鋼等に対しては
優れた切削性を示しはするものの、材質的に靭性に乏し
い為欠けやすいという難点がある。
However, although these tools exhibit excellent cutting performance on cast iron, steel, etc., they have the disadvantage that they are prone to chipping due to the poor toughness of the material.

又、被切削金属との親和力が大きい為、アルミニウム合
金、銅合金等の切削は困難であった。
In addition, it has been difficult to cut aluminum alloys, copper alloys, etc. because of its high affinity with the metal to be cut.

本発明者は、高速度切削用工具材料に関する研究を進め
た結果、ジルコニア焼結体に着目した。
As a result of conducting research on tool materials for high-speed cutting, the present inventors focused on zirconia sintered bodies.

周知の如く、100%ジルコニアの焼結体は、約100
0℃以下では単斜晶系構造を有するが、1200℃付近
で大きな体積変化を伴って正方晶系相に可逆的に転移し
て崩壊する。
As is well known, a 100% zirconia sintered body has approximately 100%
At temperatures below 0°C, it has a monoclinic structure, but at around 1200°C, it reversibly transforms into a tetragonal phase with a large volume change and collapses.

従って、アルカリ土類金属の酸化物、希土類酸化物等を
加えて転移を抑制した等軸晶系相のジルコニア固溶体が
一部の分野で使用されているが、これ等の焼結体も強度
が低く且つ靭性にも欠ける為、切削工具材としては利用
されるにはいたっていない。
Therefore, zirconia solid solutions with an equiaxed crystal phase in which the dislocation is suppressed by adding alkaline earth metal oxides, rare earth oxides, etc. are used in some fields, but these sintered bodies also have low strength. Due to its low strength and lack of toughness, it has not been used as a cutting tool material.

又、ジルコニア−アルミナの二成分系配合物を溶融後急
速に過冷却を行なってアルミナと単斜晶系及び正方晶系
相ジルコニアの共晶体とした砥粒が開発され、研削用砥
石として利用されているが、この砥粒も使用温度が80
0℃以上に達すると、この高温度からの冷却中に正方晶
系相が単斜晶系相に転移する為、大きなクラツクが生じ
て崩壊する、Al2O3とZrO2の共晶体である為、
その境界の強度が低い等の欠点がある。
In addition, abrasive grains were developed in which a two-component mixture of zirconia and alumina was melted and then rapidly supercooled to form a eutectic of alumina and monoclinic and tetragonal phase zirconia, and these were used as grinding wheels. However, the operating temperature of this abrasive grain is 80℃.
When the temperature reaches 0°C or higher, the tetragonal phase transforms to the monoclinic phase during cooling from this high temperature, causing large cracks and collapsing.Since it is a eutectic of Al2O3 and ZrO2,
There are drawbacks such as low strength of the boundary.

従って、このジルコニア−アルミナ系材料を切削工具に
加工することは困難であり、高速度切削加工時には10
00℃附近にも達する金属切削工具に使用することは出
来ない。
Therefore, it is difficult to process this zirconia-alumina material into cutting tools, and during high-speed cutting,
It cannot be used for metal cutting tools that reach temperatures close to 00°C.

しかるに、本発明者の研究によれば、イットリウム、カ
ルシウム及びマグネシウムの酸化物の少なくとも1種を
含有するジルコニア固溶体の焼結体であって、単斜晶系
、正方晶系及び等軸晶系の三結晶相を有し、且つ正方晶
系と等軸晶系の二相の合量が特定の範囲内にあるジルコ
ニア系材料を使用する場合には、アルミニウム合金等の
いわゆる難削性金属についても高速度切削性を発揮し、
工具寿命の延長及び平滑な仕上げ面を可能とする切削工
具が得られることが見出された。
However, according to the research of the present inventor, a sintered body of a zirconia solid solution containing at least one of oxides of yttrium, calcium, and magnesium, which has a monoclinic system, a tetragonal system, and an equiaxed system. When using a zirconia-based material that has a tricrystalline phase and the total amount of the two phases of tetragonal and equiaxed crystal systems is within a specific range, it is also possible to use so-called difficult-to-cut metals such as aluminum alloys. Demonstrates high-speed machinability,
It has been found that a cutting tool is obtained which allows for extended tool life and a smooth finished surface.

即ち、本発明は、イットリウム、カルシウム及びマグネ
シウムの酸化物の一種又は二種以上を含有するジルコニ
ア固溶体の焼結体からなり、該焼結体の結晶は単斜晶系
、正方晶系及び等軸晶系の三和を含み、且つ正方晶系と
等軸晶系の二相の含量が60〜95重量%であることを
特徴とするジルコニア質切削工具材を提供するものであ
る。
That is, the present invention comprises a sintered body of a zirconia solid solution containing one or more oxides of yttrium, calcium, and magnesium, and the crystals of the sintered body are monoclinic, tetragonal, and equiaxed. The present invention provides a zirconia cutting tool material which contains a trigonal crystal system and has a two-phase content of tetragonal and equiaxed crystal systems of 60 to 95% by weight.

本発明切削工具材は、被切削金属との接触により瞬時に
1000℃以上の高温になり、大きな熱応力及び機械的
応力下におかれ、更に被切削金属との間に化学的反応さ
えも生ずる苛酷な切削条件下にも、優れた切削性能及び
耐久性を発揮し得るものである。
When the cutting tool material of the present invention comes into contact with the metal to be cut, it instantly becomes heated to a high temperature of 1000°C or more, is subjected to large thermal stress and mechanical stress, and even a chemical reaction occurs with the metal to be cut. It can exhibit excellent cutting performance and durability even under severe cutting conditions.

又、その曲げ強度は、少なくとも50kg/mm2であ
り、製造条件によっては100kg/mm2を上回る超
高強度を達成することも可能である。
Further, its bending strength is at least 50 kg/mm2, and depending on manufacturing conditions, it is possible to achieve an ultra-high strength exceeding 100 kg/mm2.

本発明材料におけるイットリア含量はジルコニアに対し
通常1.0〜6.0モル%であり、より好ましくは1.
5〜5.0モル%である。
The yttria content in the material of the present invention is usually 1.0 to 6.0 mol% based on zirconia, more preferably 1.0 to 6.0 mol%.
It is 5 to 5.0 mol%.

又、カルシア含量はジルコニアに対し通常2.0〜8.
0モル%であり、より好ましくは2.5〜6.0モル%
である。
In addition, the calcia content is usually 2.0 to 8.0 to zirconia.
0 mol%, more preferably 2.5 to 6.0 mol%
It is.

更に、マグネシア含量はジルコニアに対し通常3.0〜
10.0モル%、より好ましくは4.0〜9.0モル%
である。
Furthermore, the magnesia content is usually 3.0 to 3.0 to zirconia.
10.0 mol%, more preferably 4.0 to 9.0 mol%
It is.

これらの二種以上を混合使用する場合には、夫々の混合
比率において上記含量範囲内とすればよい。
When using a mixture of two or more of these, the content may be within the above range in the mixing ratio of each.

例えばイットリアとカルシアとを等量使用する場合には
、イットリア使用量は(1.0〜6.0×1/2)=0
.5〜3.0モル%、カルシア使用量は(2.0〜8.
0×1/2)=1.0〜4.0モル%とすれば良い。
For example, when using equal amounts of yttria and calcia, the amount of yttria used is (1.0 to 6.0 x 1/2) = 0
.. 5 to 3.0 mol%, and the amount of calcia used is (2.0 to 8.0 mol%).
0×1/2)=1.0 to 4.0 mol%.

これらの含量が上記の下限量を下回ると、単斜晶系相が
増加して、高温下での正方晶系相への転移とこれに伴う
体積変化による崩壊を生ずる傾向がある。
When these contents are below the above-mentioned lower limit amounts, the monoclinic phase tends to increase, leading to a transition to a tetragonal phase at high temperatures and collapse due to the accompanying volume change.

一方、これらの含量が上記上限量を上回ると曲げ強度が
低下する傾向が顕著となる。
On the other hand, if the content exceeds the above upper limit, the bending strength tends to decrease significantly.

正方晶系相と等軸晶系相の二相の合量が60重量%未満
では耐熱衝撃性が低く、95重量%を上回ると正方晶系
相の含有率が相対的に低くなって耐久性が劣化する。
If the total content of the two phases, the tetragonal phase and the equiaxed phase, is less than 60% by weight, the thermal shock resistance will be low, and if it exceeds 95% by weight, the content of the tetragonal phase will be relatively low, resulting in poor durability. deteriorates.

本発明のジルコニア質切削工具材は、例えば次の様にし
て製造される。
The zirconia cutting tool material of the present invention is manufactured, for example, as follows.

先ずジルコニアに対し前記の範囲内で所定量のイットリ
ア、カルシア、マグネシアの一種又は二種以上を加え、
均一に混合して1μm以下の微細な一次粒子からなる粉
体を調製する。
First, add a predetermined amount of one or more of yttria, calcia, and magnesia to zirconia within the above range,
A powder consisting of fine primary particles of 1 μm or less is prepared by uniformly mixing.

次いで、該粉体を0. 5ton/cm2以上の加圧下
に所定形状に成形し、1300〜1800℃程度で常圧
若しくは加圧下に焼成し、理論密度近くまで焼き締める
Then, the powder was heated to 0. It is molded into a predetermined shape under pressure of 5 ton/cm2 or more, and fired at about 1300 to 1800°C under normal pressure or pressure to close to the theoretical density.

かくして、焼結体中に室温においても単斜晶系相に転移
しない正方晶系相を残留させる。
In this way, a tetragonal phase that does not transform to a monoclinic phase even at room temperature remains in the sintered body.

焼成雰囲気は特に限定されないが、大気中での焼成が経
済的に最も有利である。
Although the firing atmosphere is not particularly limited, firing in the atmosphere is economically most advantageous.

成形圧力が高い程有利なことは言うまでもないことであ
り、又焼成温度は1350〜1650℃程度がより好ま
しい。
It goes without saying that the higher the molding pressure, the more advantageous it is, and the firing temperature is more preferably about 1350 to 1650°C.

焼成温度が1300〜1800℃の範囲外となると、焼
結体の強度が低下する。
When the firing temperature is outside the range of 1300 to 1800°C, the strength of the sintered body decreases.

ジルコニア固溶体焼結体内に正方晶系相を残留させた本
発明材料に於ては、外部からの熱応力及び機械的応力に
よりクラツクを発生させるエネルギー或いは微細なクラ
ツクを更に進行させるエネルギーを内部に残留する正方
晶系相が吸収することにより、これ等応力に対する高い
耐久性を発揮するものと推考される。
In the material of the present invention in which the tetragonal phase remains in the zirconia solid solution sintered body, energy that generates cracks due to external thermal stress and mechanical stress or energy that causes fine cracks to progress further remains inside. It is presumed that the tetragonal phase absorbs these stresses, thereby exhibiting high durability against these stresses.

従って、本発明材料は極めて過酷な金属切削条件下に於
ても優れた耐熱性、耐熱衝撃性、高強度、高硬度を発揮
し、更に金属との親和力も少なく化学的に安定である為
、アルミニウム合金、銅合金等の難削材に対する切削性
にも極めて優れている。
Therefore, the material of the present invention exhibits excellent heat resistance, thermal shock resistance, high strength, and high hardness even under extremely harsh metal cutting conditions, and furthermore, it has little affinity with metals and is chemically stable. It also has excellent machinability on difficult-to-cut materials such as aluminum alloys and copper alloys.

尚、本発明の正方晶系相含有ジルコニア固溶体の焼結体
は、優れた耐熱性、耐熱衝撃性、高強度、高硬度等の特
性を備えているので、切削工具材としてのみならず、各
種の耐摩耗材料、高強度材料等としても有用である。
The sintered body of the tetragonal phase-containing zirconia solid solution of the present invention has properties such as excellent heat resistance, thermal shock resistance, high strength, and high hardness, so it can be used not only as a cutting tool material but also as a variety of cutting tool materials. It is also useful as a wear-resistant material, high-strength material, etc.

実施例 1 純度99.9%のオキシ塩化ジルコニウムの1モル%溶
液にZrO2に対してY2O3が3.5モル%となる様
に純度99.9%の塩化イットリウムを加え、均一に混
合した後、共沈により混合水酸化物を得、これを脱水乾
燥し、800℃で仮焼して粒径平均約150穴の一次粒
子粉体を得る。
Example 1 Yttrium chloride with a purity of 99.9% was added to a 1 mol% solution of zirconium oxychloride with a purity of 99.9% so that Y2O3 was 3.5 mol% with respect to ZrO2, and after uniformly mixing, A mixed hydroxide is obtained by coprecipitation, which is dehydrated and dried, and calcined at 800° C. to obtain a primary particle powder having an average particle size of about 150 holes.

該粉体を2ton/cm2で加圧成形し、開放雰囲気電
気炉内で1480℃で2時間焼成した後、室温まで徐冷
する。
The powder is pressure-molded at 2 tons/cm 2 , fired in an open atmosphere electric furnace at 1480° C. for 2 hours, and then gradually cooled to room temperature.

この焼成体は、単斜晶系相、正方晶系相及び等軸晶系相
の三相を含み、正方晶系相と等軸晶系相との合量が90
重量%、硬度HRA92.6、曲げ強度92kg/mm
2であった。
This fired body contains three phases: a monoclinic phase, a tetragonal phase, and an equiaxed phase, and the total amount of the tetragonal phase and the equiaxed phase is 90%.
Weight%, hardness HRA92.6, bending strength 92kg/mm
It was 2.

得られた焼結体を13mm角、厚さ5.0mm、ノーズ
半径0.5mmとなる様に研削及び研摩する。
The obtained sintered body is ground and polished to a size of 13 mm square, a thickness of 5.0 mm, and a nose radius of 0.5 mm.

この試料を旋盤に取り付け、切削速度500m/min
、切り込み1.0mm、送り0.15mm/rev.の
条件で、13%Si含有アルミニウム合金を旋削した。
This sample was mounted on a lathe and the cutting speed was 500 m/min.
, depth of cut 1.0mm, feed 0.15mm/rev. An aluminum alloy containing 13% Si was turned under the following conditions.

延べ10分33秒後の該試料切削工具の逃げ面摩耗は0
.24mmであった。
The flank wear of the sample cutting tool after a total of 10 minutes and 33 seconds was 0.
.. It was 24 mm.

又、旋削面の平滑面は、ダイヤモンド工具を使用した場
合とほぼ同様であった。
In addition, the smooth surface of the turned surface was almost the same as when a diamond tool was used.

尚、ジルコニア固溶体焼結体中の結晶相の測定は、以下
の手順で行なった。
The crystal phase in the zirconia solid solution sintered body was measured using the following procedure.

(i)焼結体試料の表面をダイヤモンド砥石#100で
研削した平板状表面にX線を照射し、その回折線プロフ
ィルにより、各結晶構造を確認する単斜晶は、正方晶及
び等軸晶とは回折線の格子面間隔が大きく異なるので、
その回折X線強度比(面積比)から定量を行なうことが
出来る(ii)正方晶と等軸晶とは格子面間隔の値が近
似しており、その分離と定量を直接且つ正確に行なうこ
とは出来ない。
(i) The surface of the sintered compact sample is ground with a diamond grindstone #100 and the flat surface is irradiated with X-rays, and each crystal structure is confirmed by the diffraction line profile.Monoclinic crystals are tetragonal and equiaxed crystals. Since the lattice spacing of the diffraction lines is greatly different from that of
Quantification can be performed from the diffraction X-ray intensity ratio (area ratio). (ii) Tetragonal and equiaxed crystals have similar lattice spacing values, and their separation and quantification can be performed directly and accurately. I can't.

従って、等軸晶(c)の回折X線像:c<111>、c
<200>、c<202>、c<311>、c<222
>及びc<400>と、正方晶(t)の回析X線像:t
<111>、t<002>、t<200>、t<202
>、t<220>、t<113>、t<311>、t<
113>、t<311>、t<222>、t<004>
及びt<400>とを対比し、試料中に正方晶が存在し
ているか否かを確認する。
Therefore, the diffraction X-ray image of equiaxed crystal (c): c<111>, c
<200>, c<202>, c<311>, c<222
> and c<400> and diffraction X-ray image of tetragonal crystal (t): t
<111>, t<002>, t<200>, t<202
>, t<220>, t<113>, t<311>, t<
113>, t<311>, t<222>, t<004>
and t<400> to confirm whether or not tetragonal crystals exist in the sample.

(iii)上記(ii)により正方晶の存在が確認され
た試料については等軸晶と正方晶の混合<111>(両
者は区別出来ない)を、正方晶の存在しない試料につい
ては等軸晶<111>をとり、単斜晶<111>及び単
斜晶<111>との強度(■)の比から下式に従って正
方晶+等軸晶の値を求めた。
(iii) A mixture of equiaxed crystals and tetragonal crystals <111> (the two cannot be distinguished) for samples in which the presence of tetragonal crystals was confirmed in (ii) above, and equiaxed crystals for samples without tetragonal crystals. <111> was taken, and the value of tetragonal + equiaxed crystal was determined from the ratio of the intensity (■) of monoclinic <111> and monoclinic <111> according to the formula below.

又、曲げ強度は、長さ25mm、3mm角の試験片の表
面を長さ方向に平滑に研摩し、スパン距離20mmの三
点曲げ試験により求めた。
The bending strength was determined by polishing the surface of a 25 mm long, 3 mm square test piece smooth in the longitudinal direction, and performing a three-point bending test with a span distance of 20 mm.

実施例 2 ZrO2に対してY2O3が2.3モル%となる様にオ
キシ塩化ジルコニウム溶液と塩化イットリウム溶液とを
混合し、共沈により得られた混合水酸化物を脱水乾燥し
、900℃で仮焼して粒径約230λの一次粒子粉体を
得る。
Example 2 A zirconium oxychloride solution and a yttrium chloride solution were mixed so that Y2O3 was 2.3 mol% with respect to ZrO2, and the mixed hydroxide obtained by coprecipitation was dehydrated and dried, and temporarily heated at 900°C. A primary particle powder having a particle size of about 230λ is obtained by firing.

該粉体を2ton/cm2で加圧成形し、開放雰囲気電
気炉内で1500℃で2時間焼成する。
The powder is pressure-molded at 2 ton/cm 2 and fired at 1500° C. for 2 hours in an open atmosphere electric furnace.

焼結体中の正方晶系相と等軸晶系相との含量は、85重
量%で硬度HRA92.5曲げ強度110kg/mm2
であった。
The content of tetragonal phase and equiaxed phase in the sintered body is 85% by weight, hardness HRA 92.5, bending strength 110 kg/mm2
Met.

得られた焼結体を実施例1と同様にして切削工具材とし
て使用したところ、延べ12分6秒後の該試料切削工具
の逃げ面摩耗は0.22mmで、実施例1と同等以上の
優れた効果が得られた。
When the obtained sintered body was used as a cutting tool material in the same manner as in Example 1, the flank wear of the sample cutting tool after a total of 12 minutes and 6 seconds was 0.22 mm, which was equivalent to or higher than that in Example 1. Excellent results were obtained.

実施例 3 1モル%のオキシ塩化ジルコニウム(純度999%)溶
液に炭酸カルシウム(試薬特級)を加え、十分に攪拌し
溶解させたのち、アンモニア水を滴下し、ZrO2に対
して4モル%のカルシウムを吸着させたジルコニウム水
酸化物を得、これを脱水乾燥し、900℃で仮焼して平
均粒径約280Åの一次粒子粉体を得る。
Example 3 Calcium carbonate (special grade reagent) was added to a 1 mol % zirconium oxychloride (purity 999%) solution, stirred thoroughly to dissolve it, and then aqueous ammonia was added dropwise to dissolve 4 mol % calcium based on ZrO2. A zirconium hydroxide adsorbed is obtained, which is dehydrated and dried, and calcined at 900° C. to obtain a primary particle powder having an average particle size of about 280 Å.

この粉体の二次粒子を0.3μ以下の平均粒径に分散さ
せた後、2.5ton/cm2で加圧成形し、開放雰囲
気電気炉内で1500℃で2時間焼成した後室温まで徐
冷した。
After dispersing the secondary particles of this powder to an average particle size of 0.3 μ or less, they were pressure-molded at 2.5 ton/cm2, fired at 1500°C for 2 hours in an open atmosphere electric furnace, and then slowly heated to room temperature. It got cold.

この焼成体は単斜晶系相、正方晶系相及び等軸晶系相の
三相を含み、正方晶系と等軸晶系の二相の含量は78重
量%、硬度HRA91.7、曲げ強度70kg/mm2
であった。
This fired body contains three phases: a monoclinic phase, a tetragonal phase, and an equiaxed phase, and the content of the two phases of the tetragonal phase and the equiaxed phase is 78% by weight. Strength 70kg/mm2
Met.

この焼結体を実施例1と同条件で旋削に使用した。This sintered body was used for turning under the same conditions as in Example 1.

延べ4分21秒後の該試料切削工具の逃げ面摩耗は0.
23mmであった。
The flank wear of the sample cutting tool after a total of 4 minutes and 21 seconds was 0.
It was 23 mm.

実施例 4 1モル%のオキシ塩化ジルコニウム(純度99.9%)
溶液に塩化マグネシウム(試薬特級)を加え、十分に攪
拌したのち、アンモニア水で共沈させ、ZrO2に対し
て5モル%のマグネシウムを含む混合水酸化物を得、こ
れを脱水乾燥し、950℃で仮焼して、平均粒径約32
0Åの一次粒子をもった粉体を得る。
Example 4 1 mol% zirconium oxychloride (99.9% purity)
Magnesium chloride (special grade reagent) was added to the solution, stirred thoroughly, and then co-precipitated with aqueous ammonia to obtain a mixed hydroxide containing 5 mol% of magnesium based on ZrO2, which was dehydrated and dried at 950°C. The average particle size is approximately 32.
A powder with primary particles of 0 Å is obtained.

この粉体を0.3μ以下の二次粒子平均粒径に分散させ
た後、2.5ton/cm2で加圧成形し、電気炉内で
1530℃で2時間焼成した後室温まで徐冷した。
This powder was dispersed to have a secondary particle average particle diameter of 0.3 μm or less, then pressure molded at 2.5 ton/cm 2 , fired in an electric furnace at 1530° C. for 2 hours, and then slowly cooled to room temperature.

この焼成体は単斜晶系相、正方晶系相及び等軸晶系相の
三和を含み、正方晶系と等軸晶系の二相の合量は70重
量%、硬度HRA92.3、曲げ強度85kg/mm2
であった。
This fired body contains a triad of monoclinic phase, tetragonal phase and equiaxed phase, the total amount of the two phases of tetragonal phase and equiaxed phase is 70% by weight, hardness HRA92.3, Bending strength 85kg/mm2
Met.

この焼結体を実施例1と同条件で旋削に使用した。This sintered body was used for turning under the same conditions as in Example 1.

延べ6分27秒後の該試料切削工具の逃げ面摩耗は0.
24mmであった。
The flank wear of the sample cutting tool after a total of 6 minutes and 27 seconds was 0.
It was 24 mm.

比較例 1〜6 (i)比較例1:実施例4においてZrO2に対する安
定化剤としてのマグネシウムの量を8.5モル%とし、
仮焼温度1400℃、平均一次粒子径約2μmの粉体を
2.5μm以下の平均二次粒子径に分散させる以外は、
実施例4と同様にして焼結体を得た。
Comparative Examples 1 to 6 (i) Comparative Example 1: In Example 4, the amount of magnesium as a stabilizer for ZrO2 was 8.5 mol%,
Except for dispersing the powder with a calcination temperature of 1400°C and an average primary particle size of about 2 μm into an average secondary particle size of 2.5 μm or less,
A sintered body was obtained in the same manner as in Example 4.

正方晶+等軸晶の量、曲げ強度硬度等は、比較例2〜6
の結果とともに第1表に示す通りである。
The amount of tetragonal crystals + equiaxed crystals, bending strength hardness, etc. are those of Comparative Examples 2 to 6.
The results are shown in Table 1.

(ii)比較例:実施例2においてZrO2に対するY
2O3の量を2.0モル%とし、仮焼温度1200℃で
粒径1.5μmの一次粒子粉体とする以外は実施例2と
同様にして焼結体を得た。
(ii) Comparative example: Y for ZrO2 in Example 2
A sintered body was obtained in the same manner as in Example 2, except that the amount of 2O3 was 2.0 mol %, the calcination temperature was 1200°C, and the primary particle powder had a particle size of 1.5 μm.

(iii)比較例3:実施例2においてZrO2に対す
るY2O3の量を4.8モル%とし、焼成温度を185
0℃とする以外は、実施例2と同様にして焼結体を得た
(iii) Comparative Example 3: In Example 2, the amount of Y2O3 relative to ZrO2 was 4.8 mol%, and the firing temperature was 185%.
A sintered body was obtained in the same manner as in Example 2 except that the temperature was 0°C.

(iv)比較例4:実施例3においてZrO2に対する
CaOの量を9モル%とする以外は、実施例3と同様に
して焼結体を得た。
(iv) Comparative Example 4: A sintered body was obtained in the same manner as in Example 3, except that the amount of CaO relative to ZrO2 in Example 3 was changed to 9 mol%.

(v)比較例5:実施例3においてZrO2に対しCa
O 2.0モル%及びY2O3.0モル%を含有させ、
焼成温度を1650℃とする以外は、実施例3と同様に
して焼結体を得た。
(v) Comparative Example 5: Ca for ZrO2 in Example 3
Containing 2.0 mol% O and 3.0 mol% Y2O,
A sintered body was obtained in the same manner as in Example 3 except that the firing temperature was 1650°C.

(vi)比較例6:実施例4においてZrO2に対する
マグネシウムの量を15モル%とする以外は、実施例4
と同様にして焼結体を得た。
(vi) Comparative Example 6: Example 4 except that the amount of magnesium relative to ZrO2 in Example 4 was 15 mol%.
A sintered body was obtained in the same manner as above.

第1表に示す結果から、正方晶系相と等軸晶系相の合量
が60重量%未満の場合(比較例1及び2)には、曲げ
強度が極めて低く到底実用に供し得ないことが明らかで
ある。
From the results shown in Table 1, when the total amount of the tetragonal phase and the equiaxed phase is less than 60% by weight (Comparative Examples 1 and 2), the bending strength is extremely low and cannot be put to practical use at all. is clear.

正方晶系相と等軸晶系相の合量が60重量%と95重量
%の範囲内にある場合にも、正方晶が存在しなければ(
比較例3)、やはり曲げ強度が低い。
Even if the total amount of the tetragonal phase and the equiaxed phase is within the range of 60% and 95% by weight, if there is no tetragonal phase (
Comparative Example 3) also had low bending strength.

又、正方晶系相と等軸晶系相との含量が95重量%を上
回ると、正方晶系相が存在しない場合には曲げ強度が著
るしく低くなったり(比較例6)、正方晶系相が存在し
ていても硬度(HRA)が90に達しなかったりする(
比較例4)。
Moreover, when the content of the tetragonal phase and the equiaxed phase exceeds 95% by weight, the bending strength becomes significantly lower in the absence of the tetragonal phase (Comparative Example 6); Even if a system phase exists, the hardness (HRA) may not reach 90 (
Comparative example 4).

正方晶系相と等軸晶系相との合量が98%の比較例5に
ついては、正方晶系相の存在も認められ且つ曲げ強度及
び硬度(HRA)も一応実用範囲に達しているものと思
われたので、実施例1と同様の方法で切削工具に仕上げ
た後、実施例1と同様にして13%Si含有アルミニウ
ム合金の旋削に使用した。
Regarding Comparative Example 5, in which the total amount of the tetragonal phase and the equiaxed phase is 98%, the presence of the tetragonal phase is also recognized, and the bending strength and hardness (HRA) have reached the practical range. Therefore, it was finished into a cutting tool in the same manner as in Example 1, and then used in the same manner as in Example 1 for turning an aluminum alloy containing 13% Si.

しかるに、10秒後には欠損を生じ、やはり実用に供し
得ないことが判明した。
However, it was found that defects occurred after 10 seconds and that it could not be put to practical use.

Claims (1)

【特許請求の範囲】[Claims] 1 イットリウム、カルシウム及びマグネシウムの酸化
物の一種又は二種以上を含有するジルコニア固溶体の焼
結体からなり、該焼結体の結晶は単斜晶系、正方晶系及
び等軸晶系の三相を含み、且つ正方晶系と等軸晶系の二
相の合量が60〜95重量%であることを特徴とするジ
ルコニア質切削工具材。
1 Consists of a sintered body of a zirconia solid solution containing one or more oxides of yttrium, calcium, and magnesium, and the crystals of the sintered body have three phases: monoclinic, tetragonal, and equiaxed. A zirconia cutting tool material characterized in that the total amount of two phases of tetragonal system and equiaxed system is 60 to 95% by weight.
JP54045567A 1979-04-13 1979-04-13 Zirconia cutting tool material Expired JPS589784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54045567A JPS589784B2 (en) 1979-04-13 1979-04-13 Zirconia cutting tool material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54045567A JPS589784B2 (en) 1979-04-13 1979-04-13 Zirconia cutting tool material

Publications (2)

Publication Number Publication Date
JPS55140762A JPS55140762A (en) 1980-11-04
JPS589784B2 true JPS589784B2 (en) 1983-02-22

Family

ID=12722918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54045567A Expired JPS589784B2 (en) 1979-04-13 1979-04-13 Zirconia cutting tool material

Country Status (1)

Country Link
JP (1) JPS589784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001980A1 (en) * 1985-09-27 1987-04-09 Nippon Steel Corporation Finish cutting tool and finish cutting method for steel

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598053A (en) * 1974-05-23 1986-07-01 Sumitomo Electric Industries, Ltd. Ceramic compacts
JPS56134564A (en) * 1980-03-26 1981-10-21 Ngk Insulators Ltd Zirconia ceramics
JPS57140375A (en) * 1981-02-17 1982-08-30 Ngk Insulators Ltd Ceramic manufacture
JPS6048471B2 (en) * 1980-12-25 1985-10-28 東レ株式会社 Zirconia sintered body
JPS6018621B2 (en) * 1981-05-21 1985-05-11 日本碍子株式会社 engine parts
JPS6048472B2 (en) * 1981-07-09 1985-10-28 東レ株式会社 Zirconia sintered body
JPS5836976A (en) * 1981-08-25 1983-03-04 日本特殊陶業株式会社 High tenacity zirconia sintered body
DE3230216A1 (en) * 1981-08-13 1983-08-04 Ngk Spark Plug Co., Ltd., Nagoya, Aichi SINTER BODY WITH HIGH TOUGHNESS
JPS59107968A (en) * 1982-12-06 1984-06-22 東芝セラミツクス株式会社 Manufacture of zirconia ceramics
JPS59107966A (en) * 1982-12-06 1984-06-22 東芝セラミツクス株式会社 Manufacture of zirconia ceramics
JP2523487B2 (en) * 1985-04-13 1996-08-07 シユトーラ フエルトミユーレ アクチエンゲゼルシヤフト Sintered compact and manufacturing method thereof
JP2546709B2 (en) * 1988-09-29 1996-10-23 東芝タンガロイ株式会社 High strength cubic boron nitride containing sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001980A1 (en) * 1985-09-27 1987-04-09 Nippon Steel Corporation Finish cutting tool and finish cutting method for steel
EP0250595A1 (en) * 1985-09-27 1988-01-07 Nippon Steel Corporation Finish cutting tool and finish cutting method for steel
EP0250595B1 (en) * 1985-09-27 1993-02-24 Nippon Steel Corporation Finish cutting tool and finish cutting method for steel

Also Published As

Publication number Publication date
JPS55140762A (en) 1980-11-04

Similar Documents

Publication Publication Date Title
US4772576A (en) High density alumina zirconia ceramics and a process for production thereof
JP2857626B2 (en) High fracture toughness self-strengthened silicon nitride ceramic and method for producing the same
CA1291878C (en) Ceramic cutting tool inserts
CA2071522C (en) Dense sic ceramic products
US4543343A (en) Ceramics for cutting tools
KR20090116720A (en) cBN SINTERED BODY AND TOOL MADE OF CBN SINTERED BODY
WO1990009969A1 (en) Alumina ceramic, production thereof, and throwaway tip made therefrom
JPS589784B2 (en) Zirconia cutting tool material
JPS60195059A (en) Composite sintered body
JPS6140621B2 (en)
JP2616827B2 (en) Cutting tools reinforced by alumina-zirconia carbide whiskers
KR100882392B1 (en) Alumina cutting tool
CA2056893C (en) Sintered composite abrasive material, a process for its production and its use
JPH06500762A (en) Sintered shaped bodies and their uses
Brandt et al. An electron microprobe and cathodoluminescence study of chemical reactions between tool and workpiece when turning steel with alumina-based ceramics
US8426043B2 (en) Boron suboxide composite materials
EP0261066B1 (en) An improved method for producing composite structures
JPH0553751B2 (en)
AU626347B2 (en) Alumina-zirconia-silicon carbide-magnesia compositions and cutting tools
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JP3078430B2 (en) High-strength alumina sintered body
JPH01502426A (en) Method for preparing aluminum oxide ceramics with increased wear resistance
JPS6341532B2 (en)