JPS5897494A - Submerged arc welding method for austenitic stainless steel for ultra-low temperature service - Google Patents

Submerged arc welding method for austenitic stainless steel for ultra-low temperature service

Info

Publication number
JPS5897494A
JPS5897494A JP19663881A JP19663881A JPS5897494A JP S5897494 A JPS5897494 A JP S5897494A JP 19663881 A JP19663881 A JP 19663881A JP 19663881 A JP19663881 A JP 19663881A JP S5897494 A JPS5897494 A JP S5897494A
Authority
JP
Japan
Prior art keywords
less
stainless steel
austenitic stainless
flux
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19663881A
Other languages
Japanese (ja)
Inventor
Shozaburo Nakano
中野 昭三郎
Noboru Nishiyama
昇 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19663881A priority Critical patent/JPS5897494A/en
Publication of JPS5897494A publication Critical patent/JPS5897494A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain deposited metal having excellent low temp. toughness by specifying the components in a welding flux and deposited metal. CONSTITUTION:The components of a flux contain, by weight %, 40-60% CaF2, 20-30%Al2O3, 5-15% CaO or MgO, and 5-15% SiO2 and further contain <=5% MnO and <=10% Cr2O3. By using such flux and an austenitic stainless steel electrode, the deposited metal which contains <=0.08% C, 0.2-0.7% Si, 0.5-6% Mn, <=0.03% P, <=0.006% S, >=17% Cr, <=3% Mo, <=0.035% oxygen, and <=0.1% nitrogen and of which the content of delta ferrite calculated by the equation Iis negative is obtained.

Description

【発明の詳細な説明】 本発明は極低温用オーステナイト系ステンレス鋼のサブ
マージアーク溶接方法に係り、特に溶着金属のシャルピ
ー衝撃試験における吸収エネルギーのすぐれた溶接方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a submerged arc welding method for cryogenic austenitic stainless steel, and more particularly to a welding method that exhibits excellent absorbed energy in the Charpy impact test of weld metal.

オーステナイト系ステンレス鋼は、(lにおいても脆性
破壊を起こさないので、極低温の使用に際して、常温と
同じ溶接材料が使用されてきた。
Since austenitic stainless steel does not cause brittle fracture even at low temperatures, the same welding materials as at room temperature have been used when used at extremely low temperatures.

しかし近時、鋼板の材質改良によって相対的に溶着金属
の吸収エネルギーの低い点が目立ち問題となっている。
However, in recent years, due to improvements in the material of steel sheets, the relatively low absorbed energy of welded metal has become a noticeable problem.

第1表は5US316L、200m厚の銀銅をサブマー
ジアーク溶接し、各部分の一196℃における吸収エネ
ルギーを示したもので、母・材、熱影響部ともに30に
9f−mを示しているのに比べ、溶着金属はわずかに3
kgf−mにすぎない。
Table 1 shows the absorbed energy at 196℃ for each part of 5US316L, 200m thick silver copper welded by submerged arc welding. Compared to this, the weld metal is only 3
It is only kgf-m.

第  1  表 一方、溶着金属の靭性に関する研究報告においで、低酸
素、低δフェライトはど高靭性が得られることを示した
ものイ)あるが、低酸素の溶着金属を得ようとすると溶
接作業性が低下し、またδフェライトを減少させると高
温われが発生し易くなることから、いまだ実用化に至っ
ていない。
Table 1 On the other hand, there is a research report on the toughness of weld metal that shows that high toughness can be obtained with low oxygen and low δ ferrite. It has not yet been put to practical use because the properties of this material decrease, and reducing the amount of δ ferrite tends to cause high-temperature cracking.

本発明の目的は上記従来技術の問題点を解消し、溶着金
属のシャルピー吸収エネルギーがすぐれた極低溝用オー
ステナイト系ステンレス鋼のサブマージアーク溶接方法
を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a submerged arc welding method for austenitic stainless steel for ultra-low grooves in which the Charpy absorbed energy of the weld metal is excellent.

本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.

すなわち重量比でCaF2:40〜60%、Ago、 
:20−30%、CaOもしくはMgO:5〜15%、
Sin、 : 5〜15%を含め、更に必要により5%
以下のMn0110%以下のCr、03 を含むフラッ
クスとオーステナイト系ステンレス電極を用いてC:0
.08%以下、Si : 0.2〜0.7%、Mn:0
5〜6%、P:0.03%以下、S:0.006.%以
下、Cr : 17%以上、MO;3%以下、酸素:0
.035%U下、窒素:0.1%以下を含み、かつ下記
(1)式で計算されろδフエライト量が負となる溶着金
属を得ることを特徴とする極低温用オーステナイト系ス
テンレス鋼のサブマージアーク溶接方法である。
That is, CaF2: 40 to 60% by weight, Ago,
:20-30%, CaO or MgO: 5-15%,
Sin: 5 to 15%, further 5% if necessary
C:0 using a flux containing the following Mn0110% or less Cr, 03 and an austenitic stainless steel electrode.
.. 08% or less, Si: 0.2-0.7%, Mn: 0
5-6%, P: 0.03% or less, S: 0.006. % or less, Cr: 17% or more, MO: 3% or less, oxygen: 0
.. Submerged austenitic stainless steel for cryogenic use characterized by obtaining a deposited metal containing 0.035% U, nitrogen: 0.1% or less, and having a negative δ ferrite amount calculated by the following formula (1). This is an arc welding method.

記 δ’7zライトー3.2 (1,5Si%+Cr%)−
2,4(30(C%+N%)+0.5 Mn%十Ni%
)−24,7−(1)本発明者らは高靭性溶着金属を得
るために必要な鋼中酸素量およびδフェライト昂°を明
らかにすべく実験を行った。すなわち、C:o、o2%
、Si:0.32%、Mn : 2.4%、p:o、o
2%、S:0.004%、Ni:11.0%、Cr:1
9.2%、N:0.04%の化学組成の4闘φの電極を
用い、第2表に示す供試材名1〜4は溶融型フラックス
に金属N1  を混合し、溶着金属のNi  Bを変化
させることによってδフエライト量を変化させたもので
アリ、δフエライト量の計算はティロンの組織図から下
記関係式(1)を導入し、これを使用した。
Recorded δ'7z light - 3.2 (1,5Si% + Cr%) -
2,4(30(C%+N%)+0.5 Mn%+Ni%
)-24,7-(1) The present inventors conducted experiments to clarify the amount of oxygen in steel and the degree of δ ferrite required to obtain a high-toughness weld metal. That is, C: o, o2%
, Si: 0.32%, Mn: 2.4%, p: o, o
2%, S: 0.004%, Ni: 11.0%, Cr: 1
9.2%, N: 0.04% chemical composition, 4 to The amount of δ ferrite was changed by changing B, and the amount of δ ferrite was calculated by introducing the following relational expression (1) from the Tillon organization chart and using this.

δフェライト−3,2(1,5S i%+Cr%)−2
,4(30(cj%+N%)+0.5 Mn%十Ni%
) −24,7−(1)供試材層5〜7は溶着金属中の
酸素含有量を変化させるためフラックスのCaF2量お
よび塩基度を変化させた。この場合もδフェライトRの
調整のためフラックスには金属N1  を添加した。
δ ferrite-3,2 (1,5Si%+Cr%)-2
, 4 (30 (cj% + N%) + 0.5 Mn% + Ni%
) -24,7-(1) For test material layers 5 to 7, the amount of CaF2 and basicity of the flux were changed in order to change the oxygen content in the weld metal. In this case as well, metal N1 was added to the flux to adjust the δ ferrite R.

実験によってできた溶着金属の一196℃の吸収エネル
ギを調査し、その結果を溶着金属の化学成分、δフエラ
イト量とともに第2表に示(7た。
The absorbed energy at -196°C of the weld metal produced by the experiment was investigated, and the results are shown in Table 2 along with the chemical composition of the weld metal and the amount of δ ferrite.

第  2  表 第2表において、溶着金属中の酸素が0.035%以下
で、かつ(1)式によって求められたδフエライト量が
負の場合の供試材層1.2および5の場合のみ吸収エネ
ルギーは10kgf−m以上を示し、すぐれた低温靭性
分有している。この結果から本発明は溶着金属の酸素含
有量を0035%以下、(1)式で計算されるδフエラ
イト量が負になる如く限定しt二。
Table 2 In Table 2, only in the case of sample material layers 1.2 and 5, where the oxygen in the deposited metal is 0.035% or less and the amount of δ ferrite determined by equation (1) is negative. The absorbed energy is 10 kgf-m or more, and it has excellent low-temperature toughness. Based on this result, the present invention limits the oxygen content of the weld metal to 0.035% or less, so that the amount of δ ferrite calculated by equation (1) becomes negative.

上記の如く、溶着金属の酸素含有量とδフェライトf4
の限定を実用化し、すぐれた靭性の溶着金属を得るため
に溶着金属の他の組成の限定も必要であり、その限定理
由は次のとおりである。
As mentioned above, the oxygen content of the weld metal and the δ ferrite f4
In order to put this limitation into practical use and obtain a weld metal with excellent toughness, it is necessary to also limit other compositions of the weld metal, and the reason for this limitation is as follows.

影響はないが、0.08%を越えると、水圧テストの際
の水による耐食性か劣化するので0.08%以下に限定
した。
Although there is no effect, if it exceeds 0.08%, the corrosion resistance due to water during the water pressure test will deteriorate, so it was limited to 0.08% or less.

SiおよびS: Si、Sは溶着金属がδフェライトを含まない場合は、
高温われ防止のため上限が必要となるので、その上限を
実験により求めた。すなわち第1図で示した如き開先を
供試材A1においで使用したフラックスに硫化鉄および
フェロシリコンを混合し、電極も供試材&1と同一のも
のを使用し溶接した。
Si and S: If the weld metal does not contain δ ferrite, Si and S are
Since an upper limit is necessary to prevent high temperature cracking, the upper limit was determined through experiments. That is, a groove as shown in FIG. 1 was welded by mixing iron sulfide and ferrosilicon with the flux used in sample material A1, and using the same electrode as in sample material &1.

溶接は電流600A、電圧38V、速度30 m/mi
nの条件で行った。第1図に示した開先2は拘束母板4
に拘束板6、拘束溶接8によって拘束されたSUS 3
08母材10を加工したものである。溶接断面を切断後
、浸透探傷により高温われを調査し、その結果を第3表
に示した。
Welding current: 600A, voltage: 38V, speed: 30m/mi
The test was carried out under the conditions of n. The groove 2 shown in Fig. 1 is the restraint base plate 4.
SUS 3 restrained by restraint plate 6 and restraint welding 8
08 base material 10 was processed. After cutting the welded cross section, high temperature cracks were investigated by penetrant testing, and the results are shown in Table 3.

第  3  表 第3表の結果から高温われを防止するため、Sは0.0
06%以下に、Si  は0.7%以下に限定した。な
おSi  は0.2%未満となるとCr  の歩留が低
下するので下限を0.2%に限定した。
Table 3 From the results in Table 3, S is 0.0 to prevent high temperature cracks.
The content of Si was limited to 0.06% or less, and Si was limited to 0.7% or less. Note that if Si is less than 0.2%, the yield of Cr decreases, so the lower limit was limited to 0.2%.

Mn : Mn は高温われ防止に有効であるが、6%を越えると
フラックス中のSin、が還元されて溶着金属のSi 
 が0.7%を越えるので上限を6%、また0、5%未
満ではCr  の歩留が低下するので、0.5〜6%の
範囲に限定した。
Mn: Mn is effective in preventing high temperature cracking, but if it exceeds 6%, the Si in the flux is reduced and the Si in the weld metal is reduced.
Since Cr exceeds 0.7%, the upper limit was set at 6%, and since the yield of Cr decreases below 0.5%, it was limited to a range of 0.5 to 6%.

P: Pは0.03%を越えると耐高温われ性が劣化するので
0.03%以下に限定した。
P: If P exceeds 0.03%, high temperature fragility resistance deteriorates, so P is limited to 0.03% or less.

Cr: Cr  はシエフラーの状態図から明らかな如<17%
未満ではマルテンサイトを生成し靭性を劣化するので1
7%以上に限定した。
Cr: Cr is <17% as is clear from Schiffler's phase diagram.
If it is less than 1, martensite will be formed and the toughness will deteriorate.
Limited to 7% or more.

Mo: Mo は常温強度を高くするのに有効であるが、3%を
越えると靭性が低下するので、3%以下に限定した。
Mo: Mo is effective in increasing room temperature strength, but if it exceeds 3%, toughness decreases, so it is limited to 3% or less.

N:       ・□゛ Nは0.1%を越えると気孔を発生し易くなるので0.
1%以下に限定した。
N: - If □゛N exceeds 0.1%, pores are likely to occur, so 0.
Limited to 1% or less.

上記の如き溶着金属組成を実現するためには、溶着金属
中の酸素量ヲ0.035%以下にし作業性を良好ならし
めるフラックスが必要である。次にフラックスの組成を
限定した理由を説明する。
In order to achieve the above-mentioned weld metal composition, it is necessary to use a flux that reduces the oxygen content in the weld metal to 0.035% or less and improves workability. Next, the reason for limiting the composition of the flux will be explained.

CaF2: 溶着金属中の酸素量を低減するには、フラックスの塩基
度を高くする方法とCaF2などの弗化物を大量に添加
する方法があるが、前者はステンレス鋼の溶接において
はスラグの剥離性を悪くするため好ましくない。CaF
、の効果を調査するためA40゜: Sin、 : C
a0= 2: 1 : 1のフラックスにCaF2の量
を変化させて混合し、このフラックスを使用し第3表と
同一の溶接条件で溶接し酸才量と作業性を調査した。そ
の結果を第4表に示したが、CaF2が40%以上あれ
ば酸素量を0.035%以下とすることができるが、6
0%を越すとアークの安定性を害し短絡通電をくり返す
のでCaF、量を40〜60%の範囲に限定した。
CaF2: There are two ways to reduce the amount of oxygen in the weld metal: increasing the basicity of the flux and adding large amounts of fluorides such as CaF2. It is undesirable because it makes the condition worse. CaF
, to investigate the effect of A40゜: Sin, : C
A flux of a0=2:1:1 was mixed with varying amounts of CaF2, and this flux was used for welding under the same welding conditions as in Table 3 to investigate the acid capacity and workability. The results are shown in Table 4. If CaF2 is 40% or more, the oxygen content can be reduced to 0.035% or less, but 6
If it exceeds 0%, the stability of the arc will be impaired and short-circuit energization will occur repeatedly, so the amount of CaF was limited to a range of 40 to 60%.

AA03: A403はスラグの剥離性を改善する効果を有するが、
20%未満ではその効果がなく、30%を越えるとビー
ドの表面に凹凸を生じるので、20〜30%の範囲に限
定した。
AA03: A403 has the effect of improving slag peelability, but
If it is less than 20%, there is no effect, and if it exceeds 30%, unevenness will occur on the surface of the bead, so it is limited to a range of 20 to 30%.

CaO、MgO: CaOおよびMgOなどの塩基性酸化物はいずれも5i
n2の活量を低め、Sin、 +CaF、−+SiF、
+CaOの反応による弗化物系ガスの生成を抑制する効
果を有し、そのため5%以上必要であるが、いずれも1
5%を越えるとスラグの焼付きを生じるので、5〜15
%の範囲に限定した。
CaO, MgO: Both basic oxides such as CaO and MgO have 5i
Lower the activity of n2, Sin, +CaF, -+SiF,
It has the effect of suppressing the production of fluoride gas due to the reaction of +CaO, so it is necessary to have a content of 5% or more.
If it exceeds 5%, the slag will seize, so the
% range.

Sin、 : 5in2  はビード形状特に踊端部の揃いを良好にす
る効果を有するが、5%未満ではその効果が少ないので
下限を5%とし、15%を越えると溶着金属中のSi 
 が高くなり耐高温われ性を害するので、上限5−15
%とした。
Sin: 5in2 has the effect of improving the bead shape, especially the alignment of the dance edges, but if it is less than 5%, the effect is small, so the lower limit is set at 5%, and if it exceeds 15%, Si in the weld metal
The upper limit is 5-15, as it becomes high and impairs high temperature resistance.
%.

上記ノCaF2、At、0.、CaO、MgO、S i
02  の各限定量をもって本発明のフラックスの基本
成分とするが、更に必要によりMn0% Cr30.を
下記限定量以下において含有するときは、本発明の目的
をより有効に達成できる。これらの限定理由は次の如く
である。
The above CaF2, At, 0. , CaO, MgO, Si
The basic components of the flux of the present invention are limited amounts of Mn0% Cr30. The purpose of the present invention can be achieved more effectively when the following amount is contained below. The reasons for these limitations are as follows.

MnO: MnOはビーFのぬれ性を改善する効果を有するが、5
%を越えろと溶着金属中の酸素が増大するので5%以下
に限定した。
MnO: MnO has the effect of improving the wettability of Be-F, but 5
If it exceeds 5%, oxygen in the weld metal will increase, so it was limited to 5% or less.

Cr、03: Cr2O3は電極中のCr  の酸化ロスを防止するの
に有効であるか、10%を越すとスラグの剥離が悪くな
るので10%以下に限定した。
Cr, 03: Cr2O3 is effective in preventing oxidation loss of Cr in the electrode.If it exceeds 10%, slag peeling becomes poor, so it was limited to 10% or less.

実施例I C:0゜03%、S!=0.4%、Mn : 2.5%
、P:0.020%、S二0.004%、Ni : 1
3.4%、Cr:19.2%、rlo、03%の電極と
、CaF2:45%、A−e−tos ’ 25%、C
aO: 15%、5in2:15%からなる溶や型フラ
ックスを用いて第2図に示す開先2を溶接し、その溶着
金属を調査し、化学成分およびシャルピー吸収エネルギ
ーを第5表に示した。第5表からシャルピー吸収エネル
キ第  5  表 −は10.3krf・mであり、低温靭性のすぐれてい
ることが分る。
Example I C: 0°03%, S! =0.4%, Mn: 2.5%
, P: 0.020%, S2 0.004%, Ni: 1
3.4%, Cr: 19.2%, rlo, 03% electrode and CaF2: 45%, A-e-tos' 25%, C
The groove 2 shown in Figure 2 was welded using a melting flux consisting of aO: 15% and 5in2:15%, and the deposited metal was investigated, and the chemical composition and Charpy absorbed energy are shown in Table 5. . From Table 5, it can be seen that the Charpy absorbed energy (Table 5) is 10.3 krf·m, indicating that it has excellent low temperature toughness.

実施例2 C:o、o4%、Si:0.2%、Mn : 4%、P
:0.020%、s:o、oo5%、Ni:15.0%
、Cr:19.5%、Mo:2,2%、N:0.06%
の電極と、CaF、 : 54.%、AムO,: 20
%、MgO: 10%、5in2: 8%、Cr、0.
 : 5%、MnO: 3%の溶融型フラックスを用い
実施例1と同じ条件で溶接した。溶着金属の調査結果を
前記の第5表に併わせ示したが、シャルピー吸収エネル
ギーは8.2に9f・mであt)、tぐれた低温靭性を
有している。
Example 2 C: o, o4%, Si: 0.2%, Mn: 4%, P
: 0.020%, s: o, oo5%, Ni: 15.0%
, Cr: 19.5%, Mo: 2.2%, N: 0.06%
electrode and CaF: 54. %, AM O,: 20
%, MgO: 10%, 5in2: 8%, Cr, 0.
Welding was carried out under the same conditions as in Example 1 using a melting flux containing: 5% MnO and 3% MnO. The results of the investigation of the weld metal are also shown in Table 5 above, and the Charpy absorbed energy is 8.2 to 9 f·m (t), and it has excellent low-temperature toughness.

本発明は上記実施例からも明らかな如く、溶接フラック
スおよび溶着金属の成分特に溶着金属中の酸素針とδフ
エライト量を限定することにより、低温靭性のすぐれた
溶着金属を得ることができた。
As is clear from the above examples, the present invention was able to obtain a weld metal with excellent low-temperature toughness by limiting the components of the welding flux and the weld metal, particularly the oxygen needles and the amount of δ ferrite in the weld metal.

なお本発明の溶着金属組成はサブマージアーク溶接に限
らず、MIG溶接、被覆アーク溶接についでも、広く適
用することができる。
Note that the weld metal composition of the present invention can be widely applied not only to submerged arc welding but also to MIG welding and covered arc welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶着金属の高温われ試験に用いた開先を示す斜
視図、第2図は溶着金属のシャルピー試験に用いた開先
を示す正面図である。 代理人 中 路 武 雄 第1[71
FIG. 1 is a perspective view showing the groove used in the high temperature cracking test of weld metal, and FIG. 2 is a front view showing the groove used in the Charpy test of weld metal. Agent Takeo Nakaji No. 1 [71

Claims (1)

【特許請求の範囲】[Claims] (1)重量比でCaF2:40〜60%、Atρ、:2
0〜30%、CaOもしくはMgO:5〜15%、8i
02: 5〜15%を含み、更に必要により5%以下の
MnO,10%以下のCr、0.を含むフラックスとオ
ーステナイト系ステンレス電極を用いてC:0.08%
以下、Si : 0.2〜0.7%、MrI:0.5〜
6%、p:o、o3%以下、S:o、oo6%以下、C
r : 17%以上、Mo : 3%以下、酸素:0.
035%以下、窒素=0.1%以下を含み、かつ下記(
1)式で計算されるδフエライト量か負となる溶着金属
を得ることを特徴とする極低温用オーステナイト系ステ
ンレス鋼のサブマージアーク溶接方法。 記 δフェライト−3,2(1,5Si%+Cr%)−2,
4’(30(C%+N%)+0.5Mn%+Ni%) 
−24,7・(1)
(1) Weight ratio of CaF2:40-60%, Atρ,:2
0-30%, CaO or MgO: 5-15%, 8i
02: Contains 5 to 15%, and if necessary, 5% or less MnO, 10% or less Cr, 0. Using a flux containing C: 0.08% and an austenitic stainless steel electrode
Below, Si: 0.2-0.7%, MrI: 0.5-0.5%
6%, p: o, o 3% or less, S: o, oo 6% or less, C
r: 17% or more, Mo: 3% or less, oxygen: 0.
0.035% or less, nitrogen = 0.1% or less, and the following (
1) A method for submerged arc welding of austenitic stainless steel for cryogenic use, characterized by obtaining a deposited metal having a negative amount of δ ferrite calculated by the formula. Recorded δ ferrite-3,2 (1,5Si%+Cr%)-2,
4'(30(C%+N%)+0.5Mn%+Ni%)
-24,7・(1)
JP19663881A 1981-12-07 1981-12-07 Submerged arc welding method for austenitic stainless steel for ultra-low temperature service Pending JPS5897494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19663881A JPS5897494A (en) 1981-12-07 1981-12-07 Submerged arc welding method for austenitic stainless steel for ultra-low temperature service

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19663881A JPS5897494A (en) 1981-12-07 1981-12-07 Submerged arc welding method for austenitic stainless steel for ultra-low temperature service

Publications (1)

Publication Number Publication Date
JPS5897494A true JPS5897494A (en) 1983-06-09

Family

ID=16361091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19663881A Pending JPS5897494A (en) 1981-12-07 1981-12-07 Submerged arc welding method for austenitic stainless steel for ultra-low temperature service

Country Status (1)

Country Link
JP (1) JPS5897494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554515A (en) * 2012-01-18 2012-07-11 上海金刚冶金材料有限公司 Auxiliary fused flux of high alloy pipe screw for coal milling roll build up welding and preparation method thereof
CN105215578A (en) * 2015-11-20 2016-01-06 四川大西洋焊接材料股份有限公司 The submerged arc welding flux of nickel-base alloy, welding wire and welding method
CN111716039A (en) * 2020-07-02 2020-09-29 北部湾大学 Active flux for tungsten inert gas argon arc welding and preparation method and use method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554515A (en) * 2012-01-18 2012-07-11 上海金刚冶金材料有限公司 Auxiliary fused flux of high alloy pipe screw for coal milling roll build up welding and preparation method thereof
CN105215578A (en) * 2015-11-20 2016-01-06 四川大西洋焊接材料股份有限公司 The submerged arc welding flux of nickel-base alloy, welding wire and welding method
CN111716039A (en) * 2020-07-02 2020-09-29 北部湾大学 Active flux for tungsten inert gas argon arc welding and preparation method and use method thereof

Similar Documents

Publication Publication Date Title
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
CA1157916A (en) Welding electrode
WO2020039643A1 (en) Solid wire for gas metal arc welding
KR100252413B1 (en) Low-hydrogen type covered arc welding electrode for high strength cr-mo steels
KR20230133347A (en) Submerged arc welded joints
JP6953789B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP4025170B2 (en) Stainless steel excellent in corrosion resistance, weldability and surface properties and method for producing the same
JPS5897494A (en) Submerged arc welding method for austenitic stainless steel for ultra-low temperature service
JPH02205293A (en) Stainless steel coated electrode for cryogenic service
CN110900033B (en) Gas shielded mineral powder type 314 heat-resistant stainless steel flux-cored wire
US3404249A (en) Welding of high yield strength steel
JPH11147196A (en) Shielded metal arc welding method for high tensile strength steel
WO2021090953A1 (en) Fluxed core wire and method for manufacturing weld joint
JPH03204196A (en) Wire for welding two-phase stainless steel having excellent concentrated sulfuric acid corrosion resistance
JP4438210B2 (en) Laser welding joint of steel and laser welding method
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JP7492184B1 (en) Manufacturing method of solid wire and welded joint
JP7267521B1 (en) Submerged arc welding method
JP3163838B2 (en) Bond flux for submerged arc welding
JPH03177539A (en) Electric resistance welded steel tube for machine structural use having excellent machinability
JPH0633192A (en) Highly corrosion resistant stainless steel for high purity gas
RU2790854C1 (en) Steel welded pipe and how it is manufactured
SU1169797A1 (en) Welding wire composition
JPH0122078B2 (en)
JP2002155341A (en) Corrosion resistant steel having excellent carbon dioxide gas corrosion resistance and weld zone toughness, and corrosion resistant line pipe using the steel