JPS5895596A - Treatment using activated sludge - Google Patents

Treatment using activated sludge

Info

Publication number
JPS5895596A
JPS5895596A JP56193382A JP19338281A JPS5895596A JP S5895596 A JPS5895596 A JP S5895596A JP 56193382 A JP56193382 A JP 56193382A JP 19338281 A JP19338281 A JP 19338281A JP S5895596 A JPS5895596 A JP S5895596A
Authority
JP
Japan
Prior art keywords
sludge
added
treated
tank
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56193382A
Other languages
Japanese (ja)
Inventor
Akira Nishigawara
西川原 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56193382A priority Critical patent/JPS5895596A/en
Publication of JPS5895596A publication Critical patent/JPS5895596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To improve the settling characteristic of sludge and the quality of treated water by adding polymer flocculating agents or further univalent metallic salts to the sludge mixture treated in an aerating tank continously for a long period of time. CONSTITUTION:In subjecting sewage such as waste water, sewage, night soil, etc. to an activated sludge treatment, cationic polymer flocculating agents are added to the sludge mixture treated in the aerating tank which is the sludge mixture from the outlet of the aerating tank up to a solid-liquid separating tank and is nearly completed of microbial treatments of about >=75% substrate removing rate. Polycondensates of, for example, ammonia and/or alkylene diamine and epihalohydrin, etc. of about 600-70,000mol.wt. are suitable as the above- mentioned polymer flocculating agents, and the amts. of said agents to be added are preferably about 0.1-100ppm in the sludge mixture treated in the aerating tank, about <=30% substrate load quantity (kg/day) and about <=0.05kg/kg. day sludge load. When the activity in removing the substrates decreases, the decrease is prevented by adding univalent metallic salts at about 1-500 times the amt. of the polymer flocculating agents and at about 3-4,500ppm to the sludge mixture treated in the aerating tank.

Description

【発明の詳細な説明】 本発明は活性汚泥処理法における処理水質の向−トと汚
泥の沈降性をあげることに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the quality of treated water and the settling ability of sludge in an activated sludge treatment method.

従来、活性汚泥法は、廃水・下水・し尿を処理する場合
に利用されているが、活性汚泥の沈降性が恋いため、処
理水中に汚泥の一部が流出し、処理水質が悪化する欠点
がある。
Conventionally, the activated sludge method has been used to treat wastewater, sewage, and human waste, but because activated sludge has poor sedimentation properties, some of the sludge flows out into the treated water, resulting in a deterioration of the quality of the treated water. be.

活性汚泥の沈降性は無機凝集剤、高分子凝集剤を添加す
れば向上することは衆知である。高分子凝集剤を添加す
ることにより、もし基質除去活性を低下さすことなしに
沈降性を向上させることが出来れば、曝気槽汚泥濃度を
高く維持出来る。汚泥・   (り 凝度が高くなると汚泥負荷が低下するから、ik時間曝
気が可能となり、残留する難分解性物情が減少し、処理
水質が向上する。。また汚泥負性が低いことから汚泥発
生量が減少することになる。1か\る効果は、安定した
処理水質を得ることを目的とする活性汚泥においては、
長年月継続的に使用することKよシ発揮することが出来
る。
It is well known that the settling properties of activated sludge can be improved by adding an inorganic flocculant or a polymer flocculant. By adding a polymer flocculant, if the sedimentation ability can be improved without reducing the substrate removal activity, the aeration tank sludge concentration can be maintained at a high level. Sludge (As the coagulation rate increases, the sludge load decreases, making it possible to aerate for ik hours, reducing the amount of residual hard-to-decompose substances, and improving the quality of the treated water. Also, since the sludge has low sludge negativity, the sludge load decreases. This will reduce the amount generated.One effect is that in activated sludge, which aims to obtain stable treated water quality,
It can be used continuously for many years to achieve excellent results.

活性汚泥に1時的に一機凝集剤、高分子凝集剤を添加し
て処理水質の向上、汚泥の沈降性を向上させる方法が数
多く提案されているが、いずれの方法も長期間継続添加
すると基質除去活性の低下、沈降性能の低下をもたらす
〜ものである。
Many methods have been proposed to improve treated water quality and sludge sedimentation by temporarily adding flocculants or polymer flocculants to activated sludge, but none of these methods require continuous addition over a long period of time. This results in a decrease in substrate removal activity and sedimentation performance.

下水、廃水を処理することを目的とする活性汚泥法にお
いては長年月継続的に使用出来る手法でなければ採用出
来ない。したがって今日迄提案された凝集法は実装置に
おいて利用されていない。
The activated sludge method, which aims to treat sewage and wastewater, cannot be adopted unless it can be used continuously for many years. Therefore, to date, the proposed agglomeration methods have not been utilized in actual equipment.

する。その低下率は無添加の基質除去率のlθ〜(り 40−である。さらに継続添加すると処理水中に細かい
汚泥フロックが混入し、透視度が悪化し、浮遊汚泥を涙
過して除いた液の水質すら無添加のときの5〜15−悪
化している。1時的に多価金属塩を一気槽に添加すると
処理水の改善、沈降性が向上する。1lfi榴への添加
により、沈澱榴における凝集効果をあげるためには10
 ppm以上継続添加することが必要であるから、当然
処理水質が悪化することになる。
do. The rate of decrease is lθ~(ri40−) of the substrate removal rate without additives. If the addition is continued, fine sludge flocs will be mixed into the treated water, the visibility will deteriorate, and the suspended sludge will be removed by filtration. Even the water quality of the water is 5 to 15 times worse than when no additives are added. Temporarily adding polyvalent metal salts to the tank improves the treated water and improves the sedimentation properties. 10 to increase the cohesive effect in shellfish
Since it is necessary to continuously add more than ppm, the quality of the treated water naturally deteriorates.

111ii鎖度活性汚泥(7000ppm以上)の一気
槽に高分子凝集剤を添加して沈降性をあけるには30 
ppm以上を必要とする。この添加量で長期間継続する
と拘泥Ki1mL、一部の汚泥がフロックを形成し九ま
\浮上し、浮遊粒子が流出し、処理水質が悪化する。
111ii Chain degree activated sludge (7000 ppm or more) To improve sedimentation by adding a polymer flocculant to a tank at once
ppm or more is required. If this addition amount is continued for a long period of time, some sludge will form flocs and float to the surface, floating particles will flow out and the quality of the treated water will deteriorate.

本発明の^分子凝集剤は微生物への蓄積が少く、基質除
去活性の低下が少く、−気槽処理混合汚泥への凝集性能
の高いことが要求される。高分子凝集剤を一気槽に添加
するときは、一気槽による撹乱流により凝集剤添加で形
成され九フロックが細分化する。これを防ぐためには、
強力な凝集力と、かつ曝気槽滞留中に微生物分解されな
いことを必要とする。
The molecular flocculant of the present invention is required to have low accumulation in microorganisms, low decrease in substrate removal activity, and high flocculation performance for mixed sludge treated in an air tank. When a polymer flocculant is added to the tank at once, nine flocs are formed by the addition of the flocculant due to the turbulent flow caused by the tank and are divided into nine flocs. To prevent this,
It requires strong cohesive force and no microbial decomposition during retention in the aeration tank.

一般に凝集力は高分子凝集剤の分子量が大きいほど強力
であるから、従来曝気槽への高分子凝集剤の添加にあた
っては凝集力のみに着目し、1011〜107の分子量
をもつカチオン性高分子凝集剤30〜500ppmが用
いられて来た。か\る分子量の大きい高分子凝集剤は微
生物分解が困難なために、汚泥に蓄積することになり、
処理水質が悪化して来た。
In general, the larger the molecular weight of a polymer flocculant, the stronger the cohesive force, so conventionally when adding a polymer flocculant to an aeration tank, we focused only on the cohesive force. 30-500 ppm of the agent has been used. Such polymer flocculants with large molecular weights are difficult to decompose by microorganisms, so they accumulate in sludge.
The quality of treated water has deteriorated.

長時間継続添加すると返送汚泥の表面K11lされた残
留高分子凝集剤と新たに添加した高分子凝集剤とが電気
的同符合のためか、凝集力が低下し、フロックを形成せ
ず流出することになる。フロックを被接し九高分子凝集
剤が栄養剤、酸素の微生物への取込みを困難にするため
か、基質除去活性が低下し、遂KFi汚泥の一部が浮上
することに表る。
If the addition continues for a long time, the residual polymer flocculant on the surface of the returned sludge and the newly added polymer flocculant will have the same electrical characteristics, so the cohesive force will decrease and the flocs will flow out without forming flocs. become. Perhaps because the nine-polymer flocculant in contact with the flocs makes it difficult for the microorganisms to take in nutrients and oxygen, the substrate removal activity decreases, which is reflected in a portion of the KFi sludge rising to the surface.

微生物分解が可能な分子量が90,000pp−以下の
高分子凝集剤を曝気槽に添加して本、曝気槽における撹
乱流と微生物による分解とKよシ、沈澱櫓においてフロ
ックを形成することは困難であった。
Adding a polymer flocculant with a molecular weight of 90,000 pp or less that can be decomposed by microorganisms to the aeration tank prevents the turbulent flow and decomposition by microorganisms in the aeration tank, making it difficult to form flocs in the settling tower. Met.

したがって今日まで生物処理装置に高分子凝集剤が長期
間継続使用されることがなかりた。活性汚以下でなけれ
ば、生物分解は不可能である。強力な凝集力を備え、微
生物分解を可能とする2つの条件を同時に満足出来る高
分子凝集剤は存在しな600の高分子凝集剤を曝気槽処
理混合汚泥に添加して、凝集した汚泥フロック、を沈澱
させ、沈積汚泥は曝気槽に返送して汚泥に付着し九高分
子凝集剤を生物分解することにより、2つの条件を満足
することが出来ることを見出した。
Therefore, until now, polymer flocculants have not been used continuously for long periods in biological treatment equipment. Biodegradation is impossible unless it is below activated soil. There is no polymer flocculant that can simultaneously satisfy the two conditions of having a strong cohesive force and enabling microbial decomposition.By adding 600 polymer flocculant to the mixed sludge treated in the aeration tank, flocculated sludge flocs, It has been found that two conditions can be satisfied by precipitating the sludge, returning the deposited sludge to the aeration tank, and biodegrading the nine-polymer flocculant that adheres to the sludge.

一つの廃水処理施設において、曝気槽処理混合汚泥は基
質除去が#1ソ完了しているから微生−表面の官能基数
・種類がはy一定している。したがって高分子凝集剤の
種類は同質の廃水を処理するかぎり同じものを継続使用
出来る。曝気槽出口に添加し友高分子凝集剤社沈澱権セ
ンターウェルまでの間で汚泥と混合し、沈澱檜では水流
は静止状態に近く、形成したフロック祉細分化されない
から強力な凝集力を必要とせず、また凝集剤の添加量も
少くてよい。活性汚泥は一般に負に帯電しているから添
加する高分子凝集剤はフロックを形成し島いカチオン性
であること、分子1tt1600〜2o、oo。
In one wastewater treatment facility, the number and types of functional groups on the surface of microorganisms are constant in the mixed sludge treated in the aeration tank because the substrate removal has been completed #1. Therefore, the same type of polymer flocculant can be used continuously as long as wastewater of the same quality is treated. It is added to the outlet of the aeration tank and mixed with the sludge up to the center well of the Tomopolymer Flocculant Co., Ltd. In the case of settling hinoki, the water flow is close to a static state and the formed flocs are not fragmented, so a strong cohesive force is required. Furthermore, the amount of flocculant added may also be small. Activated sludge is generally negatively charged, so the polymer flocculant added should form flocs and be cationic, with molecules 1tt1600 to 2o, oo.

がよく、好ましくは1,000〜g、’oooがよい。is good, preferably 1,000-g,'ooo.

分子量600以下でれ凝集力がより< 、io、ooo
以上以上先微生物分解来ない。分子量600〜io、o
ooの^分子凝集剤れ難分解性愉質であるが、長時間曝
気を採用することによって、残留する高分子凝集剤を殆
んど零にすることが出来る。その時の添加量は、曝気槽
処理混合汚泥に対し0.1〜1001pw*であること
、ま九添加量社基質負荷量(lcf/日)の30−以下
であること、を九高−分子凝集剤の汚泥負術が0.05
 KVk4.B  以下であることが望ましい。これ以
上の添加量社汚泥の平均滞留時間を嬌長することが必要
となり、経済的にも不利になる。
The molecular weight is less than 600 and the cohesive force is <, io, ooo
No further microbial decomposition occurs. Molecular weight 600~io, o
Although the molecular flocculant in OO is difficult to decompose, by employing long-term aeration, the remaining polymer flocculant can be reduced to almost zero. At that time, the amount added should be 0.1 to 1001 pw* to the mixed sludge treated in the aeration tank, and the amount added should be 30 or less of the substrate load (lcf/day). Agent's sludge negative technique is 0.05
KVk4. It is desirable that it is below B. If the amount added is greater than this, it becomes necessary to lengthen the average residence time of the sludge, which is also economically disadvantageous.

カチオン性凝集剤の種類として次の4のがあげられる。The following four types of cationic flocculants are listed.

テンモニアおよび/またはアルキレンジアミンとエピハ
ロヒドリンとの重縮合物(以後A−Eと呼称す)特公昭
38−.26794特公昭41−179650アルキレ
ンポリアミンとアルキレンジクロライドとの重縮合物(
以t A−A−Cと呼称す)U、S、P 2,467.
523゜ビニルイミタゾリン重合物(以後V・■と呼称
す)特公昭42−6271ジアリルアミン環化重合物(
以後D−A−Aと呼称す)特公昭46−443゜ビニル
ラクタム−アクリルアミド共重合物、 (以後V−L−
Aと呼称す)特開昭46−3902 oジアルキルアミ
ノエチルアルキレートの重合物(以後A−A−Eと呼称
す)U、S、P 3099636 、  アスパラギン
酸とへキサメチレンジアミンとの重縮合物(以後A・H
と呼称す)〔アスパラギン酸とへキサメチレンを等モル
N2中で135℃で1時間加熱した。〕0ポリアクリル
アミドのカチオン化変性した重合物(以後P−A−Aと
呼称す)牟喰私゛乙奴薯重金物のう重合物1”あ3゜−
に記カチオン性高分子凝集剤の製法は各重合物名平均分
子量の測定は、ゲル、パーミエータ1ンクロマトグラフ
イー(G、P、C)法にょシ分布を求め末端基を定量分
析して算出し九。
Polycondensate of tenmonia and/or alkylene diamine and epihalohydrin (hereinafter referred to as A-E) Japanese Patent Publication No. 1973-. 26794 Japanese Patent Publication No. 41-179650 Polycondensate of alkylene polyamine and alkylene dichloride (
(hereinafter referred to as A-A-C) U, S, P 2,467.
523° Vinylimitazoline polymer (hereinafter referred to as V・■) Japanese Patent Publication No. 42-6271 Diallylamine cyclized polymer (
(hereinafter referred to as D-A-A) Japanese Patent Publication No. 46-443゜ Vinyl lactam-acrylamide copolymer, (hereinafter referred to as V-L-
Polymer of dialkylaminoethyl alkylate (hereinafter referred to as A-AE) U, S, P 3099636, Polycondensate of aspartic acid and hexamethylene diamine (Hereafter A.H.
) [Aspartic acid and hexamethylene were heated at 135° C. for 1 hour in equimolar N2. 〕Cation-modified polymer of 0 polyacrylamide (hereinafter referred to as P-A-A) Polymer of heavy metal 1''A3゜-
The manufacturing method of the cationic polymer flocculant is as follows: The average molecular weight of each polymer is measured using gel and permeator chromatography (G, P, C) methods. Nine.

本発明の高分子凝集剤を添加する曝気槽処理混合汚泥と
L1曝気権出口から固液分離槽までの間の混合汚泥であ
って、基質除去率が75−以上の微生物処理がはソ完了
した混合汚泥をさす。標準的同液分離方式の活性汚泥法
においては、−気槽出口から沈澱槽セ/ターウェルまで
の混合汚泥をさす。しかも基質除去率が75−以上、望
ましくは85%以上であればよい。
Microbial treatment of the aeration tank treated mixed sludge to which the polymer flocculant of the present invention is added and the mixed sludge between the L1 aeration right outlet and the solid-liquid separation tank with a substrate removal rate of 75- or higher has been completed. Mixed sludge. In the standard activated sludge method using the same liquid separation method, it refers to the mixed sludge from the outlet of the air tank to the sedimentation tank set/terwell. Moreover, the substrate removal rate may be at least 75%, preferably at least 85%.

基質除去率の悪い活性汚泥にあっては、曝気槽出口から
沈澱槽センターウェルまでの間の混合汚泥に高分子凝集
剤を100 ppm以上添加しても凝集効果を発揮しな
いことがあシ、基質を除去し終っていない曝気槽内の混
合汚泥に高分子凝集剤を1100pp以上添加しても凝
集効果を発揮しないことがある。
For activated sludge with poor substrate removal rate, even if 100 ppm or more of a polymer flocculant is added to the mixed sludge between the aeration tank outlet and the settling tank center well, the flocculation effect may not be achieved. Even if 1,100 pp or more of a polymer flocculant is added to mixed sludge in an aeration tank that has not yet been completely removed, the flocculation effect may not be exhibited.

カチオン性高分子凝集剤を添加する曝気槽内の基質除去
率68 % 、 MLSS 、 8,500 ppmの
混合液に高分子凝集剤A、E(平均分子量5,300)
を2.5ppm添加したときの5V30は無添加の93
に対し、91に下がるに過ぎない。同じ処理施設の沈澱
槽のセンターウェル内の基質除去率88%−MLSS 
8.500 ppm O曝気槽処理混合汚泥にA、E、
2.5ppm添加したときの5V30は無添加の92に
対し、58に低下する。上記基質除去率68チの混合汚
泥にA、E250ppmを添加してはじめて5V3oは
93が56に低下した。
Polymer flocculants A and E (average molecular weight 5,300) were added to a mixed solution with a substrate removal rate of 68%, MLSS, and 8,500 ppm in the aeration tank where cationic polymer flocculants were added.
5V30 when 2.5ppm of is added is 93 without additives.
However, it only dropped to 91. Substrate removal rate in the center well of the sedimentation tank in the same treatment facility: 88% - MLSS
8.500 ppm O A, E,
When 2.5 ppm was added, 5V30 decreased to 58 compared to 92 without addition. 5V3o decreased from 93 to 56 only after 250 ppm of A and E were added to the mixed sludge with a substrate removal rate of 68 cm.

下水を汚泥負荷85←BOD540日で処理しているセ
ンターウェル内の基質除去率70% MLSS 7.8
001%の混合液に高分子凝集剤A、E(平均分子量s
、aoo)を2.5PI−添加したときの5v3oは無
添加の94に対し、91に下がるが、汚泥負荷を1.5
 We−BODs/4. aに下げて処理することによ
シ基質除去率82チを得九。このときセンターウェル内
の曝気槽処理混合汚泥MLStS8.200凡にA、E
、2.5迅添加したときのSV(至)は無添加の95に
対し、65に下がることを知った。
Substrate removal rate in the center well where sewage is treated with a sludge load of 85 ← BOD of 540 days MLSS 7.8
Polymer flocculants A and E (average molecular weight s
, aoo) when 2.5PI- was added, 5v3o decreased to 91 from 94 without addition, but the sludge load was reduced to 1.5
We-BODs/4. A substrate removal rate of 82 was obtained by processing at a lower temperature. At this time, the aeration tank treated mixed sludge MLStS8.200 in the center well is A, E.
, I learned that when 2.5 times the amount is added, the SV (to) drops to 65, compared to 95 when no additive is added.

このように基質除去率が75チ以上の曝気槽処理混合汚
泥にカチオン性高分子凝集剤を添加するときは僅かの添
加量でよく、同じ沈降性能を得るのに曝気槽内汚泥への
添加量のイ00でよいこともある。
In this way, when adding a cationic polymer flocculant to mixed sludge treated in an aeration tank with a substrate removal rate of 75 cm or more, only a small amount is needed; Sometimes I00 is fine.

添加量が少くてすむことが曝気槽に返送されたとき生物
分解が可能な高分子#集剤にあっては微生物分解され、
新たに高分子凝集剤を添加するまでには曝気槽処理混合
汚泥に残留する尚分子凝集剤はなくなるから、残留高分
子凝集剤のために新たに添加した高分子凝集剤の凝集効
果が低下することがなく、基質除去活性が低下すること
もない。
The fact that a small amount of additive is required is that when the biodegradable polymer #aggregate is sent back to the aeration tank, it is decomposed by microorganisms.
By the time a new polymer flocculant is added, there will be no remaining molecular flocculant in the mixed sludge treated in the aeration tank, so the flocculation effect of the newly added polymer flocculant will decrease due to the residual polymer flocculant. There is no decrease in substrate removal activity.

本発明の高分子凝集剤を継続使用すると沈澱槽から汚泥
濃度が高くても流出しないために、返送汚泥1m&が高
くなり、曝気槽の汚泥濃度が簡単にio、ooos以上
に維持出来る。したがって汚泥負荷を0.06 Kg−
BODシ鈷日以下で運転すれは、傘剰汚泥の発生が殆ん
ど力くなるから、汚泥の引抜*!は工費となる。
If the polymer flocculant of the present invention is continuously used, it will not flow out from the settling tank even if the sludge concentration is high, so the return sludge 1 m& will increase, and the sludge concentration in the aeration tank can be easily maintained above io, oos. Therefore, the sludge load is reduced to 0.06 Kg-
If you operate the BOD at less than the first day of operation, the generation of excess sludge will be almost impossible, so sludge must be extracted*! is the construction cost.

本発明のカチオン性高分子凝集剤の中には長期間にわた
り継続添加すると、極微量残留する凝集剤のために基質
除去活性が2〜6ケ月間で低下することかある。か\る
場合、1価金属塩の添加量を高分子凝集剤の1〜500
倍量または曝気槽処理混合汚泥液に対し、3〜4,50
0P&添加すれば6ケ月以上の長期間基質除去活性の低
下を防ぐことが出来るが、望ましくは3〜1,500P
l’に添加すればよい。
If some of the cationic polymer flocculants of the present invention are continuously added over a long period of time, the substrate removal activity may decrease over a period of 2 to 6 months due to the extremely small amount of flocculant remaining. If so, the amount of monovalent metal salt added should be 1 to 500
3 to 4,50 per double volume or aeration tank treated mixed sludge liquid
If 0P& is added, it is possible to prevent a decline in substrate removal activity for a long period of 6 months or more, but preferably 3 to 1,500P.
It can be added to l'.

4.500市以上の添加は1時的に基質除去活性が低下
し、3)以下では凝集効果がない。1価金属塩とは1価
金属塩よりなる液、海水、人工海水、岩塩溶解液のこと
<11[i金属塩を主成分とし1.Ca廿、My廿の金
属塩濃度が1価金属塩濃度のス以下の液または、1価金
属塩にFe廿、 Fe +l+ 、 At+l’lを含
む金鵜塩治液〔但し、Fe廿、 Fe +l+ 、 A
t惜の金属塩濃度の総和が曝気槽処理混合汚泥に対し、
2)を越えない範囲で添加しうる溶液〕であること、1
価金属塩中のFe廿、 F−”l+、 At+t+の金
属塩濃度の総和が曝気槽汚泥に対し、2U%以上継続添
加され\ば、混合液中の燐と反応するためか20日間経
過し友時点で基質除去活性が低下し、処理水質が悪化す
るが、2爪以下であれば6ケ月間経ても水質悪化が認め
られなかった。
Addition of 4.500 or more will temporarily reduce substrate removal activity, and addition of 3) or less will have no aggregation effect. Monovalent metal salt refers to a liquid consisting of a monovalent metal salt, seawater, artificial seawater, rock salt solution. A liquid in which the concentration of Ca and My metal salts is less than the monovalent metal salt concentration, or a solution containing Fe, Fe+l+, and At+l'l in the monovalent metal salts [However, Fe+l+, At+l'l] +l+, A
The total concentration of metal salts in the aeration tank treated mixed sludge is
2) be a solution that can be added within a range not exceeding 1)
If the sum of the metal salt concentrations of Fe, F-"l+, and At+t+ in the valent metal salts is continuously added to the aeration tank sludge at 2U% or more, it will increase after 20 days, probably because it reacts with the phosphorus in the mixed solution. At the point where the substrate removal activity decreases, the quality of the treated water deteriorates, but no deterioration of the water quality was observed even after 6 months if the number of nails was less than 2.

本発明の方法は産業廃水、下水、し尿処理などの汚水を
処理する場合に適し、活性汚泥の沈降性を簡単に向上出
来るため、曝気槽のMLSSを容易に10,0001P
&以上に維持出来るから汚泥負荷が下がることになり、
透視度および、処理水質が向上し、余剰汚泥は殆んど発
生しなくなり、負1r変動への対応力が増し、維持管理
が容易となる。
The method of the present invention is suitable for treating wastewater such as industrial wastewater, sewage, and human waste treatment, and can easily improve the sedimentation properties of activated sludge, so it can easily increase the MLSS of the aeration tank to 10,0001P.
Since the sludge load can be maintained above &, the sludge load will be reduced.
Transparency and treated water quality are improved, almost no surplus sludge is generated, the ability to respond to negative 1r fluctuations is increased, and maintenance management becomes easier.

本発明を実施例について述べる。The present invention will be described with reference to examples.

実施例−1 MLSS 9,000〜9.5001%、汚泥負荷「0
6〜007It −BOD5A、日の条件で食堂廃水(
COD50〜65−0BOD105〜130 PFk 
’)−を処理している曝気槽処理混合汚泥に平均分子蓋
1,600〜7,300 の次の高分子凝集剤A、E、
A−A・C,V4 、 A−H,D−A−A 、 P−
A−AV・L−A 、 A−A−Eをそれぞれ2.5市
添加したものと、これK NacL 100 PRlを
添加したものについて、7ケ月継続使用したときの5V
3)と処理水質の経口変化を求め表−1に示した。
Example-1 MLSS 9,000-9.5001%, sludge load "0"
6~007It-BOD5A, canteen wastewater (
COD50~65-0BOD105~130 PFk
') - The following polymer flocculants A, E, with an average molecular weight of 1,600 to 7,300, are added to the aeration tank treated mixed sludge.
A-A・C, V4, A-H, D-A-A, P-
5V after continuous use for 7 months for the one with 2.5 liters of each of A-AV・L-A and A-A-E added and the one with K NacL 100 PRl added.
3) and oral changes in treated water quality are determined and shown in Table-1.

処理条件はD−03〜4PRa、曝気槽滞留時間85時
間、返送率70−の条件で処理した。凝集剤無添加の系
の沈殿槽の滞留時間は10時間とし、凝集剤添加した系
は4時間とした。高分子凝集剤の添加位置は曝気摺出口
から沈殿槽への供給管の中央部とし、5V30はセンタ
ーウェル内の混合汚泥を採取して求めた。処理水質は沈
殿槽放流口で採取した。
The processing conditions were D-03 to 4PRa, residence time in the aeration tank 85 hours, and return rate 70-. The residence time in the sedimentation tank for the system without flocculant was 10 hours, and the residence time for the system with flocculant added was 4 hours. The polymer flocculant was added at the center of the supply pipe from the aeration slide outlet to the settling tank, and 5V30 was determined by sampling the mixed sludge in the center well. The treated water quality was collected at the settling tank outlet.

&−1 表より明らかなようKNaclを添加しない高分子凝集
剤を添加した活性汚泥の処理水質#i2ケ月経過して悪
化するものがあるが、これらの高分子凝集剤もNacl
を高分子凝集剤の20倍添加すると処理水質、 5Vs
o u 7ケ月経過しても良好である。
&-1 As is clear from the table, the quality of treated water of activated sludge added with polymer flocculants without KNaCl deteriorates in some cases after 2 months, but these polymer flocculants also
When adding 20 times more than the polymer flocculant, the treated water quality improved to 5Vs.
o u The condition is good even after 7 months.

実施例−2 下水(COD50〜601%、 BOD590〜120
市)をMLSS8.500P)k汚泥負荷0.04 =
0.045 b −BOD5A4.日の条件で処理して
いる活性汚泥法において、曝気槽処理混合汚泥と中央室
汚泥とKAE(平均分子1t6400,200F//の
液のBOD517X104慝)2.51%、10迅添加
したものと、これに海水(塩濃度)50)海水501%
 +Nac1200PPmを添加したときの2ケ月後の
処理水質、s V2Oについて対照と比較し、表−2に
示した。曝気槽は槽容積を開口部を有する仕切板で5分
割され、曝気槽入口から数えて3室目を曝気槽中央室と
呼び、本蔓内の混合汚泥を中央室汚泥と呼ぶ。Ill気
団出口汚泥、曝気槽入口から数えて5室目の出口から沈
澱槽への供給管内の曝気槽処理混合汚泥をさす。高分子
凝集剤とNaelの混合液t&加する汚泥は中央室汚泥
と、曝気槽出口の曝気槽処理混合汚泥である。処理水は
沈澱検出口放流水を採取した。5vB(、Viセンター
クエル内の混合汚泥を採取して求めた。処理条件#′i
D、0.3〜4)、曝気槽滞留時間4時間、返送率70
%の条件で処理した。SVgQの悪い凝集剤無添加の系
の沈澱槽の滞留時間HIO時間とし、凝集剤を添加した
系は4時間として曝気槽のMLSSを同じ8,500p
lとした。2ケ月間は余―]汚泥を引抜かなかった。
Example-2 Sewage (COD50-601%, BOD590-120
city) MLSS8.500P) k sludge load 0.04 =
0.045 b-BOD5A4. In the activated sludge method, which is treated under the same conditions, the mixed sludge treated in the aeration tank, the central chamber sludge and KAE (BOD 517 x 104 yen of the liquid with an average molecular weight of 1t6400, 200F//) 2.51% and 10% added, Add to this seawater (salt concentration) 50) seawater 501%
The treated water quality and sV2O after 2 months when +Nac1200PPm was added were compared with the control and shown in Table 2. The tank volume of the aeration tank is divided into five by partition plates having openings, and the third chamber counting from the aeration tank entrance is called the aeration tank central chamber, and the mixed sludge inside the main vine is called the central chamber sludge. Ill air mass outlet sludge refers to the aeration tank treated mixed sludge in the supply pipe from the exit of the fifth chamber counting from the aeration tank inlet to the settling tank. The mixed solution of polymer coagulant and Nael & the sludge to be added are the central chamber sludge and the aeration tank treated mixed sludge at the aeration tank outlet. The treated water was collected from the sediment detection port. 5vB (, determined by collecting mixed sludge in the Vi center quel. Treatment conditions #'i
D, 0.3-4), aeration tank residence time 4 hours, return rate 70
% conditions. The residence time in the settling tank for the system without a coagulant with poor SVgQ is set to HIO hours, and the system with a coagulant added is set to 4 hours, and the MLSS of the aeration tank is set to the same 8,500p.
It was set as l. The sludge was not pulled out for two months.

表−2 表より明らかなようK、無添加のBOD5の除去率90
%以上の曝気槽出口の曝気槽処理混合汚泥にA−Eを添
加したものとA−E K海水、海水とNacl(sOF
% + 2001%)の混合液を添加したものさは、処
理水、5Vloとも良結果を得るが、中央室汚泥Kk集
剤を添加しても、凝集効果が少い。したがって曝気槽へ
の添加は効果がないことがわかる。
Table-2 As is clear from the table, the removal rate of BOD5 without K and additives is 90
% or more of the aeration tank treated mixed sludge at the aeration tank outlet, A-E K seawater, seawater and NaCl (sOF
% + 2001%) gives good results for both treated water and 5Vlo, but even when the central chamber sludge Kk collector is added, the flocculation effect is small. Therefore, it can be seen that addition to the aeration tank has no effect.

実施例−3 実施例−2と同じ装置、同じ下水をMLSS 8300
)汚泥負性0.0−4〜0.045 Kf−BODsA
、日テ処理し、曝気槽出口汚泥(−曝気槽処理混合汚泥
)にD−A−A(平均分子it 5,200 ) 5P
RI(!l:Nacl 100 F% 、 21%をそ
れぞれに添加して7ケ月間処理したときの最後の3日間
の処理水、5V39を表−3に示した。処理水tit沈
澱槽出口放流水を採取し、5V80 Fiセンタークヱ
ル内の混合汚泥を採取して求めた。
Example-3 Same equipment and same sewage as Example-2 using MLSS 8300
) Sludge negativity 0.0-4~0.045 Kf-BODsA
, Nitte treated, aeration tank outlet sludge (-aeration tank treated mixed sludge) D-A-A (average molecular it 5,200) 5P
Table 3 shows the treated water, 5V39, for the last 3 days when RI (!l: NaCl 100 F%, 21% was added to each and treated for 7 months). Treated water tit settling tank outlet effluent water The mixed sludge in the 5V80 Fi center quarry was collected and determined.

処理条件#″i実施例−2と同じである。Processing conditions #″i Same as Example-2.

以下余白 表−3 表より明らかなように、 Nacl濃度を2PP&添加
した方fi7ケ月後に基質除素活性が低下することが認
められる。
Margin Table 3 below: As is clear from the table, it is recognized that the substrate elimination activity decreases after 7 months when the NaCl concentration is increased by 2PP&.

一方Nac/100)%の方は処理水質、5vBoが対
照より優れており、基質活性が低下し7ないことがわか
る実施例−4 下水(COD 50−601%、BOD590−130
1% ’)を1)、05−0.055 Kt−BOI)
鴨日、MLSS 9.7001%で処理している。
On the other hand, the treated water quality and 5vBo of Nac/100)% are better than the control, and the substrate activity is not decreased.Example 4 Sewage (COD 50-601%, BOD590-130)
1%') to 1), 05-0.055 Kt-BOI)
Kamohi, processed with MLSS 9.7001%.

AAC(平均分子蓋5.800 ) 50 、10Pf
fiを曝気槽処理混合汚泥に40日添加したときの経日
変化を表−4に示す。処理水は沈澱検出口放流水を採収
し、5vB6はセンターフェル内の混合汚泥を採収して
求めた。
AAC (average molecular cap 5.800) 50, 10Pf
Table 4 shows the changes over time when fi was added to the mixed sludge treated in the aeration tank for 40 days. The treated water was obtained by collecting the water discharged from the sediment detection port, and 5vB6 was obtained by collecting the mixed sludge in the center fel.

処理条件#i実施例−2と同じである。全汚泥負荷ii
l、0.107ψ〜日の系は、汚泥を引抜きMLSSを
9,700市に維持したがその他の系は汚泥を引抜かな
かった。
Processing conditions #i Same as Example-2. Total sludge load ii
1, 0.107 ψ ~ day system pulled out sludge and maintained MLSS at 9,700 cities, but other systems did not draw out sludge.

′に−4 秦l 全汚泥負性=〜−BOD5A0日十−一高分与へ
0日※2  BOD5・・・・・・・・・)表より明ら
かなように、A−A−C501%添加処理水は40日経
過した時点で無添加より基質除去活性が低下し、5Vs
oも悪くなりつ\ある。このSV3゜と基質除去活性の
低下は基質汚泥負荷0.05〜0.055匂°BOD5
./i、引に対し、高分子凝集剤の汚泥負荷が、0.0
5 K4−BOD11//に、、日以上となり、A・A
・Cが微鴛ずつ汚泥に蓄積していったためであろう。
' to -4 Qin l Total sludge negativity = ~ -BOD5A 0 days 10-1 High distribution to 0 days *2 BOD5......) As is clear from the table, A-A-C501% After 40 days had passed, the substrate removal activity of the water treated with additives was lower than that without additives, and 5Vs
o is also getting worse. This decrease in SV3° and substrate removal activity is due to the substrate sludge load of 0.05 to 0.055°BOD5.
.. /i, the sludge load of the polymer flocculant is 0.0
5 K4-BOD11// more than 1 day ago, A・A
・This is probably because C accumulated in the sludge one by one.

出願人  西用原  昭Applicant: Akira Nishiyohara

Claims (1)

【特許請求の範囲】[Claims] 廃水・下水・し尿を活性汚泥処理するにあたり、曝気槽
処理混合汚泥に高分子凝集剤または高分子凝集剤と1価
金属塩とを長期間継続添加することを特徴とする活性汚
泥処理方法
An activated sludge treatment method characterized by continuously adding a polymer flocculant or a polymer flocculant and a monovalent metal salt to the mixed sludge treated in an aeration tank for a long period of time when treating wastewater, sewage, and human waste with activated sludge.
JP56193382A 1981-12-01 1981-12-01 Treatment using activated sludge Pending JPS5895596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56193382A JPS5895596A (en) 1981-12-01 1981-12-01 Treatment using activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56193382A JPS5895596A (en) 1981-12-01 1981-12-01 Treatment using activated sludge

Publications (1)

Publication Number Publication Date
JPS5895596A true JPS5895596A (en) 1983-06-07

Family

ID=16306991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56193382A Pending JPS5895596A (en) 1981-12-01 1981-12-01 Treatment using activated sludge

Country Status (1)

Country Link
JP (1) JPS5895596A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263700A (en) * 1985-05-17 1986-11-21 Ebara Res Co Ltd Joint treatment of organic sludge and night soil
US4729831A (en) * 1985-03-06 1988-03-08 Mitsubishi Monsanto Chemical Company Method for preventing the bulking of activated sludge
US4732684A (en) * 1985-12-27 1988-03-22 Mitsubishi Monsanto Chemical Company Method for preventing the bulking of activated sludge
USRE34127E (en) * 1985-12-27 1992-11-17 Mitsubishi Kasei Polytec Company Method for preventing the bulking of activated sludge
USRE34343E (en) * 1985-03-06 1993-08-17 Mitsubishi Kasei Polytec Company Method for preventing the bulking of activated sludge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729831A (en) * 1985-03-06 1988-03-08 Mitsubishi Monsanto Chemical Company Method for preventing the bulking of activated sludge
USRE34343E (en) * 1985-03-06 1993-08-17 Mitsubishi Kasei Polytec Company Method for preventing the bulking of activated sludge
JPS61263700A (en) * 1985-05-17 1986-11-21 Ebara Res Co Ltd Joint treatment of organic sludge and night soil
US4732684A (en) * 1985-12-27 1988-03-22 Mitsubishi Monsanto Chemical Company Method for preventing the bulking of activated sludge
USRE34127E (en) * 1985-12-27 1992-11-17 Mitsubishi Kasei Polytec Company Method for preventing the bulking of activated sludge

Similar Documents

Publication Publication Date Title
US5543056A (en) Method of drinking water treatment with natural cationic polymers
US6120690A (en) Clarification of water and wastewater
RU2403959C2 (en) Method to improve flow conditions in membrane reactor
Ebeling et al. Performance evaluation of an inclined belt filter using coagulation/flocculation aids for the removal of suspended solids and phosphorus from microscreen backwash effluent
JP2002525204A (en) High-speed coagulation sedimentation wastewater treatment method
CN106927642A (en) A kind of electroplating wastewater advanced treatment process and system
CN113003846B (en) Zero-emission treatment process and system for sewage with high salt content and high COD (chemical oxygen demand)
US20100300962A1 (en) Methods for treating wastewater using an organic coagulant
CN1206177C (en) Method for reclamation and utilization of oil refining sewage
CN206736028U (en) A kind of electroplating wastewater advanced treatment system
JP2002346572A (en) Clean water treatment method and treatment agent
KR100413203B1 (en) No wasting activated sludge process
JPS5895596A (en) Treatment using activated sludge
Lee et al. Improvement of water treatment performance by using polyamine flocculants
CN108191159B (en) Kitchen garbage waste water non-membrane method processing system
CN113003845B (en) Zero-emission treatment process and system for sewage with high sulfate content and high COD (chemical oxygen demand)
US3716484A (en) Process for substantial removal of phosphates from wastewaters
KR101489134B1 (en) Advanced treatment method for purifying wastewater
CN113277677B (en) Treatment method and reuse water treatment process for production wastewater of disposable nitrile gloves
AU621032B2 (en) Method for the treatment of sewage and other impure water
CN115028319A (en) Intelligent monitoring method, device, equipment and storage medium for sewage treatment
JP3695276B2 (en) Wastewater treatment method
JP2554687B2 (en) Biological nitrogen removal method
JPS5858194A (en) Treatment with active sludge
CN220056581U (en) PCB high ammonia nitrogen wastewater pretreatment system