JPS589541B2 - Henkou York - Google Patents

Henkou York

Info

Publication number
JPS589541B2
JPS589541B2 JP13583475A JP13583475A JPS589541B2 JP S589541 B2 JPS589541 B2 JP S589541B2 JP 13583475 A JP13583475 A JP 13583475A JP 13583475 A JP13583475 A JP 13583475A JP S589541 B2 JPS589541 B2 JP S589541B2
Authority
JP
Japan
Prior art keywords
deflection
saddle
shaped
deflection coil
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13583475A
Other languages
Japanese (ja)
Other versions
JPS5260018A (en
Inventor
八橋宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Onkyo Co Ltd
Original Assignee
Denki Onkyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Onkyo Co Ltd filed Critical Denki Onkyo Co Ltd
Priority to JP13583475A priority Critical patent/JPS589541B2/en
Publication of JPS5260018A publication Critical patent/JPS5260018A/en
Publication of JPS589541B2 publication Critical patent/JPS589541B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はテレビジョン受像機に用いる電磁ビーム偏向ヨ
ークに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic beam deflection yoke for use in a television receiver.

一般に偏向ヨークは一対の水平偏向コイルと一対の垂直
偏向コイルと環状コアとから構成されている。
Generally, a deflection yoke is composed of a pair of horizontal deflection coils, a pair of vertical deflection coils, and an annular core.

特に、偏向コイルには偏向電力を小さくする目的で薮型
偏向コイルが多く用いられている。
In particular, bush-shaped deflection coils are often used for the purpose of reducing deflection power.

鞍型偏向コイルは、周知のごとく一対の並行状をなす長
手力向部と、この長手力向部の受像管映像面側に位置す
る前端部と、電子銃側に位置する後端部とによって中央
に窓部を形成してなるものである。
As is well known, the saddle-shaped deflection coil consists of a pair of parallel longitudinal force direction parts, a front end part of the longitudinal force direction parts located on the picture tube image plane side, and a rear end part located on the electron gun side. A window is formed in the center.

また、鞍型偏向コイルは上記前端部の窓幅と後端部の窓
幅の2ケ所を規匍支して線材の巻回をなし製作されるも
のであるが、線材の巻回テンションによって、前、後端
間の窓部を形成する長手方向部は直線状になろうとする
In addition, the saddle-shaped deflection coil is manufactured by winding the wire rod by supporting the window width at the front end and the window width at the rear end, but depending on the winding tension of the wire, The longitudinal portion forming the window between the front and rear ends tends to be straight.

しかし、偏向ヨークは、円筒部と球状部とからなる受像
管の上記接合部である曲面上に取付けられるため、偏向
コイルの窓部側は曲面に沿った最短線上に設けることが
できないものであった。
However, since the deflection yoke is mounted on a curved surface, which is the junction of the picture tube consisting of a cylindrical portion and a spherical portion, the window side of the deflection coil cannot be provided on the shortest line along the curved surface. Ta.

また、鞍型偏向コイルを管軸方向によって区分すると、
一般には第1図のごとく電子ビームの進入側に於ける進
入側領域aと主偏向領域bと映像面側に於ける出口側領
域Cとなり、管軸方向の各横断面中の磁束分布は不均一
性をもった曲線で表わされる。
In addition, if the saddle-shaped deflection coil is classified according to the tube axis direction,
In general, as shown in Fig. 1, there is an entrance area a on the entrance side of the electron beam, a main deflection area b, and an exit side area C on the image plane side, and the magnetic flux distribution in each cross section in the tube axis direction is uneven. It is represented by a uniform curve.

特に鞍型偏向コイルの出口側領域Cに於ける偏向磁界は
、映像面のコーナ一部に於けるコンバーゼンスのほかに
ラスター形状に強く作用するため、必然的に鞍型偏向コ
イルの前端の窓幅が規制されてくる。
In particular, the deflection magnetic field in the exit side region C of the saddle-shaped deflection coil strongly acts on the raster shape in addition to the convergence at a part of the corner of the image plane, so the window width at the front end of the saddle-shaped deflection coil inevitably will be regulated.

また主偏向領域は正方向の山によって示されるごとく強
い糸巻型の磁束分布となるが、この主偏向領域に於ける
偏向磁界は映像面全体に作用することに変りはないもの
の特に映像面上に於ける中央部とコーナ一部との中間辺
に最も強く作用し影響を与えるものである。
In addition, the main deflection area has a strong pincushion-shaped magnetic flux distribution as indicated by the peaks in the positive direction, and although the deflection magnetic field in this main deflection area still acts on the entire image plane, it is particularly concentrated on the image plane. It acts most strongly on the intermediate side between the center and part of the corner.

しかし、主偏向領域が強い糸巻型の磁束分布傾向を示す
とエスイング(S−ing)と称する波形ミスコンバー
ゼンスを発生し実用に供しえなくなる。
However, if the main deflection region exhibits a strong pincushion-shaped magnetic flux distribution tendency, a waveform misconvergence called S-ing occurs, making it impractical.

これを、水平偏向コイルによって説明する。This will be explained in terms of horizontal deflection coils.

水平偏向磁界に強い糸巻型の磁束分布傾向が表われると
、水平方向の偏向成分に垂直方向の成分が生ずることと
なり、かつ上記垂直成分は映像面のコーナ一部に近づく
につれて増大する。
When a strong pincushion-shaped magnetic flux distribution tendency appears in the horizontal deflection magnetic field, a vertical component is generated in the horizontal deflection component, and the vertical component increases as it approaches a part of the corner of the image plane.

この状態をインライン方式の電子ビームにより概要を第
2図で説明する。
This state will be outlined using an in-line electron beam with reference to FIG.

x,y軸によって示される映像面の原点に緑ビームGが
、そしてX軸上の正方向に赤ビームR1負方向に青ビー
ムBがそれぞれ配置されている。
A green beam G is placed at the origin of the image plane indicated by the x and y axes, a red beam R is placed in the positive direction on the X axis, and a blue beam B is placed in the negative direction.

緑ビームGは第2図に於いてそれぞれ映像面に於ける上
下の点とも所定のパターンを描いているが、青ビームB
と赤ビームRはそれぞれ電子銃の位置する側ではy軸方
向に於いてX軸に近づくように振幅し、y軸を介した反
対側ではy軸方向に於いてX軸より遠ざかるように振幅
する所謂正クロスコンバーゼンスの状態となる。
In Fig. 2, the green beam G draws a predetermined pattern at both the upper and lower points on the image plane, but the blue beam B
and red beam R respectively have amplitudes in the y-axis direction on the side where the electron gun is located so as to approach the This results in a so-called positive cross-convergence state.

しかし、各コーナーに於いては、鞍型偏向コイルの出口
側領域に於ける磁界の関係で逆クロスコンバーゼンスの
状態となるためエスイング(S−ing)ミスコンバー
ゼンスを発生する。
However, at each corner, a state of reverse cross-convergence occurs due to the relationship of the magnetic field in the exit side region of the saddle-shaped deflection coil, resulting in S-ing misconvergence.

上記エスイング歪の振幅は原点からそれぞれy軸方向に
遠ざかるにつれて大きくなるものである。
The amplitude of the S-swing distortion increases as it moves away from the origin in the y-axis direction.

而して、第1図に於ける主偏向領域の正方向の山を下降
させて強い糸巻型磁束分布を弱めるため一手段として鞍
型偏向コイルの窓部を規制する後端の窓幅を極端に小さ
くしほぼ点状にすることも考えられる。
Therefore, in order to lower the peak in the positive direction of the main deflection region in Fig. 1 and weaken the strong pincushion-shaped magnetic flux distribution, the width of the window at the rear end that restricts the window of the saddle-shaped deflection coil is made extremely large. It is also possible to make it smaller and almost dot-shaped.

しかし、鞍型偏向コイルの進入側領域の磁界は第2図の
実施例について言えば中央の電子ビームである緑ビーム
Gに対して強く作用するものであり、上記構成の鞍型偏
向コイルでは第1図に於ける進入側領域の負の谷が更に
下降した樽型傾向の強い磁束分布となり、第2図のX軸
上に示すごとく緑ビームGが他の二つの電子ビームより
極端に振幅が大きくなるという欠点がある。
However, in the embodiment of FIG. 2, the magnetic field in the entry side region of the saddle-shaped deflection coil acts strongly on the green beam G, which is the central electron beam, and in the saddle-shaped deflection coil configured as described above, the magnetic field acts strongly on the green beam G, which is the central electron beam. The negative valley in the approach side region in Figure 1 becomes a magnetic flux distribution with a strong barrel-shaped tendency, and as shown on the X-axis in Figure 2, the amplitude of the green beam G is much higher than that of the other two electron beams. It has the disadvantage of being large.

この欠点は電子ビームの進入側に於いて発生するため、
映像面に於いてはこの現象がますます拡大して表われ、
これまた実用に供しえず、妥協した構成の偏向ヨークを
用いなければならなかった。
This drawback occurs on the entrance side of the electron beam, so
This phenomenon becomes more and more magnified in the visual field,
This also could not be put to practical use, and a compromised deflection yoke had to be used.

本発明は上記欠点を除去した偏向ヨークを提供するもの
であるが、図面により本発明の実施例を説明する。
The present invention provides a deflection yoke that eliminates the above drawbacks, and embodiments of the present invention will be described with reference to the drawings.

第3図に於いて1は鞍型偏向コイルであって並行状をな
す一対の長手方向部11と、この長手方向部の前端と後
端をそれぞれ連接して前端部12と後端部13とにより
中央に窓部14を形成する。
In FIG. 3, reference numeral 1 denotes a saddle-shaped deflection coil, which includes a pair of parallel longitudinal parts 11, and a front end 12 and a rear end 13 by connecting the front and rear ends of the longitudinal parts, respectively. A window 14 is formed in the center.

窓部内には、鞍型偏向コイルの主偏向領域に対応して補
助偏向コイル2を配置する。
An auxiliary deflection coil 2 is disposed within the window portion corresponding to the main deflection area of the saddle-shaped deflection coil.

補助偏向コイル2は第4図のごとく線材21を前もって
巻回し形成しておくこともできるし、第5図のととく可
撓性のある絶縁基板22に導電体23をコイル状に印刷
したものでもよい。
The auxiliary deflection coil 2 can be formed by winding a wire 21 in advance as shown in FIG. 4, or it can be formed by printing a conductor 23 in a coil shape on a particularly flexible insulating substrate 22 as shown in FIG. But that's fine.

鞍型偏向コイル1と補助偏向コイル2とは第6図のごと
く直列に接続されかつ矢印のごとく同一方向の磁束を生
ずるように形成される。
The saddle-shaped deflection coil 1 and the auxiliary deflection coil 2 are connected in series as shown in FIG. 6 and are formed so as to generate magnetic flux in the same direction as shown by the arrows.

尚、点線は従来の単一な鞍型偏向コイルに於ける窓幅を
示す長手方向部上の線であるか、本発明では従来に比較
し出口側領域の窓幅を広く設定し総体的な歪が発生しな
いようにしてある。
Note that the dotted line is a line on the longitudinal part indicating the window width in a conventional single saddle-shaped deflection coil, or in the present invention, the window width in the exit side area is set wider than the conventional one, and the overall width is increased. This is to prevent distortion from occurring.

而して、最適な出口側領域の磁界が設定されて構成され
る鞍型偏向コイルの主偏向領域に於いて、同一方向の磁
束を生ずる補助偏向コイルが設けられるため、上記鞍型
偏向コイルのみの場合に比較して主偏向領域はより樽型
傾同が付与された糸巻型の磁束分布となる。
Therefore, in the main deflection region of the saddle-shaped deflection coil, which is configured by setting the optimal magnetic field in the exit side region, an auxiliary deflection coil that generates magnetic flux in the same direction is provided, so that only the saddle-shaped deflection coil described above is provided. Compared to the case of , the main deflection region has a pincushion-shaped magnetic flux distribution with more barrel-shaped inclination.

従って、第1図に於ける主偏向領域の正方向の山が低く
されたことになり強い糸巻型の磁束分布が緩和された偏
向磁界となる。
Therefore, the peak in the positive direction of the main deflection region in FIG. 1 is lowered, resulting in a deflection magnetic field in which the strong pincushion-shaped magnetic flux distribution is relaxed.

その結果、良好なコンバーゼンス特性を有する鞍型偏向
コイルを得ることができる。
As a result, a saddle-shaped deflection coil having good convergence characteristics can be obtained.

特に上記補助偏向コイルは電子ビームの出口側領域に及
ぶことのないよう設定するものであり、かつ窓幅を拡大
することでラスターに対する悪影響は十分回避すること
ができる。
In particular, the auxiliary deflection coil is set so that it does not reach the exit side region of the electron beam, and by expanding the window width, adverse effects on the raster can be sufficiently avoided.

尚、第6図からも明らかなように相対向する一対の鞍型
偏向コイルに対して上記のような構成をなすこと言うま
でもないし、水平偏向コイルと垂直偏向コイルの両方を
上記構成としてもよいし、一方の組の偏向コイルのみを
上記構成としてもよい0 従って、本発明による偏向ヨークによれば、カラーテレ
ビジョン受像機に於いて発生する複雑なエスイング(S
ing)ミスコンバーゼンスを容易に除去することがで
きるとともに、ラスター歪を併発する危険性もない。
Incidentally, as is clear from FIG. 6, it goes without saying that the above-mentioned configuration can be used for a pair of saddle-shaped deflection coils facing each other, and both the horizontal and vertical deflection coils may have the above-described configuration. , only one set of deflection coils may have the above configuration. Therefore, according to the deflection yoke according to the present invention, the complicated eswing (S) that occurs in color television receivers can be avoided.
ing) Misconvergence can be easily removed and there is no risk of raster distortion occurring.

また、従来一般的に用いられている機械式巻線方法に何
ら変更を加えることもないし、鞍型偏向コイルと補助偏
向コイルを個別的に量産することもでき、しかも極めて
高性能な磁界特性を有する偏向ヨークを提供するこさが
できる。
Furthermore, there is no need to make any changes to the conventional mechanical winding method, the saddle-shaped deflection coil and the auxiliary deflection coil can be mass-produced individually, and extremely high-performance magnetic field characteristics can be achieved. It is possible to provide a deflection yoke with

【図面の簡単な説明】 第1図は一般的な鞍型偏向コイルの管軸方向に区分した
磁束分布説明図、第2図はミスコンバーゼンスの概要説
明図、第3図は本発明に於ける鞍型偏向コイルの一実施
例平面図、第4図および第5図は本発明に於ける補助偏
向コイルの一実施例説明図、第6図は接続状態説明図で
ある。
[Brief explanation of the drawings] Fig. 1 is an explanatory diagram of the magnetic flux distribution divided in the tube axis direction of a general saddle-type deflection coil, Fig. 2 is a schematic explanatory diagram of misconvergence, and Fig. 3 is an explanatory diagram of the magnetic flux distribution in the tube axis direction of a general saddle-type deflection coil. FIGS. 4 and 5 are plan views of an embodiment of the saddle-shaped deflection coil, FIGS. 4 and 5 are diagrams illustrating an embodiment of the auxiliary deflection coil in the present invention, and FIG. 6 is a diagram illustrating a connected state.

Claims (1)

【特許請求の範囲】[Claims] 1 それぞれ一対の水平および垂直偏向コイルよりなる
受像管用の電磁ビーム偏向ヨークに於いて、上記偏向コ
イルの少くとも一方を中央に窓部を有する鞍型偏向コイ
ルにて形成するとともに、該鞍型偏向コイルの主偏向領
域に対応する上記窓部内に上記鞍型偏向コイルと直列接
続した補助偏向コイルを配置して構成したことを特徴と
する偏向ヨーク。
1. In an electromagnetic beam deflection yoke for a picture tube each consisting of a pair of horizontal and vertical deflection coils, at least one of the deflection coils is formed as a saddle-shaped deflection coil having a window in the center, and the saddle-shaped deflection A deflection yoke characterized in that an auxiliary deflection coil connected in series with the saddle-shaped deflection coil is disposed within the window portion corresponding to the main deflection area of the coil.
JP13583475A 1975-11-12 1975-11-12 Henkou York Expired JPS589541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13583475A JPS589541B2 (en) 1975-11-12 1975-11-12 Henkou York

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13583475A JPS589541B2 (en) 1975-11-12 1975-11-12 Henkou York

Publications (2)

Publication Number Publication Date
JPS5260018A JPS5260018A (en) 1977-05-18
JPS589541B2 true JPS589541B2 (en) 1983-02-21

Family

ID=15160854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13583475A Expired JPS589541B2 (en) 1975-11-12 1975-11-12 Henkou York

Country Status (1)

Country Link
JP (1) JPS589541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292512A (en) * 1986-06-09 1987-12-19 ゼネラル・モ−タ−ス・コ−ポレ−ション Suspension member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292512A (en) * 1986-06-09 1987-12-19 ゼネラル・モ−タ−ス・コ−ポレ−ション Suspension member

Also Published As

Publication number Publication date
JPS5260018A (en) 1977-05-18

Similar Documents

Publication Publication Date Title
JPH0542776B2 (en)
US4882521A (en) Deflection yoke for a color cathode ray tube
US4233582A (en) Deflection yoke for use with wide angle deflection system
US4429293A (en) Pincushion raster corrector distortion with improved performance
JPH0364836A (en) Deflecting yoke structure for color picture tube
JPS589541B2 (en) Henkou York
JPS6029183B2 (en) deflection yoke
JP3950168B2 (en) Deflection yoke with reduced raster distortion
KR100703506B1 (en) A color cathode ray tube having a convergence correction apparatus
JPS5839000Y2 (en) deflection yaw
JPS589542B2 (en) Henkou York
JPS5822852B2 (en) Henkou York
JPH0136282Y2 (en)
JPS6088455U (en) deflection yoke
JPH022262B2 (en)
KR100193580B1 (en) Mermaid Arm of Deflection York
US3588566A (en) Electromagnetic deflection yoke having bypassed winding turns
JPS6054144A (en) Deflection york
JP3402073B2 (en) Picture tube device
JPS5841641Y2 (en) deflection yoke
JP2757401B2 (en) Deflection device
JPS6223422B2 (en)
JPS645820Y2 (en)
JPS597724Y2 (en) deflection yoke
JPS62217546A (en) Deflection yoke