JPS5893886A - Electroplating method - Google Patents

Electroplating method

Info

Publication number
JPS5893886A
JPS5893886A JP19065881A JP19065881A JPS5893886A JP S5893886 A JPS5893886 A JP S5893886A JP 19065881 A JP19065881 A JP 19065881A JP 19065881 A JP19065881 A JP 19065881A JP S5893886 A JPS5893886 A JP S5893886A
Authority
JP
Japan
Prior art keywords
sulfuric acid
exchange membrane
chamber
anode
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19065881A
Other languages
Japanese (ja)
Inventor
Takashi Deo
隆志 出尾
Hiroyuki Morimoto
裕之 森本
Yuji Terada
寺田 雄二
Nobukazu Suzuki
鈴木 信和
Atsuyoshi Shibuya
渋谷 敦義
Tetsuaki Tsuda
津田 哲明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tokuyama Corp
Original Assignee
Sumitomo Metal Industries Ltd
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Tokuyama Corp filed Critical Sumitomo Metal Industries Ltd
Priority to JP19065881A priority Critical patent/JPS5893886A/en
Publication of JPS5893886A publication Critical patent/JPS5893886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To electroplate iron at high current density with good efficiency by separating an anode chamber installed therein with an insoluble anode from a plating bath chamber by means of anion exchange membrane or an amphoteric ion exchange membrane and maintaining the sulfuric acid soln. in the anode chamber at a high concn. CONSTITUTION:In a plating cell 1, an insoluble anode 5 such as lead is installed in an anode chamber 4 separated from a plating bath chamber 3 by means of an anion or amphoteric ion exchange membrane 2. The anode 5 and a cathode 6 of iron are connected to an electric power source 7. Sulfuric acid of a prescribed concn. is circulated and supplied by a pump 9 from a storage tank 8 for sulfuric acid soln. into the chamber 4 to maintain the concn. of the sulfuric acid in the chamber 4 at >=50g/l. The plating bath is prepared in a dissolving tank 10 and after the pH, concn., etc. thereof are controlled in a controlling tank 12, the plating soln. is supplied from a storage tank 14 for plating soln. into the chamber 3 by a pump 15. Electroplating is accomplished without any trouble at <=70 deg.C bath temp. and >=35A/dm<2> current density by maintaining the concn. of the sulfuric acid in said chamber 4 at >=50g/l.

Description

【発明の詳細な説明】 本発明は鉄の電気メツキ方法に関する。[Detailed description of the invention] The present invention relates to a method for electroplating iron.

従来、鉄の防錆、防蝕、溶接性改良などを目的として種
々の電気メツキ方法が実施され、まlた開発されている
。特に工業的な鉄車の電気メツキ方法においては、例え
ばメツキラインのメーツキ槽を減少させるなど設備を小
さくするためにも、電流密度を大きくすることが望まれ
ている。
Conventionally, various electroplating methods have been implemented and developed for the purpose of preventing rust, corrosion, and improving weldability of iron. Particularly in the industrial electroplating method for railway cars, it is desired to increase the current density in order to downsize the equipment, for example by reducing the number of plating tanks in the plating line.

一般に、電気メツキ方法における陽極としては、可溶性
陽極又は不溶性陽極が用いられている。このうち、不溶
性陽極を用いる場合、陽極をイオン交換膜の隔膜でメッ
キ浴から分離した陽極室内に設置する方法が種々提案さ
れており、例えば特公昭s 1−29 o o号公報に
は隔膜として陰イオン交換膜を用いる合金メッキ方法が
記載されている。
Generally, a soluble anode or an insoluble anode is used as an anode in an electroplating method. Among these, when using an insoluble anode, various methods have been proposed in which the anode is installed in an anode chamber separated from the plating bath by a diaphragm of an ion exchange membrane. An alloy plating method using an anion exchange membrane is described.

しかし、イオン交換膜には一般に限界電流密度が存在す
るために、それ以上で電流を流した場合、イオン交換膜
のイオンが供給される側(脱塩側)の膜界面において、
水の分解(H+と0H−)を生ずる。そのために、スケ
ール成分が存在する場合にはOH−によって沈殿する障
害を生じたり、また陰イオン交換膜におい′てはOH−
が膜中を通過することによりアルカリ焼けを生じ、膜性
能が急激に低下して使用に耐えなくなる。したがって、
陰イオン交換膜を用いる電気メツキ方法においても、電
流密度を太き(することが困難である。
However, since ion-exchange membranes generally have a limiting current density, if a current is applied above this density, at the membrane interface on the ion-supplied side (desalination side) of the ion-exchange membrane,
This results in the splitting of water (H+ and 0H-). Therefore, if scale components are present, OH- may cause problems such as precipitation, and in anion exchange membranes, OH-
As a result of passing through the membrane, alkali burning occurs, and the membrane performance rapidly deteriorates, making it unusable. therefore,
Even in the electroplating method using an anion exchange membrane, it is difficult to increase the current density.

本発明者らは、不溶性陽極をイオン交換膜によりメッキ
浴から分離した陽極室内に設置したメツ4槽を用いる鉄
筒の電気メツキ方法について鋭意研究の結果、この陽極
室における硫酸濃度を特定以上に高めた場合には、電流
密度を大きくしても何ら支障な(、電気メッキできるこ
とを見出して本発明を完成した。
As a result of extensive research into a method for electroplating iron tubes using four metal tanks installed in an anode chamber in which an insoluble anode is separated from the plating bath by an ion exchange membrane, the present inventors have found that the sulfuric acid concentration in this anode chamber can be increased beyond a specified level. When the current density is increased, the present invention has been completed by discovering that electroplating can be performed without any problem even if the current density is increased.

本発明は、鉄鋼の電気メッキにおいて、不溶性陽極を陰
イオン交換膜又は両性イオン交換膜によりメッキ浴室か
ら分離した陽極室内に設置し、この陽極室における硫酸
濃度を50g713以上に保持することを特徴とする電
気メツキ方法である。
In the electroplating of steel, the present invention is characterized in that an insoluble anode is installed in an anode chamber separated from the plating bath by an anion exchange membrane or an amphoteric ion exchange membrane, and the sulfuric acid concentration in this anode chamber is maintained at 50g713 or more. This is an electroplating method.

本発明方法の実施態様を以下図面により説明する。メッ
キ槽1は陰イオン又は両性イオン交換膜(以下イオン交
換膜)2により、メッキ浴室6と陽極室4に分離されて
いる。陽極室4内には不溶性陽極5を設け、不溶性陽極
5及び被メッキ物(鉄9@)6を電源7と接続する。陽
極室5には、硫酸液貯槽8がらポンプ9により所定濃度
の硫酸が供給される。溶解槽1oで調製されたメッキ浴
は、ポンプ11により調整槽12に送られ、溶液の濃度
及びpHを調製したのち、ポンプ13によりメッキ液貯
槽14に送られ、次いでポンプ15によ′リメッキ浴室
6へ供給される。
Embodiments of the method of the present invention will be described below with reference to the drawings. The plating bath 1 is separated into a plating bath 6 and an anode chamber 4 by an anion or amphoteric ion exchange membrane (hereinafter referred to as an ion exchange membrane) 2. An insoluble anode 5 is provided in the anode chamber 4, and the insoluble anode 5 and the object to be plated (iron 9@) 6 are connected to a power source 7. Sulfuric acid at a predetermined concentration is supplied to the anode chamber 5 from a sulfuric acid solution storage tank 8 by a pump 9 . The plating bath prepared in the dissolution tank 1o is sent to an adjustment tank 12 by a pump 11, and after adjusting the concentration and pH of the solution, is sent to a plating solution storage tank 14 by a pump 13, and then sent to a re-plating bath by a pump 15. 6.

陽極室5と硫酸液貯槽8の硫酸は循環することができ、
また硫酸液貯槽8の硫酸を溶解槽1゜に送り、メッキ浴
の調製に使用することもできる。この際硫酸中にFe’
S+が存在する場合は、還元処理、キレート剤などによ
りFe  を除去することが好ましい。
The sulfuric acid in the anode chamber 5 and the sulfuric acid solution storage tank 8 can be circulated,
Furthermore, the sulfuric acid in the sulfuric acid solution storage tank 8 can be sent to the dissolution tank 1° and used for preparing a plating bath. At this time, Fe'
If S+ is present, it is preferable to remove Fe by reduction treatment, a chelating agent, or the like.

メッキ浴はメッキ金属の硫酸塩を含み、この硫酸塩濃度
は、メッキする金属により異なるが、一般に1〜3モル
/1、好ましくは2〜3モ乞4である。陽極室4には濃
度50 g743以上、好ましくは609/−6以上の
硫酸を入れる。次いで常法により電気メッキを行う。
The plating bath contains a sulfate of the plating metal, and the sulfate concentration varies depending on the metal to be plated, but is generally 1 to 3 mol/1, preferably 2 to 3 mol/1. The anode chamber 4 is filled with sulfuric acid having a concentration of 50 g or more, preferably 609/-6 or more. Next, electroplating is performed by a conventional method.

不溶性電極5と鉄筒6との間にメッキ電圧が印加される
と、メッキ浴中に解離している金属イオンの放電が起こ
り、金属が鉄鋼60表面に析出する。一方、メッキ浴中
の硫酸イオン(SOZ−)はイオン交換膜2を透過して
陽極室4内に移動し、不溶性陽極5の表面で発生する水
素イオンと反応して硫酸が生成する。この結果、メッキ
浴室6では析出した金属に相当する硫酸塩が消失し、こ
れに相当する硫酸が陽極室4で生成する。
When a plating voltage is applied between the insoluble electrode 5 and the steel cylinder 6, discharge of metal ions dissociated in the plating bath occurs, and metal is deposited on the surface of the steel 60. On the other hand, sulfuric acid ions (SOZ-) in the plating bath pass through the ion exchange membrane 2 and move into the anode chamber 4, and react with hydrogen ions generated on the surface of the insoluble anode 5 to produce sulfuric acid. As a result, the sulfate corresponding to the deposited metal disappears in the plating bath 6, and the corresponding sulfuric acid is generated in the anode chamber 4.

本発明方法においては陽極室4の硫酸濃度を50 g/
43以上、特に609/13以上に保持することが極め
て重要である。これにより55 %m2以上の電流密度
で支障なく電気メッキを行うことができる。工業的には
40〜200 A /dm”、好ましくは50〜150
A/dm2で行われる。これに対して、陽極室の硫酸濃
度を5011/43より低くして電気メッキした場合に
は、電流密度を大きくするにしたがって、陰イオン交換
膜にけ アルカリへの色調変化が認められ、さらには膜の強度及
び性能が低下する。したがって、陰イオン交換膜に破損
が生じた場合には、メッキ浴と陽極液とが混合するため
、メッキ浴のpHが異常に変化するとともに、メッキ浴
のFe2+が陽極室に移行して酸化されFe3+が増加
する結果を招く。Fe の増加は、メッキ浴において被
メツキ物裏面のFeやコンダクタ−ロールにッケルメツ
キなど)の腐食を促進するばかりでなく、pHが6以上
では水酸化第2鉄となり、メッキ浴の管理上から問題で
ある。
In the method of the present invention, the sulfuric acid concentration in the anode chamber 4 is set to 50 g/
It is extremely important to maintain the ratio at 43 or higher, especially at 609/13 or higher. As a result, electroplating can be carried out without any problem at a current density of 55% m2 or more. Industrially 40 to 200 A/dm", preferably 50 to 150
It is carried out at A/dm2. On the other hand, when electroplating was performed with the sulfuric acid concentration in the anode chamber lower than 5011/43, as the current density was increased, the color tone of the anion exchange membrane changed to alkaline, and Membrane strength and performance are reduced. Therefore, if the anion exchange membrane is damaged, the plating bath and anolyte will mix, causing an abnormal change in the pH of the plating bath, and Fe2+ in the plating bath will migrate to the anode chamber and be oxidized. This results in an increase in Fe3+. An increase in Fe not only promotes corrosion of Fe on the back side of the plated object (nickel plating on conductor rolls, etc.) in the plating bath, but also causes problems in terms of plating bath management, as it becomes ferric hydroxide at pH 6 or higher. It is.

本発明の電気メツキ方法において、電流密度を大き(で
きる理由は定かでないが、陰イオンは 交換膜にアルカリ焼、が全(認められないことから、限
界電流密度が非常に高くなっているか、あるいは実質的
に消滅しているものと推測している。すなわち、陰イオ
ン交換膜は一般にHに対して透過し易い性質を有してい
るが、本発明においては陽極室の硫酸濃度を高(するに
したがって、陽極室に生成したH+が陰イオン交換膜を
通してメッキ浴室へ透過するため、硫酸の生成効率が減
少していくことを確認している。したがって、陰イオン
交換膜におけるH+の透過作用に・より限界電流密度が
太き(なり、または消滅するものと推考する。また、本
発明において両性イオン交換膜を用いた場合には、陰イ
オン交換膜と同等又はそれ以上にH+の透過作用を有す
るためか、陰イオン交換膜を用いる場合よりも、陽極室
の硫酸濃度を多少低くしても、電流密度を大きくできる
。両性イオン交換膜とししは、陰イオン交換基と陽イオ
ン交換基との全交換容量のうち陽イオン交換容量が10
〜40%のものが好ましい。
In the electroplating method of the present invention, the current density can be increased (the reason why it is possible is unclear, but anions are not completely baked into the exchange membrane with alkali), so the limiting current density may be very high, or In other words, anion exchange membranes generally have the property of being easily permeable to H, but in the present invention, by increasing the sulfuric acid concentration in the anode chamber. Accordingly, it has been confirmed that the H+ generated in the anode chamber permeates into the plating bath through the anion exchange membrane, resulting in a decrease in the sulfuric acid production efficiency.Therefore, the H+ permeation effect in the anion exchange membrane is - It is assumed that the critical current density becomes thicker (or disappears).In addition, when an amphoteric ion exchange membrane is used in the present invention, the H+ permeation effect is equivalent to or greater than that of an anion exchange membrane. Perhaps because of this, the current density can be increased even if the sulfuric acid concentration in the anode chamber is somewhat lower than when using an anion exchange membrane. The cation exchange capacity is 10 out of the total exchange capacity of
~40% is preferred.

一般に電気メッキにおいては、ジュール熱が発生して液
温か上昇するために、熱交換器などにより除熱し、メッ
キに最適がっ除熱に経済的な液温か保持される。本発明
において電流密度を大きくして電気メッキを行う場合に
は、溶液の除熱量も大きくなるが、特に使用するイオン
交換膜の発熱が問題になる。本発明のメッキ浴及び陽極
室の硫酸液の温度が一般に70°C以上で、かつ電流密
度を特に50 A / dm2以上にして電気メッキを
行う場合には、イオン交換膜に熱焼が起こり、性能低下
が生じる場合がある。
Generally, in electroplating, Joule heat is generated and the liquid temperature rises, so the heat is removed by a heat exchanger or the like, and the liquid temperature is maintained at a temperature that is optimal for plating and economical for heat removal. In the present invention, when electroplating is performed by increasing the current density, the amount of heat removed from the solution also increases, but in particular, heat generation of the ion exchange membrane used becomes a problem. When performing electroplating with the temperature of the plating bath and the sulfuric acid solution in the anode chamber of the present invention generally being 70°C or higher and the current density being particularly 50 A/dm2 or higher, thermal sintering occurs in the ion exchange membrane. Performance degradation may occur.

このため本発明の電気メツキ方法においては、液温を7
0℃以下に維持することが好適である。
Therefore, in the electroplating method of the present invention, the liquid temperature is
It is preferable to maintain the temperature below 0°C.

本発明に用いられる陰イオン交換膜としては、第4級ア
ンモニウム塩、例えばN−ベンジルトリメチルアンモニ
ウム塩を含有する強塩基性交換膜、−級ないし三級アミ
ノ基を含有する弱塩基性交換膜のいずれでもよい。機械
的強度、耐熱性及び耐酸化性に優れた陰イオン交換膜は
市販されており、容易に入手することができる。
The anion exchange membrane used in the present invention includes a strongly basic exchange membrane containing a quaternary ammonium salt, such as N-benzyltrimethylammonium salt, and a weakly basic exchange membrane containing a -class to tertiary amino group. Either is fine. Anion exchange membranes with excellent mechanical strength, heat resistance, and oxidation resistance are commercially available and can be easily obtained.

また両性イオン交換膜は、例えば前記の陰イオン交換膜
に硫酸などを作用させ、スルホン基を導入することによ
り得られる。
Further, an amphoteric ion exchange membrane can be obtained, for example, by treating the above-mentioned anion exchange membrane with sulfuric acid or the like to introduce a sulfone group.

不溶性陽極としては、耐久性に優れ、安価で利である。As an insoluble anode, it has excellent durability, is inexpensive, and is advantageous.

そのほかチタニウム、ニオブ、タンタルなどの金属表面
を、イリジウム、パラジウムなどの白金族金属の酸化物
で被覆するか又は白金メッキして用いてもよい。不溶性
電極は発生ガスによる電気抵抗の増大を抑制するような
形状、例えば平板状、網状、ラス状、棒状などが好まし
い。
In addition, the surface of a metal such as titanium, niobium, or tantalum may be coated with an oxide of a platinum group metal such as iridium or palladium, or may be plated with platinum. The insoluble electrode preferably has a shape that suppresses an increase in electrical resistance due to generated gas, such as a flat plate, a mesh, a lath, or a rod.

不溶性陽極として、特に鉛系の金属を用いろ場合は、陽
極室4の硫酸に混入する不純物によって、イオン交換膜
の性能が劣化する傾向がある。このような場合にイオン
交換膜の性能を維持するためには、硫酸を還元処理する
ことが好ましい。還元処理法としては、一般に硫酸に亜
硫酸ソーダ、酸性亜硫酸ソーダ、ヒドラジン、アスコル
ビン酸などを添加する方法が用いられろ。
In particular, when a lead-based metal is used as the insoluble anode, impurities mixed in the sulfuric acid in the anode chamber 4 tend to deteriorate the performance of the ion exchange membrane. In such a case, in order to maintain the performance of the ion exchange membrane, it is preferable to reduce the sulfuric acid. As a reduction treatment method, generally used is a method in which sodium sulfite, acidic sodium sulfite, hydrazine, ascorbic acid, etc. are added to sulfuric acid.

硫酸を活性炭で処理することも効果的である。It is also effective to treat sulfuric acid with activated carbon.

本発明の電気メツキ方法によれば、電流密度を大きくで
きるため、短時間でメッキすることができる。したがっ
て特に鉄の縁状、コイル状、板状物を連続的に電気メッ
キする場合に、メツキラインにおけるメッキ槽を減少で
き一工業的に極めて有利である。
According to the electroplating method of the present invention, since the current density can be increased, plating can be performed in a short time. Therefore, especially when continuously electroplating iron edges, coils, or plates, the number of plating tanks in the plating line can be reduced, which is extremely advantageous from an industrial perspective.

本発明の電気メツキ方法は、鉄、亜鉛などの単一金属メ
ッキ及び亜鉛−ニッケル、亜鉛−鉄、亜鉛−コバルトな
どの合金メッキに用いることができる。本発明方法は、
軟鋼、鋼、鉄合金などの鉄製品を対象とすることができ
る。
The electroplating method of the present invention can be used for single metal plating such as iron and zinc, and alloy plating such as zinc-nickel, zinc-iron, and zinc-cobalt. The method of the present invention includes
Iron products such as mild steel, steel, and ferrous alloys can be targeted.

実施例1 図面に示されるメッキ装置において、メッキ浴室3を硫
酸亜鉛(7水塩)濃度2509/43及び硫酸ナトリウ
ム1o og/lの濃度でpH2の亜鉛メッキ液で満た
し、陰イオン交換膜2(ネオセプタACH−45T、徳
山曹達社製)で隔てた陽極室4内に、白金を陽極5とし
て設置し、陽極室4には100fi/43の硫酸を満た
した。陽極室4の硫酸濃度を一定に保持しながら、12
0A/dIn2の電流密度で被メッキ物としての鋼板に
亜鉛の連続メッキを行った。
Example 1 In the plating apparatus shown in the drawings, the plating bath 3 was filled with a zinc plating solution of pH 2 with a concentration of zinc sulfate (heptahydrate) of 2509/43 and sodium sulfate of 10 og/l, and an anion exchange membrane 2 ( Platinum was placed as an anode 5 in an anode chamber 4 separated by Neocepta ACH-45T (manufactured by Tokuyama Soda Co., Ltd.), and the anode chamber 4 was filled with 100 fi/43 sulfuric acid. 12 while keeping the sulfuric acid concentration in the anode chamber 4 constant.
A steel plate to be plated was continuously plated with zinc at a current density of 0 A/dIn2.

その結果、1力月以上を経過しても、陰イオン交換膜に
アルカリ焼けなどの異常は生ぜず、またメッキ浴中のF
e  イ“オ/濃度は被メッキ物の裏面からの溶出によ
り徐々に増加したが、約100 ppmで平衡状態にな
り、Fe  イオン濃度は数ppmに抑制され、亜鉛メ
ッキは良好であった。
As a result, even after more than one month, no abnormalities such as alkali burn occurred on the anion exchange membrane, and F
The concentration of Fe ion gradually increased due to elution from the back side of the object to be plated, but reached an equilibrium state at about 100 ppm, and the Fe ion concentration was suppressed to several ppm, resulting in good zinc plating.

比較例1 実施例1と同様にして、ただし陽極室4の硫酸濃度を4
0g/、、eとして、亜鉛メッキを行った。その結果、
24時間経過後には陰イオン交換膜にアルカリ焼けの色
調変化がみられ、そのため膜強度が低下し、一部破損も
認められた。
Comparative Example 1 Same as Example 1, except that the sulfuric acid concentration in the anode chamber 4 was changed to 4.
Zinc plating was performed at 0g/,,e. the result,
After 24 hours, the anion exchange membrane showed a change in color due to alkali burn, and as a result, the membrane strength decreased and some damage was observed.

実施例2 メッキ浴室3を硫酸亜鉛7水塩15og/−e、硫酸第
一鉄7水塩zsog/−g−及び硫酸ナトリウム1oo
、9/−gの組成で、pH2の鉄−亜鉛メッキ液で満た
し、陰イオン交換膜2で隔てた陽極室4に白金の陽極を
設置し、陽極室4には50〜5511/43の硫酸を満
たした。陽極室4における硫酸濃度を保持しながら、5
5A/am2の電流密度で鋼板6に鉄−亜鉛の連続メッ
キを行った。
Example 2 The plating bath 3 was treated with zinc sulfate heptahydrate 15og/-e, ferrous sulfate heptahydrate zsog/-g-, and sodium sulfate 1oo
, 9/-g, a platinum anode is installed in the anode chamber 4, which is filled with an iron-zinc plating solution of pH 2 and separated by an anion exchange membrane 2. fulfilled. 5 while maintaining the sulfuric acid concentration in the anode chamber 4.
Continuous iron-zinc plating was performed on the steel plate 6 at a current density of 5 A/am2.

その結果、メッキ浴中のFe”+は常時数十ppm以下
に抑えることができ、安定した鉄20%、亜鉛80%の
合金被膜が得られた。また色調のむらや電流効1率の低
下は゛なかった。1力月運転後にも陰イオン交換膜のア
ルカリ焼けなどはみられず、性能変化もわずかであった
As a result, we were able to keep Fe''+ in the plating bath below several tens of ppm at all times, and a stable alloy coating of 20% iron and 80% zinc was obtained.Also, uneven color tone and decrease in current efficiency were prevented. No alkali burning of the anion exchange membrane was observed even after one month of operation, and there was only a slight change in performance.

比較例2 実施例1における陽極室の硫酸濃度を40〜454/A
と変えた以外は、実施例1と同様の条件で実施した。
Comparative Example 2 The sulfuric acid concentration in the anode chamber in Example 1 was set to 40 to 454/A.
It was carried out under the same conditions as in Example 1, except that

その結果、メッキ浴中のFe3+は2日間は常時数十p
pm以下に抑えられていたが、陽極室における硫酸の生
成効率は徐々に低下し、2日後に急激なメッキ浴pHの
異常変化とFeの増加がみられた。また陰イオン交換膜
を点検したところ、アルカリ焼けの色調変化を生じ、も
ろ(なって一部に破損が認められた。
As a result, Fe3+ in the plating bath was constantly at several tens of p for two days.
Although the sulfuric acid production efficiency in the anode chamber gradually decreased, two days later a sudden abnormal change in the pH of the plating bath and an increase in Fe were observed. When the anion exchange membrane was inspected, it was found that it had changed in color due to alkali burn, became brittle, and was partially damaged.

実施例3 ポリ塩化ビニル粉末20部、スチレン4部、4−ビニル
ピリジン6部、ジビニルベンゼン0゜7部、ジオクチル
フタレート2部及びベンゾイルパーオキサイド0.1部
を混合したペースト状物を、ポリ塩化ビニル製布に塗布
し、オートクレーブ中で90℃の温度で重合して厚膜を
つ(す、次いで厚膜を濃硫酸で60℃の温度で5時間ス
ルホン化したのち、さらに沃化メチルで4級化処理を行
った。得られた両性イオン交換膜について、陽イオンと
陰イオンの交換容量を測定した結果、全イオン交換容量
中の陽イオン交換容量は31%であった。
Example 3 A paste obtained by mixing 20 parts of polyvinyl chloride powder, 4 parts of styrene, 6 parts of 4-vinylpyridine, 0.7 parts of divinylbenzene, 2 parts of dioctyl phthalate, and 0.1 part of benzoyl peroxide was converted into polychlorinated It was applied to a vinyl cloth and polymerized in an autoclave at a temperature of 90°C to form a thick film.The thick film was then sulfonated with concentrated sulfuric acid at a temperature of 60°C for 5 hours, and then sulfonated with methyl iodide for 4 hours. The cation exchange capacity of the obtained amphoteric ion exchange membrane was measured, and the cation exchange capacity of the total ion exchange capacity was 31%.

この両性イオン交換膜2で分離したメッキ浴室6に硫酸
亜鉛7水塩25−09/13及び硫酸ナトリウム100
g/Aの濃度でpH2の亜鉛メッキ液を満たし、陽極室
4に1・259/−13濃度の硫酸を満たし、白金の陽
極5を設置して、100A/ 6m2の電流密度で亜鉛
の連続メッキを行った。
Zinc sulfate heptahydrate 25-09/13 and sodium sulfate 100 were added to the plating bath 6 separated by this amphoteric ion exchange membrane 2.
Fill the anode chamber 4 with a pH 2 galvanizing solution at a concentration of g/A, fill the anode chamber 4 with sulfuric acid at a concentration of 1.259/-13, install a platinum anode 5, and continue zinc plating at a current density of 100 A/6 m2. I did it.

その結果、1力月以上を経過しても両性イオン交換膜に
はアルカリ焼けなどの異常を生ぜず、またメッキ浴中の
Fe2+濃度は被メッキ物の裏面からの溶出により徐々
に増加し約100. Oppm程度になり平衡状態にな
ったが、FoS+の生成は数ppmに抑制されメッキは
良好に実施できた。
As a result, the amphoteric ion-exchange membrane did not show any abnormalities such as alkali burn after more than one month, and the Fe2+ concentration in the plating bath gradually increased due to elution from the back side of the object to be plated. .. Although the concentration reached an equilibrium state of approximately Oppm, the generation of FoS+ was suppressed to a few ppm, and plating could be performed satisfactorily.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を説明するための工程図であっ
て、記号1はメッキ槽、2はイオン交換膜、3はメッキ
浴室、4は陽極室、5は不溶性陽極、6は被メッキ物を
示す。 出9願人徳山曹達株式会社 外1名 代理人 弁理士 小  林  正  雄、+7
The drawings are process diagrams for explaining embodiments of the present invention, in which symbol 1 is a plating tank, 2 is an ion exchange membrane, 3 is a plating bath, 4 is an anode chamber, 5 is an insoluble anode, and 6 is an object to be plated. shows. 9 applicants: Tokuyama Soda Co., Ltd. and 1 other representative: patent attorney Masao Kobayashi, +7

Claims (1)

【特許請求の範囲】 1、 鉄の電気メッキにおいて、不溶性陽極を陰イオン
交換膜又は両性イオン交換膜によりメッキ浴室から分離
した陽極室内に設置し、この陽極室における硫酸濃度を
509743以上に保持することを特徴とする電気メツ
キ方法。 2、 55 A/am”以上の電流密度で実施すること
を特徴とする特許請求の範囲第1項に記載の電気メツキ
方法。 3、70℃以下の液温で行うことを特徴とする特許請求
の範囲第1項に記載の方法。
[Claims] 1. In iron electroplating, an insoluble anode is installed in an anode chamber separated from the plating bath by an anion exchange membrane or an amphoteric ion exchange membrane, and the sulfuric acid concentration in this anode chamber is maintained at 509,743 or higher. An electroplating method characterized by: 2. The electroplating method according to claim 1, which is carried out at a current density of 55 A/am" or higher. 3. The electroplating method is carried out at a liquid temperature of 70° C. or lower. The method described in item 1 of the scope.
JP19065881A 1981-11-30 1981-11-30 Electroplating method Pending JPS5893886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19065881A JPS5893886A (en) 1981-11-30 1981-11-30 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19065881A JPS5893886A (en) 1981-11-30 1981-11-30 Electroplating method

Publications (1)

Publication Number Publication Date
JPS5893886A true JPS5893886A (en) 1983-06-03

Family

ID=16261747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19065881A Pending JPS5893886A (en) 1981-11-30 1981-11-30 Electroplating method

Country Status (1)

Country Link
JP (1) JPS5893886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006807A3 (en) * 1998-07-30 2000-05-04 Hillebrand Walter Gmbh & Co Kg Alkali zinc nickel bath
DE19848467C5 (en) * 1998-10-21 2006-04-27 Walter Hillebrand Gmbh & Co. Kg Galvanotechnik Alkaline zinc-nickel bath
CN104878420A (en) * 2014-02-28 2015-09-02 应用材料公司 Methods For Electrochemical Deposition Of Multi-component Solder Using Cation Permeable Barrier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006807A3 (en) * 1998-07-30 2000-05-04 Hillebrand Walter Gmbh & Co Kg Alkali zinc nickel bath
US6602394B1 (en) 1998-07-30 2003-08-05 Walter Hillebrand Gmbh & Co. Galvanotechnik Alkali zinc nickel bath
EP1344850A1 (en) * 1998-07-30 2003-09-17 Walter Hillebrand GmbH & Co. Galvanotechnik Alkaline zinc-nickel bath
CZ298904B6 (en) * 1998-07-30 2008-03-05 Walter Hillebrand Gmbh & Co. Galvanotechnik Alkaline zinc-nickel bath
US7807035B2 (en) 1998-07-30 2010-10-05 Ewh Industrieanlagen Gmbh & Co. Kg Methods of plating zinc-containing coatings under alkaline conditions
US8486235B2 (en) 1998-07-30 2013-07-16 Ewh Industrieanlagen Gmbh & Co. Kg Alkaline zinc-nickel bath
DE19848467C5 (en) * 1998-10-21 2006-04-27 Walter Hillebrand Gmbh & Co. Kg Galvanotechnik Alkaline zinc-nickel bath
CN104878420A (en) * 2014-02-28 2015-09-02 应用材料公司 Methods For Electrochemical Deposition Of Multi-component Solder Using Cation Permeable Barrier

Similar Documents

Publication Publication Date Title
US5264097A (en) Electrodialytic conversion of complexes and salts of metal cations
US4306952A (en) Electrolytic process and apparatus
US5785833A (en) Process for removing iron from tin-plating electrolytes
JP5587895B2 (en) Chromium plating method from trivalent chromium plating bath
RU97100560A (en) METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID
US5419821A (en) Process and equipment for reforming and maintaining electroless metal baths
US5258109A (en) Electrodialytic conversion of complexes and salts of metal cations
RU2181150C2 (en) Method of pickling steel
CA2041045A1 (en) Method for electrolytic tin plating of steel plate
EP0043854B1 (en) Aqueous electrowinning of metals
CA1253453A (en) Addition of reducing agent to prevent degradation of low hydrogen overvoltage cathode
US4250004A (en) Process for the preparation of low overvoltage electrodes
US4276133A (en) Method for continuous electrolytic descaling of steel wire by non-contact current flow
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
JPS5893886A (en) Electroplating method
US5716512A (en) Method for manufacturing salts of metals
JP2982658B2 (en) Method of lowering metal concentration in electroplating solution
JPS6340868B2 (en)
EP0122775A1 (en) Method for making a cathode, and method for lowering hydrogen overvoltage in a chloralkali cell
JP4517177B2 (en) Treatment method of electroless nickel plating solution
JPS6160148B2 (en)
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
JPH0153358B2 (en)
JPS5928600A (en) Management of ferrous electroplating liquid
JPH0421792A (en) Method for electrolytically recovering ferric salt etching solution