JPS5892975A - Scanning mechanism for radiation type computer-aided tomograph - Google Patents

Scanning mechanism for radiation type computer-aided tomograph

Info

Publication number
JPS5892975A
JPS5892975A JP19251481A JP19251481A JPS5892975A JP S5892975 A JPS5892975 A JP S5892975A JP 19251481 A JP19251481 A JP 19251481A JP 19251481 A JP19251481 A JP 19251481A JP S5892975 A JPS5892975 A JP S5892975A
Authority
JP
Japan
Prior art keywords
slider
rotating shaft
detector
driving mechanism
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19251481A
Other languages
Japanese (ja)
Inventor
Shoichi Nakaoka
中岡 庄一
Shigeoki Wakabayashi
若林 重興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP19251481A priority Critical patent/JPS5892975A/en
Publication of JPS5892975A publication Critical patent/JPS5892975A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Abstract

PURPOSE:To improve the quality of a tomographic image reconstructed in an ECT with data excellent in the spatial resolution by reducing the distance from the body surface to a detector with the movement of a radiation detector on the track along the surface shape of an object to be inspected. CONSTITUTION:A scintilation camera 22 with a parallel porous collimator 23 is mounted on a slider 32 to face a patient 21 through an arm 31. The slider 32 mounted on a rotary frame 33 adapted to turn is mounted on a rotating shaft 34 of a rotary driving mechanism 35 containing a motor or the like in such a manner as to be slidable radially with respect to the rotating shaft 34 and incorporates a motor or the like. The slider 32 and the rotary driving mechanism 35 are controlled with a controller 37 to position a bed 20 so that the center axis of the patient 21 roughly aligns the rotating shaft 34 of the rotary driving mechanism 35.

Description

【発明の詳細な説明】 この発明は放射型コンピュータ断層撮影装置(以下、E
CT装置と略称する)の走査機構に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an emission computed tomography apparatus (hereinafter referred to as E
The present invention relates to a scanning mechanism of a CT device (abbreviated as a CT device).

従来のECT装置では放射線検出益金被検体(M@)の
周囲の円形軌道上に移動させてデータを採集するように
している。すなわちMINに示すように、患者11には
予め放射性元素が薬物として投与されてお〕、病巣等に
放射性元素が集積して偽る。放射線検出器として普通シ
ンチレーションカメラ12が用いられ、このシンチレー
ションカメラ12t1者11に向ける。
In the conventional ECT device, data is collected by moving the device on a circular orbit around the radiation detection object (M@). That is, as shown in MIN, a radioactive element has been administered as a drug to the patient 11 in advance], and the radioactive element accumulates in the lesion etc. and becomes false. A scintillation camera 12 is usually used as a radiation detector, and this scintillation camera 12t1 is directed toward the person 11.

このシンチレ〒シ、ンカメラ12には放射線入射方向を
規定するための平行多穴コリメータ18が備えられてお
〕、患者11の回りの円形軌道14上にシンチレーショ
ンカメラ12t−移動させて1回転するととKより患者
の病巣勢に集積した放射性元素の分布儂をコンピュータ
によって再構成するためのデ′−夕を得ることができる
This scintillation camera 12 is equipped with a parallel multi-hole collimator 18 for defining the direction of radiation incidence. Data for reconstructing by computer the distribution of radioactive elements accumulated in the patient's lesions can be obtained from K.

ところでコリメータ18によ)放射線入射方向を規定す
るようにしているが、その指向性社距離に応じて拡がる
ものである。そのため遠い距離にある放射性同位元素か
ら発せられた放射紐が入射する場合にはデータの空間分
解能は低)する。人間の胴体は普:Am後方向に薄く左
右。
Incidentally, although the collimator 18 is used to define the direction of radiation incidence, the directionality of the radiation is expanded according to the distance. Therefore, if a radiation string emitted from a radioactive isotope located far away is incident, the spatial resolution of the data will be low. The human torso is normal: Am thin in the posterior direction and on the left and right.

方向に拡がった伽平伏になっており、輪切りにしてみる
とその表面形状は円よりも楕円に近い。
It has a prostrate shape that spreads out in the direction, and when cut into rounds, its surface shape is closer to an ellipse than a circle.

そのため上記のようにシンチレーションカメラ12’を
円形軌道14上に移動させたので社、シンチレーション
カメラ12が患者11の胴体の前後に位flLでいると
きには左右に位置しているときよ〕も1看11の体表面
からの距1が長いため、空間分解能の低下したデータし
か得られず、これが原因で画像の分解能を向上させるこ
とができなかった。
Therefore, since the scintillation camera 12' is moved on the circular orbit 14 as described above, when the scintillation camera 12 is located at the front and back of the patient's 11's torso, it is positioned to the left and right. Because the distance 1 from the body surface is long, only data with reduced spatial resolution can be obtained, and because of this, it has not been possible to improve the image resolution.

本発明は上記に龜み、被検体の表面形状に沿った軌道上
に放射線検出at−移動させることで上記の分解能が低
下する欠点を改善したECT装置の走査機構を提供する
ことを目的とする。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a scanning mechanism for an ECT apparatus that improves the above-mentioned drawback of reduced resolution by moving radiation detection on a trajectory that follows the surface shape of a subject. .

以下、本発明の一実施例について図面を参照しながら説
明する。7112図において、ペッド20土に、1者2
1が横たえられている。この患者21に向くように平行
多穴コリメータ28を有するシンチレーションカメラ2
2が7−五81t−介してスライダ82に11iLシ付
けられている。このスライ〆82は、モータ勢を内蔵す
る(口)1駆動機構86の出力回転軸84に取シ付けら
れて回転するようにされた回転フレーム88に、(ロ)
転軸84に対して放射方向に摺動可能なように取り杓゛
けられている。このスライダ82にはモータ勢が内蔵さ
れており、図示しないう、クビニオン機構勢により回転
7レーム88に対する位置が定められるようになってい
る。回転駆動機構86はスタンP86により保持されて
いる。
An embodiment of the present invention will be described below with reference to the drawings. In figure 7112, ped 20 soil, 1 person 2
1 is lying down. A scintillation camera 2 having a parallel multi-hole collimator 28 facing the patient 21
2 is attached to the slider 82 via 7-581t. This slider 82 is attached to a rotating frame 88 which is attached to and rotates an output rotating shaft 84 of a driving mechanism 86 that has a built-in motor.
It is mounted so as to be slidable in the radial direction with respect to the rotating shaft 84. This slider 82 has a built-in motor, and its position with respect to the rotating frame 88 is determined by a cubinion mechanism (not shown). The rotational drive mechanism 86 is held by a stun P86.

スライダ82及び1転駆動機構85は制御装置87によ
り11ijJ伸されている。回転駆動機構86の回転軸
84に1者21の中心軸が略一致するようにベッド24
わ位置が定められる。
The slider 82 and the one-turn drive mechanism 85 are extended by 11ijJ by the control device 87. The bed 24 is arranged so that the center axis of the person 21 substantially coincides with the rotation axis 84 of the rotation drive mechanism 86.
The position is determined.

こうして回転駆動機構850回転軸340口転角度すな
わち目iフレーム880角縦毎にスライダ82の位置(
1転軸84からO距l1m)が制御装置87によnw@
され、患者21の中心軸からシンチレーションカメラ2
2までの距−が!l!8aに示すように角fL#毎に定
められて、jlii210表向形状が楕円である場合K
tj楕円軌道24上にシンチレーションカメラ22が移
動するととになる。
In this way, the position of the slider 82 (
1 rotation axis 84 (O distance l1m) is determined by the control device 87.
scintillation camera 2 from the central axis of the patient 21.
The distance to 2! l! As shown in 8a, if the surface shape of jlii210 is an ellipse, K
When the scintillation camera 22 moves on the tj elliptical orbit 24, it becomes .

このように患@21の体表INK沿った任意の軌道上に
シンチレーションカメラ22を移動させることができる
ため、どの角度でもシンチレーションカメラ22f体表
WMに振近させることができるので、角1jKよって空
間分解能の低下したデータしか得られなiという欠点が
改善できる。
In this way, the scintillation camera 22 can be moved along any trajectory along the body surface INK of the patient @21, so the scintillation camera 22f can be brought close to the body surface WM at any angle, so the angle 1jK The drawback that only data with reduced resolution can be obtained can be improved.

上記の実施例てFi廊看者21体amが楕円であるとし
てシンチレーシ、ンカメラ!2t41f円軌道24上に
移動させる場合について説明したが、人間olIIst
輪切プにしたとき0表11i形状祉むしろ円に近iので
、このような場合Ktj円形軌道土管移動させるように
し、また胴体におiて表面形状が楕円であるといっても
各人により異なるので、それに応じた楕円軌道上tS動
させるようにする。これらの軌道の制御は制御装置18
7によシ任意に行なえる。
In the above example, assuming that the 21 viewers in the Fi corridor are elliptical, the scintillation camera is set! We have explained the case of moving on the 2t41f circular orbit 24, but the human olIIst
When cut into rings, the shape is rather close to a circle, so in this case, the clay pipe should be moved in a circular orbit, and even though the surface shape of the body is an ellipse, it depends on each person. Since they are different, it is made to move on an elliptical orbit tS accordingly. These orbits are controlled by the control device 18
7. You can do this as you like.

以上、実施例について説明したように、本発明によれに
、被検体の体11!1lKaった軌道上に放射線検出益
を移動させてデータを採集するようKしたので、体l!
!阪から検出ltIまでの距離が平均して小さくな夛、
空間分解能の優れたr−タt−得ることがてきて、Ic
T装置として再構成する断層像0画質が良好になる。
As described above in the embodiments, according to the present invention, data is collected by moving the radiation detection result on a trajectory where the body of the subject is 11!1 Ka.
! The distance from the peak to the detected ltI is small on average,
It has become possible to obtain r-data with excellent spatial resolution, and Ic
The image quality of tomographic images reconstructed as a T device is improved.

【図面の簡単な説明】[Brief explanation of drawings]

[1−磨鉱従来の軌道を鋭−するための模式図、第2図
は本発明の一実施例を概略的に示す1lIIIili図
、第8図は本発明の一実施例の軌道を説明するための模
式図である。 11.21・・・被検体(II者)、 12.22−シンチレーションカメラ、18.28−・
コリメータ、14.24・・・軌道、82・・・スライ
ダ、  88・・・回転フレーム、86−・回転駆動機
構、87−・・制御装置。 出 願人 株式会社島津製作所
[1-Schematic diagram for sharpening the conventional trajectory of grinding ore, FIG. 2 is a diagram schematically showing an embodiment of the present invention, and FIG. 8 is a diagram explaining the trajectory of an embodiment of the present invention. FIG. 11.21...Subject (II person), 12.22-Scintillation camera, 18.28-.
Collimator, 14.24... Track, 82... Slider, 88... Rotating frame, 86-- Rotating drive mechanism, 87-... Control device. Applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] +1)  放射性元素が投与された被検体の中心軸に略
−欽するようその回転中心軸が設定された回転フレーム
と、この回転フレーム上管前記回転中心軸に対して放射
方向に移動可能な移動機構と、この移動機構に取シ付け
られ、特定の方向からの放射IMt入射させるためのコ
リメータを備えて前記被検体からの放射線の入射位置上
検出する検出器と、前記回転フレームの回転角度毎に前
記移動機構を制御し前記検出器の前記回転中心軸からの
距lIlを食えて、前記検出器が前記被検体の表面形状
に沿った軌道上に移動するようにする制御装置とからな
る放射型コンピュータwI′r層撮影装置の走査機構。
+1) A rotating frame whose central axis of rotation is set to be substantially parallel to the central axis of the subject to which the radioactive element has been administered, and an upper tube of this rotating frame capable of moving in a radial direction with respect to the central axis of rotation. a detector mounted on the moving mechanism and equipped with a collimator for making radiation IMt incident from a specific direction and detecting the incident position of radiation from the subject; and a control device that controls the moving mechanism so that the detector moves on a trajectory along the surface shape of the object by a distance lIl from the rotation center axis of the detector. Scanning mechanism of type computer wI'r layer imaging device.
JP19251481A 1981-11-30 1981-11-30 Scanning mechanism for radiation type computer-aided tomograph Pending JPS5892975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19251481A JPS5892975A (en) 1981-11-30 1981-11-30 Scanning mechanism for radiation type computer-aided tomograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19251481A JPS5892975A (en) 1981-11-30 1981-11-30 Scanning mechanism for radiation type computer-aided tomograph

Publications (1)

Publication Number Publication Date
JPS5892975A true JPS5892975A (en) 1983-06-02

Family

ID=16292545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19251481A Pending JPS5892975A (en) 1981-11-30 1981-11-30 Scanning mechanism for radiation type computer-aided tomograph

Country Status (1)

Country Link
JP (1) JPS5892975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888486A (en) * 1988-09-20 1989-12-19 Picker International, Inc. Scanning nuclear camera with automatic orbit shape modification
US5367169A (en) * 1991-06-07 1994-11-22 Sopha Medical Gamma camera with two opposite detectors having independent radial movements
US5705819A (en) * 1994-01-31 1998-01-06 Shimadzu Corporation Emission CT apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742873A (en) * 1980-08-28 1982-03-10 Toshiba Corp Emission ct

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742873A (en) * 1980-08-28 1982-03-10 Toshiba Corp Emission ct

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888486A (en) * 1988-09-20 1989-12-19 Picker International, Inc. Scanning nuclear camera with automatic orbit shape modification
US5367169A (en) * 1991-06-07 1994-11-22 Sopha Medical Gamma camera with two opposite detectors having independent radial movements
US5705819A (en) * 1994-01-31 1998-01-06 Shimadzu Corporation Emission CT apparatus

Similar Documents

Publication Publication Date Title
EP1848985B1 (en) Multiple mode flat panel x-ray imaging system
EP0932363B1 (en) Tomosynthesis system for breast imaging
JP4403840B2 (en) Medical diagnostic imaging equipment
US9173618B2 (en) Diagnostic imaging system and method using multiple types of imaging detectors
US6670614B1 (en) Volume cone beam acquisition on a nuclear spect system using a digital flat panel
US20100163736A1 (en) Spect gamma camera with a fixed detector radius of orbit
US20090113632A1 (en) System for medical imaging and a patient support system for medical diagnosis
EP0948930A1 (en) Acquiring volumetric image data
US20030031290A1 (en) X-ray computed tomographic imaging apparatus
CN105615911A (en) Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging
EP2821099B1 (en) X-ray therapy system
JPH0458944A (en) X-ray tomography photographing device
JP5317389B2 (en) Radiation tomography equipment
CN108472000A (en) The multi-detector imaging system detected using x-ray
US9915737B2 (en) Systems and methods for imaging with multi-head camera
JPH10268052A (en) Method and device for forming image
CN114886444A (en) CBCT imaging reconstruction method
Archer et al. Implementation and initial characterization of acquisition orbits with a dedicated emission mammotomograph
JP3089050B2 (en) SPECT image reconstruction method
JPS5892975A (en) Scanning mechanism for radiation type computer-aided tomograph
EP1921467B1 (en) Tomograph, tomography, tomography program, and computer-readable recording medium where the program is recorded
JP2009530617A (en) Nuclear medicine imaging system with highly efficient transmission measurement
US11096636B2 (en) Method and apparatus to obtain limited angle tomographic images from stationary gamma cameras
JP4353094B2 (en) PET equipment
JP4161468B2 (en) X-ray CT system