JPS5892917A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS5892917A
JPS5892917A JP19324181A JP19324181A JPS5892917A JP S5892917 A JPS5892917 A JP S5892917A JP 19324181 A JP19324181 A JP 19324181A JP 19324181 A JP19324181 A JP 19324181A JP S5892917 A JPS5892917 A JP S5892917A
Authority
JP
Japan
Prior art keywords
base
line
output
photometric output
baseline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19324181A
Other languages
Japanese (ja)
Other versions
JPH0432334B2 (en
Inventor
Kikuo Sasaki
佐々木 菊夫
Kenji Kawasaki
健治 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP19324181A priority Critical patent/JPS5892917A/en
Publication of JPS5892917A publication Critical patent/JPS5892917A/en
Publication of JPH0432334B2 publication Critical patent/JPH0432334B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Abstract

PURPOSE:To provide a simple and less-expensive spectrophotometer, wherein a high precision of measurement is ensured through a compensation for the drift of the light source intensity, by a process having the steps of determining the mean values of the base-line signals for respective time sections of a suitable time interval, calculating the rate of change of the base-line signal in relation to time from the mean values of base- line signals of three successive time sections, and making a base-line correction by estimating the mean value of the base-like signals in the fourth time section. CONSTITUTION:The spectrophotometer has a photometer PM, pre-amplifier PA, subtractor SUB, signal processing unit S and a display unit D for displaying the measured value after a base-line correction. The photometric output derived from the pre-amplifier PA is transmitted to the subtractor SUB in which a base-line correction value is subtracted from the photometric output to produce a corrected photometric output. The photometric output is then delivered to the signal processing unit S which processes the photometric output into, for example, an absorbance, the result of which is put on display in the display unit D. A base-line correction signal generating circuit CG produces the correction value which is delivered to the subtractor SUB as a negative value. The essence of this invention resides in the construction of the base-line signal generator CG.

Description

【発明の詳細な説明】 本発明は分光分析装置に関し、特に分光分析装置におけ
るベースライン補正装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spectroscopic analyzer, and more particularly to a baseline correction device in a spectroscopic analyzer.

吸光分光分析においては光源強度の時間的なドリフトが
測定結果においてベースラインのドリフトとなって表れ
る。この測定結果におけるベースラインドリフトの補正
にはダブルビーム方式の分光光度計を必要とする。即ち
光源の光を2光束に分割し一方の光束は試料セルを通し
、他方の光束−は対照セルを通して、対照セルを通した
光束の測光出力が一定になるように測光回路の感度を制
御する。しかしダブルビーム型分光光度計は装置が複雑
で高価である。また発光分析では試料励起源の出力ドリ
フト等で測定結果のベースラインにドリフトを生ずる。
In absorption spectroscopy, a temporal drift in the light source intensity appears as a baseline drift in the measurement results. A double-beam spectrophotometer is required to correct the baseline drift in this measurement result. That is, the light from the light source is divided into two beams, one beam passes through the sample cell, the other beam passes through the control cell, and the sensitivity of the photometric circuit is controlled so that the photometric output of the light beam that passes through the control cell is constant. . However, the equipment of the double beam spectrophotometer is complicated and expensive. Furthermore, in emission analysis, a drift in the baseline of the measurement results occurs due to output drift of the sample excitation source.

このようなベースラインのドリフトの補正がシングルビ
ーム方式の分光光度計によっても可能となれば安価な装
置で高精度の分析ができて大へん有利である。このよう
な観点に立って本発明は、シングルビーム方式の分光光
度計におけるベースライン補正手段を提供しようとする
ものである。
If it were possible to correct such baseline drift using a single-beam spectrophotometer, it would be very advantageous because it would allow highly accurate analysis with inexpensive equipment. From this viewpoint, the present invention provides a baseline correction means for a single beam spectrophotometer.

本発明は適当な時間間隔で取った各時間区間毎のベース
ライン信号の平均値を求め、相続く3つの区間における
ベースライン信号平均値から、ベースライン信号の時間
的変化率の時間的変化率を算出し、このベースライン信
号の時間的変化率の時間的変化率が上記相続く3つの区
間に続く4番目の区間においても維持されているとして
同区間のベースライン信号平均値を外挿的に算出してベ
ースライン補正を行うようにした装置を提供するもので
ある。以下実施例によって本発明を説明する。
The present invention calculates the average value of the baseline signal for each time interval taken at appropriate time intervals, and calculates the temporal change rate of the baseline signal from the baseline signal average value in three successive intervals. Then, assuming that the temporal change rate of this baseline signal is maintained in the fourth interval following the above three successive intervals, the baseline signal average value of the same interval is extrapolated. The present invention provides an apparatus that performs baseline correction by calculating. The present invention will be explained below with reference to Examples.

第1図は本発明の一実施例の概要を求す。PMは光検出
器、FAはプリアンプ、SUBは引算器、Sは信号処理
部、Dは表示装置でベースライン補正された測定値が表
示される。プリアンプFAの出力は生の測光出力で、引
算器SUBにおいて、この生の測光四方からベースライ
ン補正値が引算されたものが補正された測光出力であシ
、この測光出力に対し信号処理部Sで吸光度値への変換
等の処理が行われて表示部りで表示される。Caがベー
スライン補正信号発生器でその出力信号が引算器SUB
に減数として印加される。本発明の要部はこのベースラ
イン補正信号発生器の構成にある。
FIG. 1 provides an overview of one embodiment of the invention. PM is a photodetector, FA is a preamplifier, SUB is a subtracter, S is a signal processing unit, and D is a display device, on which baseline-corrected measured values are displayed. The output of the preamplifier FA is the raw photometric output, and the subtracter SUB subtracts the baseline correction value from this raw photometric output to obtain the corrected photometric output.This photometric output is subjected to signal processing. In the section S, processing such as conversion into an absorbance value is performed, and the result is displayed on the display section. Ca is the baseline correction signal generator and its output signal is the subtracter SUB
is applied as a subtractive number to . The main part of the present invention lies in the configuration of this baseline correction signal generator.

第2図は上記ベースライン補正信号発生器CGの構成を
示す。プリアンプFAの出力は第1の積分器工1に入力
される。Soは同積分器のリセットスイッチで一定時間
間隔Δtで短時間オンせしめられ積分器■1をクリヤす
る。この動作を第3図のタイムチャートのSO及び工1
で示す。従って積分器工1はΔを時間内の生の測光出力
即ちベースライン変動を含んだ測光出力を積分するから
、Δtの終りにおける工1の出力は時間区間Δを内のベ
ースライン信号の平均値を示す。この工1の出力はSo
がオンするタイミングよりわづか早いタイミングでオン
するメモリスイッチS1を通して第1のメモリ(サンプ
ルホールド回路)Mlに入力され記憶される。この動作
のタイムチャートを第3図81に示す。M2.M3は夫
々第2.第3のメモリであり、B2はMlとM2の間を
つなぐメモリスイッチ、83はM2とM3との間をつな
ぐメモリスイッチで、第3図のタイムチャートで82.
B3で示すように、83が一番速いタイミング、82が
その次、Slが更にその次と云うように83から81更
にSOへと順におくれてオンとなる。このためB2がオ
ンするタイミングではメモリM1は未だ積分器工1の新
しい出力を続込んでおらず、その一つ前の時間区間のベ
ースライン信号の平均値を保持しておシ、これがM2に
読込まれる。同様にしてM3は更にもう一つ前の時間区
間の平均ベースライン信号を記憶する。第3図のタイム
チャートで区間にj  J  j−1rj2等と識別符
号をつけである。この符号を利用すると、メモリM3は
j−2の平均ベースラインBj−2を記憶し、M2はj
−1の平均ベースラインBj−1を、Mlはjにおける
平均ベースラインBjを記憶する。上の動作は継続的に
行われているので、こSでjはΔtの時間間隔で1,2
.3.・・・と変って行く。SCはスイッチコントロー
ル部でスイッチSo、81〜S3を上述したダイミング
でオンオフさせている。5UBI、5UB2は夫々第1
及び第2の引算器(第1図のSUBとは別の物)で、5
UB1はXj−Bj−(Bj−1)を算出し、5UB2
は(Xj−1)−(Bj−1) −(Bj−2)を算出
する。5UBIの出力Xは2乗算器SQに入力される。
FIG. 2 shows the configuration of the baseline correction signal generator CG. The output of the preamplifier FA is input to the first integrator 1. So is a reset switch of the integrator and is turned on for a short time at constant time intervals Δt to clear integrator 1. This operation is performed in SO and 1 in the time chart in Figure 3.
Indicated by Therefore, since the integrator 1 integrates the raw photometric output within the time period Δ, that is, the photometric output including the baseline fluctuation, the output of the integrator 1 at the end of Δt is the average value of the baseline signal within the time interval Δ. shows. The output of this process 1 is So
The signal is input to the first memory (sample and hold circuit) M1 through the memory switch S1, which is turned on at a timing slightly earlier than the timing at which the signal is turned on, and is stored therein. A time chart of this operation is shown in FIG. 381. M2. M3 is the second. It is a third memory, B2 is a memory switch that connects Ml and M2, 83 is a memory switch that connects M2 and M3, and in the time chart of FIG. 3, 82.
As shown by B3, 83 is turned on at the quickest timing, 82 is next, Sl is the next, and so on from 83 to 81 and then to SO in order. Therefore, at the timing when B2 turns on, memory M1 has not yet received the new output from integrator 1, and holds the average value of the baseline signal of the previous time interval, which is transferred to M2. Read. Similarly, M3 stores the average baseline signal of one more previous time interval. In the time chart of FIG. 3, the intervals are given identification codes such as j J j-1rj2. Using this code, the memory M3 stores the average baseline Bj-2 of j-2, and M2 stores the average baseline Bj-2 of j-2.
-1, and Ml stores the average baseline Bj at j. Since the above operation is performed continuously, j in this S is 1, 2 at a time interval of Δt.
.. 3. ...and it changes. SC is a switch control unit that turns on and off the switches So and 81 to S3 by the above-mentioned dimming. 5UBI and 5UB2 are respectively the first
and a second subtractor (different from SUB in Figure 1), 5
UB1 calculates Xj-Bj-(Bj-1), and 5UB2
calculates (Xj-1)-(Bj-1)-(Bj-2). The output X of 5UBI is input to the 2 multiplier SQ.

SQの出力YはXj  である。 DVは割算器でL=
Xj2/(寓j−1)算出する。Lは区間1,2.・・
・j−2,j−1,、L  j+1+・・・・・・にお
いて、4番目の区間から以後各区間毎に計算される。工
2は第2積分器で各区間毎に得られる上記りの値を積算
して行く。VRは工2の出力を適当に減衰するボリュー
ムで同ボリュームの出力がベースライン補正信号で第1
図の引算器SU、Bに減数として印加される。
The output Y of SQ is Xj. DV is a divider and L=
Calculate Xj2/(j-1). L is section 1, 2.・・・
- In j-2, j-1, L j+1+..., it is calculated for each interval from the fourth interval. Step 2 is a second integrator that integrates the above values obtained for each section. The VR is a volume that appropriately attenuates the output of the second controller, and the output of the same volume is the baseline correction signal and the first
It is applied as a subtractor to the subtracters SU and B in the figure.

第2図の回路における上述演算動作の意味を第4図のグ
ラフによって説明する。同図でlはプリアン7FAの出
力である。Bl、  B2.・・・は各区間1.礼・・
・におけるjの平均値で第1積分器工1の出力を示す。
The meaning of the above arithmetic operation in the circuit of FIG. 2 will be explained with reference to the graph of FIG. 4. In the figure, l is the output of the preamplifier 7FA. Bl, B2. ... is for each section 1. Thanks...
The output of the first integrator 1 is indicated by the average value of j at .

B3−B2=X3.B2−Bl=X2とする。一般には
Bj−(Bj−1)=Xj、(Bj−1)−(Bj−2
)=Xj−1で4る。区間2,3間の平均傾斜d3は a3=(Ba−Bz)7Δt=x37Δを同様にして区
間1,2間の平均傾斜d2はd2=X2/Δt である。一般的にdj=xd、1−1と考えると、K=
cL3/42であり、区間3,4間の平均傾斜の予測値
d4は となる。区間3,4間のjの平均値の変化分x4はΔ1
.Xd4である。d4はX3等を使って書直すと d4=(X3/jt)/(X2/、(t)= (X3)
/X2・Δt であるからX4:(X3)/X2となる。割算器DVは
この演算を行っている。ベースライン補正信号は区間4
に至って始めて得られ、以後各区間毎に求まって行く。
B3-B2=X3. Let B2-Bl=X2. In general, Bj-(Bj-1)=Xj, (Bj-1)-(Bj-2
)=Xj-1 equals 4. Similarly, the average slope d3 between sections 2 and 3 is a3=(Ba-Bz)7Δt=x37Δ, and the average slope d2 between sections 1 and 2 is d2=X2/Δt. Generally speaking, considering dj=xd, 1-1, K=
cL3/42, and the predicted value d4 of the average slope between sections 3 and 4 is as follows. The change x4 in the average value of j between sections 3 and 4 is Δ1
.. It is Xd4. If d4 is rewritten using X3 etc., d4 = (X3/jt)/(X2/, (t) = (X3)
/X2·Δt, so X4:(X3)/X2. The divider DV performs this operation. The baseline correction signal is section 4
It is obtained only when , and thereafter it is obtained for each section.

Xjはjの区間平均の変化分だからこれを積算したもの
が各区間のjの値となる。
Since Xj is the change in the interval average of j, the value of j for each interval is obtained by integrating this.

第2積分回路工2はこの積算を行っており、積算は区間
4から始まるからベースライン補正信号はC7のように
なる。これを引算器1111UBでlから引算すること
によ多区間4以後”ベースライン補正が行われることに
なる。上の計算でdj=Kdj−1と仮定することの意
味はベースラインの時間微分関数を指数関数で近似する
ことであるが、相続く3つの区間の間のベースラインの
導関数に対して指数関数で近似させることは常に可能で
あり、かつこの指数関数は常に各区間を含むその前2つ
の区間の実測から定めていることになっており、従って
近似の誤差が累積すると云うことはない。
The second integrating circuit 2 performs this integration, and since the integration starts from section 4, the baseline correction signal becomes C7. By subtracting this from l using the subtractor 1111UB, baseline correction will be performed after interval 4.The meaning of assuming dj = Kdj-1 in the above calculation is that the baseline time Approximating the differential function by an exponential function.It is always possible to approximate the derivative of the baseline between three consecutive intervals by an exponential function, and this exponential function always approximates each interval by an exponential function. It is determined based on actual measurements of the previous two sections, so there is no possibility that approximation errors will accumulate.

近似法として2次式を適用することももちろん可能であ
る。この場合は平均傾斜djとdj−1との差が2次微
分に相当し、これを定数とみなすことになるから、dj
−1−1=2dj−(dj−1)−c’sす、Xj+1
=2!xj−(xj−1)で与えられる。
Of course, it is also possible to apply a quadratic equation as an approximation method. In this case, the difference between the average slope dj and dj-1 corresponds to the second derivative, and this is regarded as a constant, so dj
-1-1=2dj-(dj-1)-c's, Xj+1
=2! It is given by xj-(xj-1).

なお第2図でスイッチSwはベースライン補正動作をオ
ンオフするスイッチで、これをオフするとスイッチSo
、81〜S3がオンして、第1積分器工1及び第1〜第
3メモIJMI〜M3がクリヤされ、SWをオンすると
補正動作が再開されて:1 3区間経過後からベースライン補正信号が出力され始め
る。この間第2積分器工2には補正動作停止前のベース
ライン補正信号が保持されており、試料測定はスイッチ
Swを一時的にオフしてその間に行う。スイッチS4は
第2積分器工2をクリヤするスイッチである。
In Fig. 2, the switch Sw is a switch that turns on and off the baseline correction operation, and when it is turned off, the switch So
, 81 to S3 are turned on, the first integrator 1 and the first to third memorandums IJMI to M3 are cleared, and when the SW is turned on, the correction operation is restarted. After the lapse of 13 sections, the baseline correction signal is output. begins to be output. During this time, the baseline correction signal before the correction operation is stopped is held in the second integrator 2, and the sample measurement is performed while the switch Sw is temporarily turned off. The switch S4 is a switch that clears the second integrator 2.

本発明分光光度計は上述したような構成で、シングルビ
ーム方式の分光光度計であっても光源強度等のドリフト
の補正ができるので、装置が簡単安価でしかもダブルビ
ーム方式の分光光度計を用いるのと同程度の高精度測定
が可能となる。
The spectrophotometer of the present invention has the above-described configuration, and even if it is a single-beam spectrophotometer, it can correct for drifts in light source intensity, etc., so the device is simple and inexpensive, and a double-beam spectrophotometer is used. This makes it possible to perform measurements with the same degree of precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の概要を示すブロック図
、第2図は上記における補正信号発生器の詳細を示すブ
ロック図、第S図は上記装置の動作を説明するタイムチ
ャート、第4図は演算動作を説明するグラフである。 SUB・・・引算器、CG・・2ベ一スライン補正信号
発生器、PM・・・検出器、S・・・信号処理部、D・
・・表示装置。 代理人 弁理士  縣   浩  介 =8′−
FIG. 1 is a block diagram showing an overview of an embodiment of the device of the present invention, FIG. 2 is a block diagram showing details of the correction signal generator in the above, FIG. S is a time chart explaining the operation of the above device, and FIG. FIG. 4 is a graph explaining the calculation operation. SUB...Subtractor, CG...2 baseline correction signal generator, PM...Detector, S...Signal processing unit, D...
...Display device. Agent: Patent attorney Kosuke Agata = 8'-

Claims (1)

【特許請求の範囲】[Claims] 引算器とベースライン補正信号発生器とを備え、引算器
には生の測光出力が被減数として、また上記ベースライ
ン補正信号発出器の出力が減数として印加されるように
なっており、上記ベースライン補正信号発生器は適宜時
間幅を持つ相違らなった時間区間毎の生の測光出力の平
均値を求め、過去複数の区間の上記平均値から次の区間
の測光出力を外挿演算して出力信号とするようになって
いることを特徴とする分光光度計。
A subtracter and a baseline correction signal generator are provided, and the raw photometric output is applied to the subtractor as a minuend, and the output of the baseline correction signal generator is applied as a subtrahend, and the above-mentioned The baseline correction signal generator calculates the average value of the raw photometric output for each different time interval with an appropriate time width, and extrapolates the photometric output of the next interval from the above average value of the past multiple intervals. A spectrophotometer characterized in that the spectrophotometer is configured to output an output signal.
JP19324181A 1981-11-30 1981-11-30 Spectrophotometer Granted JPS5892917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19324181A JPS5892917A (en) 1981-11-30 1981-11-30 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19324181A JPS5892917A (en) 1981-11-30 1981-11-30 Spectrophotometer

Publications (2)

Publication Number Publication Date
JPS5892917A true JPS5892917A (en) 1983-06-02
JPH0432334B2 JPH0432334B2 (en) 1992-05-29

Family

ID=16304674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19324181A Granted JPS5892917A (en) 1981-11-30 1981-11-30 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS5892917A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112546A (en) * 1979-02-23 1980-08-30 Hitachi Ltd Atomic extinction analysis meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112546A (en) * 1979-02-23 1980-08-30 Hitachi Ltd Atomic extinction analysis meter

Also Published As

Publication number Publication date
JPH0432334B2 (en) 1992-05-29

Similar Documents

Publication Publication Date Title
US3646331A (en) Automatic 100{11 line adjustment of spectrophotometers
US4126396A (en) Device for the non-dispersive optical determination of the concentration of gas and smoke components
EP0091126A2 (en) Fluorimeter
JP2000500875A (en) Improved spectrophotometer
US5013920A (en) Infrared analyzer with improved calibration
JPH06105217B2 (en) Spectrometry
JPS5892917A (en) Spectrophotometer
EP0261452B1 (en) Gas analyzer
JPS6140928B2 (en)
US20220155218A1 (en) Circular dichroism measurement device and circular dichroism measurement method
JPH10104215A (en) Absorbance detector, chromatographic device, absorbance detecting method, and chromatographic analyzing method
JPS5920665Y2 (en) Atomic absorption spectrometer
US5402242A (en) Method of and an apparatus for measuring a concentration of a fluid
JP2002350232A (en) Light spectrum detection method, and light spectrum detection program, light spectrum detector spectroscope and laser device using it
US5090812A (en) Ring laser cavity backscatter measurement
JPH0249459B2 (en) KYUKOBUNSEKIKEI
JPH0116037Y2 (en)
JPS58139036A (en) Spectrophotometer
JPS61281944A (en) Atomic absorption analyzing instrument
JPH0519651B2 (en)
JPS63300941A (en) Zero correcting device for optical measuring instrument
JPS626493Y2 (en)
JPS63243822A (en) Data processing method for array type detector
JPH03162651A (en) Polarization type differential refractometer
JPS59182340A (en) Spectrofluorophotometer