JPS5892805A - Detector for inclination of plane plate - Google Patents

Detector for inclination of plane plate

Info

Publication number
JPS5892805A
JPS5892805A JP20021782A JP20021782A JPS5892805A JP S5892805 A JPS5892805 A JP S5892805A JP 20021782 A JP20021782 A JP 20021782A JP 20021782 A JP20021782 A JP 20021782A JP S5892805 A JPS5892805 A JP S5892805A
Authority
JP
Japan
Prior art keywords
mask
wafer
fresnel
light
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20021782A
Other languages
Japanese (ja)
Other versions
JPS6037403B2 (en
Inventor
Shoichi Tanimoto
昭一 谷元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP20021782A priority Critical patent/JPS6037403B2/en
Publication of JPS5892805A publication Critical patent/JPS5892805A/en
Publication of JPS6037403B2 publication Critical patent/JPS6037403B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the inclination of a mask stably with a simple constitution, by irradiating an array of Fresnel zones, which is formed on the rear face of the mask, with rays and observing an optical image converged by the reflected light of a wafer. CONSTITUTION:Eight Fresnel zone plates similar to a zone plate 13-8 are arranged on the rear face of a mask 11 to form one set of a zone array 13. When the mask 11 is irradiated with a parallel light from above, the third-order focus of the zone array 13 is observed as a light spot by the reflected light from a wafer 12. If the mask 11 and the wafer 12 are parallel with each other, only a light spot 16 looks bright. If the wafer 11 is inclined, plural zone plates have bright centers. Thus, the inclination of the wafer 11 is measured stably with a simple constitution.

Description

【発明の詳細な説明】 本発明は平板の傾きを測定する几めの傾き検出装置に関
する。例えばフォトマスクを用いたIC,L8Iのパタ
ーン焼付法のうち、プロキレミティ法とコンタクト法に
おりてはフォトマスクとウェハの関−の測定とその制御
が重要な問題の1つとなる。即ち、プロキシミテイ法で
は、マスクとウニへの1ライメント及び露光の間、コン
タクト法では7ライメントを行なう闇、マスクとウェハ
の間隙を数S南〜数十μ輌の設定値に保たねばならない
。アライメント時に設定間隔よりもマスクとウェハが接
近しすぎると、マスクとウェハが接触する危険性が嵩く
なり、ウェハだけでなく、マスク會も痛めることがあり
、壕九間隙が大きすぎると、マスクとウェハのパターン
が同時に7ライメント用顕微−の焦点SJt内に入るこ
とができなくなったり、閣麺の場所むら、すなわち傾き
が起つたりして、°アライメントに誤差が生−じやすい
。壕九プロキシミテイ法にお9ては露光焼付時にマスク
とウェハの関−が所定値を越えると回折現象が顕著にな
り、パターンが正確に焼付けされない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a precise inclination detection device for measuring the inclination of a flat plate. For example, among IC and L8I pattern printing methods using a photomask, measuring and controlling the relationship between the photomask and the wafer is one of the important issues in the proximity method and the contact method. That is, in the proximity method, 1 line between the mask and the sea urchin and 7 lines during exposure, and in the contact method, 7 lines are made.The gap between the mask and the wafer must be maintained at a set value of several S to several tens of microns. . If the mask and wafer are too close to each other than the set interval during alignment, there is an increased risk of contact between the mask and wafer, which may damage not only the wafer but also the mask assembly. The pattern on the wafer and the wafer may not be able to enter the focal point SJt of the 7-alignment microscope at the same time, or the position of the noodles may be uneven, that is, the pattern may be tilted, which tends to cause errors in alignment. In the trench proximity method, if the relationship between the mask and the wafer exceeds a predetermined value during exposure and printing, the diffraction phenomenon becomes noticeable and the pattern cannot be printed accurately.

また、回折効果が著しく小さい短波長の電磁波での焼付
けにおいて4マスクとウェハの傾きが生じると焼付けさ
れ喪パターンとマスクのパターンの間に一差を生じる。
Furthermore, if a tilt occurs between the mask and the wafer during printing using short-wavelength electromagnetic waves in which the diffraction effect is extremely small, a difference will occur between the printed pattern and the mask pattern.

ウェハやマスクに接触子を当てる方法では接触部分に傷
をつける恐れがあるので、この間隙や傾きの測定は非接
触で行なうことが望ましい。従来、このような間隙の非
接触Ml定は、空気マイクロメータや靜電容普の変化を
利用した方法や、あるいは光学的には平行光41をマス
クとウェハに対して斜めに入射させて、マスクとウェハ
によって反射され九光線の位置ずれ量t 611足した
りしてなされてきた。
Since the method of applying a contact to a wafer or mask may damage the contact portion, it is desirable to measure the gap and inclination without contact. Conventionally, such non-contact Ml determination of the gap has been carried out using a method using an air micrometer or a change in electrostatic capacity, or optically by making parallel light 41 incident obliquely on the mask and wafer. This has been done by adding the amount of positional deviation t611 of the nine rays reflected by the wafer.

これらの方法のうち、第1と第2の者は測定器の指示値
と間隙量を較正する必要がある。
Of these methods, the first and second methods require calibrating the reading of the measuring device and the gap amount.

まえ、第3の方法では、光線の横ずれにより測定するが
、これは原理的に較正の必要はないが、測定感度を上げ
ようとすれば入射角が大きくなり、測定光学系が大きく
なることは避けられない。現在用いられているウェハの
直lkは兼大の大きさで5インチであり、その場合でも
測定点は最低3点は必要であるからs”xi=ミニセン
サきくなると装置化が困−になる。
In the third method, measurement is performed using the lateral shift of the light beam, which does not require calibration in principle, but if you try to increase the measurement sensitivity, the angle of incidence will increase and the measurement optical system will become larger. Inevitable. The diameter of the wafer currently used is 5 inches, and even in that case, at least three measurement points are required, so if s"xi = mini sensor, it becomes difficult to implement the device.

本発明の目的は、較正が否喪で、大きな測定センサを必
要とせず、構造が簡単で、安定な傾き測定が可能となる
傾き検出装置を提供することである。。
An object of the present invention is to provide a tilt detection device that is easy to calibrate, does not require a large measurement sensor, has a simple structure, and is capable of stable tilt measurement. .

次に1本発明の実施例を図に着いて説明するが、その前
に2つの平板の間Ht−フレネル帝板倉用いて測定する
ことについて第1図に基づき説明する。第1図(4)は
マスク1とウェハ2の関[t−6111mする為のフレ
ネル輸帯板3tマスク1に取りつけ丸干面図で縞1図(
B)riその断面図である。
Next, an embodiment of the present invention will be explained with reference to the drawings, but before that, the measurement using an Ht-Fresnel plate chamber between two flat plates will be explained based on FIG. 1. Fig. 1 (4) shows the fresnel band plate 3t attached to the mask 1 for the connection between the mask 1 and the wafer 2 [t-6111m] and the stripe 1 diagram (
B) ri is a cross-sectional view thereof.

第1図において、フレネル輪帯板aは、同心円の内から
n番目の輪帯の中値r rhがr n  ” 21 f
「、  1==l、 z、 3  ”・・””・(Z)
で表わされるような円で区切られる慣域【。
In FIG. 1, the Fresnel zone plate a has a median value r rh of the n-th zone from the concentric circles.
“, 1==l, z, 3 ”・・””・(Z)
A customary area delimited by a circle as represented by [.

中心から交互に光の透過部分3aと不透過部分3bに分
は喪ものである。中心を光が透過する部分31で形成し
たものとしないもの2種類があるが1本発明に利用する
のは中心を透過部分3aにした方である。
Light transmitting portions 3a and non-light transmitting portions 3b are arranged alternately from the center. There are two types, one in which the center is formed with a light-transmissive portion 31 and one in which it is not, but the one that is used in the present invention is the one in which the center is formed as a light-transmissive portion 3a.

陶、I/I41図においてr、は透過部分3aの中心か
ら第1の不透過部分の円周壕での半径を示す、不透過部
分3bの形成は、マスク1上にクロムを一様に0.3s
厚に蒸着し、透過部分3a1r除去して行なわれる。フ
レネル輪帯板3のレンズ作用は古くから知られており。
In Figure I/I41, r indicates the radius from the center of the transparent part 3a to the circumferential trench of the first non-transparent part.The formation of the non-transparent part 3b is done by uniformly applying 0% chromium on the mask 1. .3s
This is done by depositing it thickly and removing the transparent portion 3a1r. The lens action of the Fresnel zone plate 3 has been known for a long time.

1つの輪帯板に対し、埋―上無限個の焦点が存在する。There are an infinite number of focal points for one annular plate.

その焦点距離は、 である。友だし、λは光の波長である。Its focal length is It is. It's a friend, and λ is the wavelength of light.

輪帯の数、即ち、nの最大値tNとおくとNが10程蜜
以上であれば結儂炸用があることが確かめられているが
平行光を収光し、スポットとし九の′t−観測するだけ
ならばNく10のときでも可能である。また、1次の焦
点が酸もはっきり観測され、高次の焦点になるに従って
ぼやけてくる。8〜10機度で3次の焦点までは明瞭に
−mJされる◎ 第1図(B)において、マスク上方からの平行7−光ま
たは平行に近い入射光でもって、マスク1の回路パター
ン(不図示)と同一面に形成されたフレネル輪帯板3t
−照明する。フレネル輪帯板3の透過部3at−透過し
た光線は(2)弐〜(5)式で表わされる各次数の焦点
距1111It−持つ焦点例えば1次焦点(不図示)、
3次焦点4.5火熱点5に収束していくが、焦点距離が
マスク1とウェハ2との間隙より長−場合滑らかなウェ
ハ2表面によって反射される。
It has been confirmed that if the number of rings, that is, the maximum value of n, is tN, then if N is about 10 or more, there will be an explosive effect. -If you just observe it, it is possible even when N times 10. In addition, acid is clearly observed at the primary focus, and becomes blurred as it becomes a higher-order focus. The third focal point is clearly -mJ at 8 to 10 degrees. In Figure 1 (B), the circuit pattern of mask 1 ( Fresnel annular plate 3t formed on the same surface as (not shown)
-Illuminate. Transmissive portion 3at of Fresnel zone plate 3 - The transmitted light beam has a focal length 1111It of each order expressed by equations (2) (2) to (5) - for example, a primary focus (not shown),
The tertiary focus 4.5 converges on the hot spot 5, but if the focal length is longer than the gap between the mask 1 and the wafer 2, it will be reflected by the smooth surface of the wafer 2.

反射の際、光量の減少を多少伴うが、光−はm面で反射
する場合と同じ場所を通過し、斉次の焦点を空間中に結
ぶ。開口数の大きな、即ち焦点深度の浅い対物レンズを
つけた顕微7鏡(不図示)でマスク1上からフレネル輪
帯板3?−察すると、焦点がフレネル輪帯板3と同−面
内にあるとき、即ち、焦点距離が間隙の丁jW211!
Iになったとき明るい光点4が第1図(4)の叩くフレ
ネル輪帯板3の中心に見える。
Upon reflection, the amount of light is somewhat reduced, but the light passes through the same location as when it is reflected on the m-plane, and is focused uniformly in space. Using a microscope 7 (not shown) equipped with an objective lens with a large numerical aperture, that is, a shallow depth of focus, the Fresnel zone plate 3? - It can be seen that when the focal point is in the same plane as the Fresnel zone plate 3, that is, the focal length is in the gap.
When it becomes I, a bright light spot 4 can be seen at the center of the Fresnel zone plate 3 to be struck as shown in FIG. 1 (4).

更に詳述すると、IC,L8Iのパターン焼付の時のよ
うに、10μm#恢の間隙t−J足する嚇曾、フレネル
ー′帝板3は間隙の2倍の20μm前後の焦点距離を必
袂とする。前述し次ように1次の焦点が域も明瞭である
のでできるだけこれを用いたいが、波長0.546μm
 (水銀の・線)の光で観測する場合、fl=204m
 とすると(2)式よりrl==3.3mm となり、
N=10とすると最も外側の輪帯(f)rpQは(1)
式よりrlO−rsW o、 53 pm  となり、
現在のマスクパターン形成技術ではほぼ限界的な大きさ
である。そこで、1次の焦点を利用する場合より輪帯の
幅が広くな)うる3次の焦点を利用することを考える。
To explain in more detail, as in the case of pattern printing for IC and L8I, it is necessary to add a gap t-J of 10 μm, and the focal length of Fresnel's board 3 must be around 20 μm, which is twice the gap. do. As mentioned above, the first-order focus area is clear, so I would like to use this as much as possible, but the wavelength is 0.546 μm.
When observing with light of (mercury line), fl = 204 m
Then, from equation (2), rl==3.3mm,
If N=10, the outermost ring zone (f)rpQ is (1)
From the formula, rlO−rsW o, 53 pm,
This is almost the limit size for current mask pattern forming technology. Therefore, consider using a third-order focus, which has a wider annular zone than when using a first-order focus.

波長をα546声隋、t@=20s銅とすると、(3)
式1式% と(1)式よりr te −rs =0.91 amで
あってや−はり技術的な限界値ではあるが、1火熱点を
利用するのに比べれば形成は容易である。このような黴
細なパターンの形成技術は現在発達の段階にあり、フレ
ネル輪帯板3の透過部3ai九は不透過部3bの帯t−
実際に形成した場合、その幅が設計値より多少太くなっ
たbIlf8<なつ九りすることがある。このような幅
の多少の増減は帯の縁が両側に均等に増減する場合、焦
点距離に影響を与えず、収束され九光点のコントラスト
を減少させるだけである。もちろん、数1071111
以上の関lit測定する場合には1次の焦点を用いた方
が明るい光点を見ることができて望ましい。3次の焦点
を利用する場合、マスク1に対してウェハ2t#れた位
置から近づけてい、〈と蛾初に1次の焦点の光点が兇え
1次に3次の焦点の光点が法える。3次の焦点の焦点距
1lIIを設定する間隙の2倍にしておけば3次の焦点
が蒐えるときに間隙が設だ値であることがわかる。
If the wavelength is α546 and t@=20s copper, (3)
From Equation 1 and Equation (1), r te −rs =0.91 am, which is still a technical limit value, but is easier to form than using one hot spot. The technology for forming such fine patterns is currently in the development stage, and the transparent part 3ai9 of the Fresnel zone plate 3 is similar to the band t- of the non-transparent part 3b.
When actually formed, the width may be slightly thicker than the designed value, i.e., bIlf8<n>. Such a slight increase or decrease in width will not affect the focal length if the edge of the band increases or decreases equally on both sides, but will only reduce the contrast of the nine converged light points. Of course, the number 1071111
When performing the above-mentioned light measurement, it is preferable to use a first-order focal point because it allows a brighter point of light to be seen. When using a tertiary focal point, the wafer 2t is approached from the mask 1, and the light point of the primary focal point increases at the beginning, and the light point of the tertiary focal point increases at the beginning. Dharma. It can be seen that if the focal length 1lII of the tertiary focus is twice the set gap, the gap will be at the set value when the tertiary focus is established.

次に本発明のMXlの実施例を第2図に基いて説明する
。第1図の如くフレネル輪帯板が1115の場合1間隙
が丁度焦点距離の半分になつ九時、その点の間隙はわか
るが、傾きは検出できない。そこで大きさの異なるフレ
ネル輪帯板1−m数個、例えば第2図の如く8個を1組
の輪帯列13として同一マスク1llfi上に形成して
用いる。第2図(4)はフレネル輪帯列13の平面図で
あり、同図(6)のマスク11の下面に輪帯列13が形
成されている。最も大きい輪帯板13−8Lか正確に図
示していないが、他の円で表示されたもの一輪帯板であ
る。いま、3次の焦点を用いる4のとして。
Next, an embodiment of MX1 according to the present invention will be explained based on FIG. As shown in FIG. 1, when the Fresnel zone plate is 1115, at 9 o'clock, when one gap is exactly half the focal length, the gap at that point can be detected, but the inclination cannot be detected. Therefore, several Fresnel zone plates 1-m of different sizes, for example eight as shown in FIG. 2, are formed on the same mask 1llfi as one set of zone arrays 13 and used. FIG. 2(4) is a plan view of the Fresnel zone array 13, and the zone array 13 is formed on the lower surface of the mask 11 in FIG. 2(6). The largest annular plate 13-8L is not shown accurately, but the one indicated by the other circles is a single annular plate. Now, as 4 using 3rd order focus.

その焦点が光点として観測されるときのウェハ12ik
iの位置を破線で示す。すなわち、破線で示す面に対し
てマスク11の下面が傾いていた場合、フレネル輪帯列
13による3次の焦点が光点として同時に観測される。
Wafer 12ik when its focal point is observed as a light spot
The position of i is indicated by a broken line. That is, when the lower surface of the mask 11 is tilted with respect to the plane shown by the broken line, the tertiary focal point of the Fresnel ring array 13 is simultaneously observed as a light spot.

今。now.

同図(8)のようにマスク11とウェハ12が平行だと
すると、この破線とウェハ12表面の交点とその近くで
光点16が明るく見える。
If the mask 11 and the wafer 12 are parallel as shown in FIG. 8(8), the light spot 16 will appear bright at and near the intersection of this broken line and the surface of the wafer 12.

例えば第2図(1m)の場合、64目の輪帯板13−6
の中心が蝋も明るく見える。次に5#r目の輪帯板の中
心が明る9゜この蛾も明るく兇える輪帯板の焦点距−は
あらかじめわかっているのでそれから間隙がわかる。そ
こで、輪帯列13の中で中心の最も明るめ輪帯板が複数
であることを見出すことによって塙きが検出できる。
For example, in the case of Fig. 2 (1 m), the 64th ring plate 13-6
The center of the wax also looks bright. Next, since the center of the 5th #r ring plate is bright 9 degrees and the focal length of the ring plate, which makes this moth bright and vibrant, is known in advance, the gap can be determined from that. Therefore, by finding out that there is a plurality of brightest orbicular plates at the center in the orbicular series 13, a wall can be detected.

第2の実施例t−第3.4図に轟いて説明する。第3図
において、フレネル帯板は円形から直線状に変型させた
ものであり%嬉3図の帯板2トlの如く直線状の帝より
成っている。対称の中心−から各線までの距−frとす
れば、その距−鴫が(1)式で貞わすことが可能な帯の
組合せであり、円筒レンズと同じ匍きtする。IC%L
IiIのパターンは互いに直交する2つの方向を待った
直線群により形成されるので、フレネル帯板23−8も
直線的な方が形成しやすい場合が多い。この直−状のフ
レネル帯板23−84−1次元フレネル帯板と呼ぶこと
にする。1次元フレネル帯列23のうち、最も大きなも
の23−81.か正確に図示していないが、他の小さな
ものも帯板であり、焦央距畷が異なるだけである。この
1次元フレネル帯板の帝の向きは必ずしも第3図のよう
に各中心線と平行に゛なっている必要はなく、isA図
の帯板23’ −8のようであってもよい。即ち1つの
帯板内の帯解が同一方向さえ向いていれば帯列中の他の
帯板の方向がどちらt向りていてもよい。
The second embodiment will be explained with reference to FIG. 3.4. In FIG. 3, the Fresnel strip has been modified from a circular shape to a straight one, and is made of a straight strip like the strip 2L in FIG. 3. If the distance from the center of symmetry to each line is -fr, then that distance is a combination of bands that can be determined by equation (1), and has the same distance t as a cylindrical lens. IC%L
Since the pattern IiI is formed by a group of straight lines extending in two directions perpendicular to each other, it is often easier to form the Fresnel strip 23-8 if it is also straight. This straight Fresnel strip 23-84 will be referred to as a one-dimensional Fresnel strip. Among the one-dimensional Fresnel band arrays 23, the largest one 23-81. Although not shown accurately, the other small pieces are also strips, and the only difference is the focal length. The orientation of this one-dimensional Fresnel strip does not necessarily have to be parallel to each center line as shown in FIG. 3, but may be as in the strip 23'-8 in the isA diagram. That is, as long as the strips in one strip are oriented in the same direction, the other strips in the strip row may be oriented in either direction.

次にIs3実施例を第5図に基いて説明する。Next, the Is3 embodiment will be explained based on FIG.

第3の実施例は、第1.第2の実施例のように、離散的
な焦点距Ill&t′一つ複数個のフレネル帯板から成
る帯列を利用するものではなく、第5図(4)の如く1
つの帯列の場所により焦点距離が連続的に変化するよう
な変形され九フレネル帯板33t−用いるものである。
The third embodiment is based on the first embodiment. Unlike the second embodiment, the strip row consisting of a plurality of Fresnel strips having a discrete focal length Ill &t' is not used, but one as shown in FIG. 5(4).
A modified nine Fresnel strip plate 33t is used so that the focal length changes continuously depending on the location of the four strip rows.

即ち、これは、第4図に示したような1次元フレネル帯
列23′を大きさl1liに一列に並べ、隣合う帯板の
帝同志を連結したものと考えられる。この時、蟻大の帯
板と最小の帯板の間にある帯板の個数を無限に大きくし
ていくと、その極限においては最大の帯板の焦点距離と
最小の帯板の焦点距離の間の焦点距11に−もつ連続焦
点の1次元フレネル帯板ができあがる◎たとえば、3次
の焦点を用いて測定する場合。
In other words, this is considered to be the result of arranging one-dimensional Fresnel strip rows 23' as shown in FIG. 4 in a row with a size l1li, and connecting the adjacent strips. At this time, if we increase the number of strips between the ant-sized strip and the smallest strip to infinity, the distance between the focal length of the largest strip and the smallest strip will reach the limit. A one-dimensional Fresnel strip plate with a continuous focus having a focal length of 11 is created. For example, when measuring using a third-order focus.

3次の焦点だけに注目すると、光点がマスク31のパタ
ーン面にあるときの渠5図(B)の如くウェハ32表面
位置は破線のようになり、マスク31とウェハ32が平
行だとするとこの破線がウェハ32表面と交わる点とそ
の近くでは185図(4)に対応する位置に光点3@が
一側される。この光点36はX状に交わった纏゛の交点
めように見える。そこで、この光点36の結儂状態を観
測することによってマスク31とウェハ32の傾きが測
定できる。
If we focus only on the tertiary focal point, the position of the wafer 32 surface will be as shown by a broken line as shown in Figure 5 (B) when the light spot is on the pattern surface of the mask 31, and if the mask 31 and the wafer 32 are parallel, this broken line At and near the point where the light intersects with the surface of the wafer 32, a light spot 3@ is formed on one side at a position corresponding to FIG. 185 (4). This light spot 36 looks like a bunch of intersections intersecting in an X shape. Therefore, by observing the state of connection of this light spot 36, the inclination of the mask 31 and the wafer 32 can be measured.

#11〜#!3の実施例に示したフレネル輪帯列または
それを変形した1次元フレネル帯板の帯列tマスクのパ
ターン面に少なくとも3箇所に形成すればマスクとウェ
ハの間[6111定ができる・本発明を用いる場合、フ
レネル輪帯列または1次元フレネル帯列の投影されろウ
ェハ表面は焼付用パターンの形成されていない滑らかな
面であることが望ましい。通常IC%LETの製造では
数種のマスクによシバターン焼付けが行なわれ、ある1
枚のマスクを焼付ける前に以前に焼付けされたフレネル
輪帯板又は1次元フレネル帯板の帯列、即ちフレネル帯
列のパターンがある。そこで各マスクにおけるフレネル
帯列の位置をマスク毎に異ならせておけば、それぞれの
マスクでの焼付は時には滑らかなウェハ面を用いて光点
の検出ができて都合が良い。
#11~#! If the Fresnel ring array shown in Example 3 or a one-dimensional Fresnel belt plate modified from the same is formed at at least three locations on the pattern surface of the mask, the [6111] distance between the mask and the wafer can be established. When using this method, it is desirable that the wafer surface onto which the Fresnel ring array or one-dimensional Fresnel zone array is projected is a smooth surface on which no printing pattern is formed. Normally, in the production of IC%LET, several types of masks are used for the pattern printing, one of which is
There is a pattern of Fresnel band plates or one-dimensional Fresnel band plates, ie, a pattern of Fresnel band plates, which has been previously printed before printing the sheet of mask. Therefore, if the position of the Fresnel band array in each mask is made different for each mask, it is convenient to perform printing on each mask, since it is possible to detect a light spot using a smooth wafer surface.

また、上述の実施例ではフレネル帯板の焦点距1lIi
1t−間隙の2倍にし、ウェハで1度反射した光点をマ
スク上で結儂させてこれを検出したが、焦点距離と′h
5隙を等しくシ、即ちウェハ上に光点金結潰させてこれ
t検出してもよい。
In addition, in the above embodiment, the focal length of the Fresnel strip is 1lIi
1t-distance, and the light spot reflected once by the wafer was converged on the mask to detect it, but the focal length and 'h
It is also possible to detect the five gaps equally, that is, by collapsing a light spot on the wafer.

上述の実施例ではマスクとウェハのIIJIs検出を例
に挙げて説明したが、他の互いに平行な2千面をもって
近接する2つの物イ本の傾きを検出する場合、内平面が
滑らかで少なくとも一方の物体が透明であればいかなる
材料から成る物体の傾き検出にも本発明は利用できる。
In the above embodiment, IIJIs detection of a mask and a wafer was explained as an example. However, when detecting the inclination of two adjacent objects with 2,000 parallel planes, if the inner plane is smooth and at least one The present invention can be used to detect the inclination of an object made of any material as long as the object is transparent.

ま九、本実施例ではクロムマスクを対象として、説明し
たのでフレネル輪帯板または1次元フレネル帯板、即ち
フレネル帯板は透過部と完全不透過部から形成されるが
、不透過部が必ずしも完全に光tさえぎらなくてもよく
、シースルーマスクのような材質で形成されていてもよ
い。或は、不透過とする代シに。
(9) Since this embodiment has been described with reference to a chrome mask, a Fresnel zone plate or a one-dimensional Fresnel zone plate, that is, a Fresnel zone plate, is formed of a transparent part and a completely opaque part, but the opaque part is not necessarily It is not necessary to completely block the light t, and it may be formed of a material such as a see-through mask. Or to make it opaque.

「だけ光の位相を透過部と異ならせるようにすれば単に
不透過部分とする場合に比べて焦点の強度が4倍大きい
ことが知られているので、T板となる薄膜を形成しても
よい。
``It is known that if the phase of light is made to be different from that of the transparent part, the intensity of the focal point will be four times greater than if the part is simply made non-transparent, so even if a thin film to be used as a T-plate is formed, good.

同、上記実施例ではウェハで一旦反射され九光点tマス
クの下面に結像されたものをマスクの上dIJ側から光
学−徹鏡で検出していた。
Similarly, in the above embodiment, the light that was once reflected by the wafer and imaged on the lower surface of the nine-light point t-mask was detected from the upper dIJ side of the mask using an optical telescopic mirror.

一般的にはマスクの下面に焼付用パターンが形成されて
おり、通常の7ライメント作業においてはマスクの下面
とウェハの上面の闇の傾きを検出する方が都合が良い。
Generally, a printing pattern is formed on the bottom surface of the mask, and in normal 7-line operations, it is convenient to detect the slope of the darkness between the bottom surface of the mask and the top surface of the wafer.

従って上記実施例ではマスクの下面に光点を結像させ九
が、一般的な、2枚の平板の傾き検出では、必ずしも平
板の対向するi#面上に光点km像させる必!!はない
Therefore, in the above embodiment, the light spot is imaged on the lower surface of the mask, but in general inclination detection of two flat plates, it is not necessary to image the light spot km on the opposing i# plane of the flat plate! ! There isn't.

iた2枚共に透明な部材でできた平板の傾き検出では、
前記のウェハに対応する平板の表面上にでき九光儂をそ
の平板を透過した元締によって観察してもよい。
When detecting the inclination of two flat plates, both of which are made of transparent materials,
Nine light particles formed on the surface of a flat plate corresponding to the wafer may be observed using a light beam transmitted through the flat plate.

以上、本発明によると、マスクにフレネル帯板を形成す
ることを除けば、検出光学系として開口数の大きい対物
レンXt−用い九光学−徹−を利用するだけでよ<、*
置が非常に簡単である。さらに、間隙の1倍又r12倍
の焦点距離の前後の複数の焦点距1et−4つフレネル
帯板をマスクのパターン面に形成し、フレネル帯板に入
射してくる照明と顕微鏡の焦点I!1WILが浅いこと
を利用し、単色光でマスクのパターン面又はウェハtr
rt観測することによって傾きが検出できる。
As described above, according to the present invention, except for forming a Fresnel strip on the mask, it is only necessary to use a nine optical system using an objective lens Xt with a large numerical aperture as a detection optical system.
It is very easy to install. Furthermore, a plurality of Fresnel strips having a focal length of 1 times or r12 times the gap before and after the focal length of 1et-4 are formed on the pattern surface of the mask, and the illumination incident on the Fresnel strips and the focal point of the microscope I! Using the shallow 1WIL, monochromatic light is used to illuminate the pattern surface of the mask or the wafer tr.
The tilt can be detected by observing rt.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いるフレネル帯板の平面と断rMt
示す図であり、第2図は本発明−の第1の実施例の平面
と断面【示す図であり、第3図は本発明の第2の実施例
の平面図であり、第4図は4113図に図示の1112
の実施例の変形例の平面図であり、第5図は本発明の第
3の実施例の平向と断面を示す図である。 〔主要部分の符号の説明〕 フレネル帯板・・・・・・−,13,23,23’、3
3 第2図 CB) 第4区・・ 23寸 第5図 (B):
Figure 1 shows the plane and section rMt of the Fresnel strip used in the present invention.
2 is a plan view and a cross-sectional view of a first embodiment of the present invention, FIG. 3 is a plan view of a second embodiment of the present invention, and FIG. 4 is a plan view of a first embodiment of the present invention. 1112 shown in Figure 4113
FIG. 5 is a plan view of a modification of the embodiment of the present invention, and FIG. 5 is a plan view and a cross-sectional view of the third embodiment of the present invention. [Explanation of symbols of main parts] Fresnel strip...-, 13, 23, 23', 3
3 Figure 2 CB) Ward 4... 23cm Figure 5 (B):

Claims (1)

【特許請求の範囲】[Claims] 平板に設けられ皮フレネル帝板に光4!iIを照射し、
該フレネル帯板自身の固有の焦点上に収れんされる光儂
の結儂状様から所定面に対する咳平板の傾きtp出する
ことを特徴とする平板の傾き検出装置。
Light 4 on a leather Fresnel board set on a flat plate! irradiate with iI,
A device for detecting the inclination of a flat plate, characterized in that the inclination tp of the cough flat plate with respect to a predetermined plane is determined from the convergence shape of the light converged on the unique focal point of the Fresnel band itself.
JP20021782A 1982-11-15 1982-11-15 Gap detection device Expired JPS6037403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20021782A JPS6037403B2 (en) 1982-11-15 1982-11-15 Gap detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20021782A JPS6037403B2 (en) 1982-11-15 1982-11-15 Gap detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52094695A Division JPS5842405B2 (en) 1977-08-09 1977-08-09 Gap measuring device

Publications (2)

Publication Number Publication Date
JPS5892805A true JPS5892805A (en) 1983-06-02
JPS6037403B2 JPS6037403B2 (en) 1985-08-26

Family

ID=16420754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20021782A Expired JPS6037403B2 (en) 1982-11-15 1982-11-15 Gap detection device

Country Status (1)

Country Link
JP (1) JPS6037403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730927A (en) * 1985-04-09 1988-03-15 Nippon Kogaku K.K. Method and apparatus for measuring positions on the surface of a flat object
EP0826944A1 (en) * 1996-08-30 1998-03-04 Ngk Insulators, Ltd. Method of measuring positions of optical transmission members

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730927A (en) * 1985-04-09 1988-03-15 Nippon Kogaku K.K. Method and apparatus for measuring positions on the surface of a flat object
EP0826944A1 (en) * 1996-08-30 1998-03-04 Ngk Insulators, Ltd. Method of measuring positions of optical transmission members

Also Published As

Publication number Publication date
JPS6037403B2 (en) 1985-08-26

Similar Documents

Publication Publication Date Title
US4360269A (en) Apparatus for inspecting defects in a periodic pattern
KR950007343B1 (en) Reverse dark field alignment systems for scanning lithographic aligner
GB1601409A (en) Plate aligning
KR970000780B1 (en) Foreign particle inspection apparatus
JPH09504142A (en) A method for repeatedly mapping a mask pattern on a substrate
US6091486A (en) Blazed grating measurements of lithographic lens aberrations
JPS6333834A (en) Surface state inspecting apparatus
KR930000878B1 (en) Mask and wafer alignment system and there method using linear fresnel zone plate
JPH08250391A (en) Position detecting mark and position detecting method
JP4043931B2 (en) 3D information acquisition system
JP2000021732A (en) Testing method for aligner
US7307736B2 (en) Scale for use with a translation and orientation sensing system
US5907396A (en) Optical detection system for detecting defects and/or particles on a substrate
CN110716395B (en) Exposure apparatus and article manufacturing method
JPS6233541B2 (en)
US5321493A (en) Apparatus and method for evaluating a projection lens
US20050031974A1 (en) Inspection method, processor and method for manufacturing a semiconductor device
JPS5892805A (en) Detector for inclination of plane plate
JPH06302492A (en) Exposure condition inspection pattern, exposure original plate and exposure method using them
JPS60237347A (en) Apparatus for inspecting foreign matter
US4120590A (en) Method for measuring the thickness of transparent articles
KR20050090429A (en) Method of measuring the performance of an illumination system
JPS5842405B2 (en) Gap measuring device
JPS6117016A (en) Averaged diffraction moire position detector
CN111380494A (en) Standard device for calibrating coordinate measuring machine