JPS5891021A - Manufacture of wet process phosphoric acid - Google Patents

Manufacture of wet process phosphoric acid

Info

Publication number
JPS5891021A
JPS5891021A JP18913581A JP18913581A JPS5891021A JP S5891021 A JPS5891021 A JP S5891021A JP 18913581 A JP18913581 A JP 18913581A JP 18913581 A JP18913581 A JP 18913581A JP S5891021 A JPS5891021 A JP S5891021A
Authority
JP
Japan
Prior art keywords
phosphoric acid
gypsum
wet process
slurry
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18913581A
Other languages
Japanese (ja)
Other versions
JPH022801B2 (en
Inventor
Noritsune Kondou
近藤 徳矩
Junzo Mizoguchi
溝口 順造
Sakimi Fujii
藤井 咲美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP18913581A priority Critical patent/JPS5891021A/en
Publication of JPS5891021A publication Critical patent/JPS5891021A/en
Publication of JPH022801B2 publication Critical patent/JPH022801B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To prevent the rise of the transition point of gypsum and the formation of fine gypsum particles in the manufacture of wet process phosphoric acid by a dihydrate-hemihydrate method using calcium phosphate as phosphate ore by regulating the ratio of Al/F in the liq. phase of a phosphoric acid slurry. CONSTITUTION:The weight ratio of Al/F in the liq. phase of a phosphoric acid slurry contg. gypsum dihydrate obtd. by decomposing phosphate ore with sulfuric acid in a decomposition vessel is regulated to 0.09-0.16 by adjusting the amount of a used additive contg. Al such as diatomaceous earth (i), using other kind of phosphate ore in combination with said phosphate ore (ii), solidifying and precipitating fluorine as silicofluoride with sodium hydroxide (iii), adding wet process phosphoric acid obtd. in other atage (iv), or applying other method.

Description

【発明の詳細な説明】 製造するにあたり、リン鉱石としてリン灰鉱を使用し、
かつ、分解槽でえられたリン酸スラリーの液相中のAI
/F重湯比を0.09〜016に調節することによる湿
式リン酊゛の製造方法を要旨とするものである、 ここに、「三水ー半水法Jとは、周知のとおシ(1) 
 リン鉱石を硫酸で分解して、二水石こうを含むリン酸
スラリーをえ、(本明細書では、この分解をおこなわせ
る反応器を[分解槽−1という。) (2)  上記リン酸スラリ=(この分解槽でえられた
スラリーを、以下、たんに[リン酸スラリー−1という
。)を製品湿式リン酸と含すン三水石こうとに分離し、 (3)  上記含すンニ水石こうを、硫酸または硫酸と
リン酸との混酸と接触させて、三水石こうを半水石こう
へ転移させ、(この転移をおこなわせる反応器を、以下
「改質檜」という。)(4)  (3)でえられたスラ
リーをろ過し、(5)  f4)でえられたろ液を(1
)の分解槽へ循環するのを主工程とする、湿式リン酸の
製造方法である。
[Detailed description of the invention] In manufacturing, phosphate is used as phosphate rock,
And AI in the liquid phase of the phosphoric acid slurry obtained in the decomposition tank
The gist of this is a method for producing wet phosphorus alcohol by adjusting the /F heavy water ratio between 0.09 and 0.016. )
Phosphoric acid slurry containing gypsum dihydrate is obtained by decomposing phosphate rock with sulfuric acid (in this specification, the reactor in which this decomposition is carried out is referred to as [decomposition tank-1]). (2) The above phosphoric acid slurry = (The slurry obtained in this decomposition tank is hereinafter simply referred to as "phosphoric acid slurry-1") is separated into product wet phosphoric acid and trihydrate-containing gypsum. is brought into contact with sulfuric acid or a mixed acid of sulfuric acid and phosphoric acid to transform trihydrate gypsum into hemihydrate gypsum (the reactor that performs this transformation is hereinafter referred to as "modified cypress") (4) ( The slurry obtained in 3) was filtered, and the filtrate obtained in (5) f4) was filtered into (1
This is a method for producing wet phosphoric acid, in which the main process is circulation to a decomposition tank.

本免明渚らに1−、ファラボア鉱(南アフリカ)。Honmen Akiyoshi et al. 1-, Faraboa Mine (South Africa).

コラν′.(ソ連)等のリン灰鉱に工水ー牛水法を適用
することについての研究の過程で、他のaI類のリン鉱
石でt二r生じない問題がprることを見出L 7’?
. 。
Colla ν′. In the course of research on applying the industrial water-cow water method to phosphate ores produced in countries such as the USSR, it was discovered that problems that do not occur with other types of phosphate ores were discovered. ?
.. .

すなわち、 I) リン灰鉱による場合は、リン酸スラリー中のアル
ミニウム含有量が大きくなると、(イ)改質槽における
石こうの転移点が異常に高くなって、改質槽の処理温度
を高くせざるをえず、したがって加熱源の使用量の増加
や装置の腐食の問題が生じ、かつ、 (ロ)結晶成長速度が異常に小さくなって、転移速度に
追いつけず、したがって、ろ過性の悪い微粒が多く発生
する。
In other words, I) When using phosphorite, when the aluminum content in the phosphoric acid slurry becomes large, (a) the transition point of gypsum in the reforming tank becomes abnormally high, making it necessary to raise the processing temperature of the reforming tank. (2) The crystal growth rate becomes abnormally low and cannot keep up with the transition rate, resulting in fine particles with poor filterability. occurs frequently.

湿式リン酸の製造においては、有機物やフッ素の悪影響
を除くために、通常ケイソウ士。
In the production of wet phosphoric acid, diatomists are usually used to remove the negative effects of organic substances and fluorine.

ベントナイト等シリカ含有物質を使用する。Use silica-containing materials such as bentonite.

これらは、シリカの外アルミニウムをA1+0mとして
前者は5〜7 wt%、後者は15〜20wt%も含ん
でおり、これらがリン鉱石に含まれていたアルミニウム
に加わって、リン酸スラリー中のアルミニウム含有量を
大きくする原因となる。ところで、フロリダ鉱、モロッ
コ鉱等の結塊すン鉱やナウル鉱等のグアノ質すン鉱を使
用する場合は、リン酸スラリー中のアルミニウム含有量
が高いことによる、高すぎる転移点や低すぎる結晶成長
速度の問題は生じていない。
These contain 5 to 7 wt% of the outer aluminum of silica and 15 to 20 wt% of the latter, assuming A1+0m, and these add to the aluminum contained in the phosphate rock, and the aluminum content in the phosphate slurry increases. This causes the amount to increase. By the way, when using nodular mormonite such as Florida ore or Moroccan ore or guanoic mormonite such as Nauru ore, the transition point may be too high or the crystallization temperature may be too low due to the high aluminum content in the phosphoric acid slurry. No growth rate problems have arisen.

1)  いっほう、リン酸スラリー中のアルミニウム含
有量が小さくなると、改質槽における工水→半水の転移
速度が異常に大きくなり、この速度が結晶成長速度をう
わ捷わって二次核が発生し7て、やはりろ過性の悪い微
粒が発生する。もちろん、操作条件を転移点に近づける
ことにより、微粒の発生を抑制することは理論上可能で
あるが、今わめて狭い温度範囲に調節しなければならな
いので、工業的には困難である。
1) On the other hand, when the aluminum content in the phosphoric acid slurry decreases, the rate of transition from industrial water to semi-water in the reforming tank becomes abnormally high, and this rate overwhelms the crystal growth rate, causing secondary nuclei to form. As a result, fine particles with poor filterability are also generated. Of course, it is theoretically possible to suppress the generation of fine particles by bringing the operating conditions closer to the transition point, but this is industrially difficult because the temperature must be controlled within an extremely narrow range.

モロッコ鉱、フロリダ鉱の場合は、改質槽における硫酸
等の濃度を調節するだけで、以上の問題を回避すること
ができるが、リン灰鉱の場合は、そのような方法でカバ
ーしきれないのである。
In the case of Moroccan ore and Florida ore, the above problems can be avoided simply by adjusting the concentration of sulfuric acid, etc. in the reforming tank, but in the case of phosphate ore, such problems cannot be covered by such methods. It is.

本発明者らは、さらに検討をすすめて、以−トの問題に
は、フッ素も大きなかかわりをもち、その作用は、アル
ミニウムと逆であることを見出したつ本発明は、このよ
うな知見に′もとすいて達成されたものである。
The inventors of the present invention further investigated and found that fluorine also has a large influence on the above problem, and its effect is opposite to that of aluminum.The present invention is based on such findings. It was originally achieved.

すなわち、本発明の目的は、リン灰鉱に工水−半水法を
適用する場合における、上記のアルミニウムの過不足に
よる障害の除去にあり、この目的は、前記要旨の本発明
によって達成することができる。
That is, the purpose of the present invention is to eliminate the above-mentioned obstacle due to excess or deficiency of aluminum when applying the industrial water-half water method to phosphorite, and this purpose is achieved by the present invention as summarized above. I can do it.

A1/F(wt)([リン酸スラリーの液相のh1/y
重量比1をこのように略記する。)と石こうの転移点と
の関係を例示すれば、づぎのとおりであるこのデータに
より、ファラボア鉱は、転移点について他の鉱石よりも
A1/F(wt−)の影響を強く受けることが分る。
A1/F (wt) ([h1/y of liquid phase of phosphoric acid slurry
The weight ratio 1 is abbreviated as follows. ) and the transition point of gypsum is as follows.From this data, it can be seen that the transition point of Faraborite is more strongly influenced by A1/F (wt-) than other ores. Ru.

図1および図2は、それぞれ後述の実施例2(Al/F
 (wt) 1.6)および比較例1(同1.7)にお
いてえられた半水石こうの結晶のスケッチである。この
1.6と1.7とを境にして、いかに結晶の形状。
1 and 2 respectively show Example 2 (Al/F
(wt) 1.6) and a sketch of hemihydrate gypsum crystals obtained in Comparative Example 1 (wt 1.7). What is the shape of the crystal between 1.6 and 1.7?

大きさが叢るかが分るであろう。You'll see how big they are.

また、Ax/y(wt)の、三水→半水転移速度に対す
る影響を示すデームの一例を下表に示す。ただし、この
*]、/y(vt)を調節するには、たとえば、つぎの
ような手段をとることができる。
Further, an example of a demo showing the influence of Ax/y (wt) on the trihydric to semihydric transition rate is shown in the table below. However, in order to adjust this *], /y(vt), for example, the following method can be taken.

(ハ) ケイソウ土、ベントナイト等アルミニウムを含
む添加剤の使用敏の調整 ■ 他の種類のリン鉱わの併用 (ハ)水酸化ナトリウム等により、7ノ素をケイフッ化
物として沈でんさせて液相から同相へ移す方法 C1)  他のリン鉱石もしくは他のプロセスによって
製造された湿式リン酸またはこれを#縮した、も1.<
は希釈しタリン酸を添加する方法本発明を実施するにあ
たって、分解槽の操作条件は、Al/F(Wt)が(1
09〜0.16となるように上記(ハ)〜四等によって
調節するほかは、フロリダ鉱、モロッコ鉱等による従来
法と同様にすればよい。改質槽における条件も同じであ
り、たとえはろ過性の良い粗大な結晶をうるために適当
な操作温度は、鉱石の種類、過飽和度等によってことな
るが、適切な硫酸およびリン酸の濃度のもとでは転移点
よりも5〜20℃高くすればよい。
(c) Adjustment of usability of additives containing aluminum, such as diatomaceous earth and bentonite ■ Combined use of other types of phosphate rock (c) Precipitate NO7 as silicofluoride with sodium hydroxide etc. and release it from the liquid phase. Method of transferring to the same phase C1) Wet phosphoric acid produced by other phosphate rocks or other processes or condensed thereof, 1. <
In carrying out the present invention, the operating conditions of the decomposition tank are such that Al/F (Wt) is (1
The method may be the same as the conventional method using Florida ore, Moroccan ore, etc., except that the above-mentioned (c) to 4 are adjusted so that the value is 0.09 to 0.16. The conditions in the reforming tank are also the same; for example, the appropriate operating temperature to obtain coarse crystals with good filterability varies depending on the type of ore, degree of supersaturation, etc. Basically, the temperature should be 5 to 20°C higher than the transition point.

以下1本発明を具体例で説明する、7 実施例1〜3.比較例1〜2 攪拌機つきの有効容量11の室を直列に6基連結し、ス
ラリーが順次溢流するようにした分解槽の第1室に、リ
ン鉱石600り/ hr、ベントナイトまたはケイソウ
土および下記第5室から溢流するスラリーの一部を供給
し;第2室に、濃度98wt%の硫酸および下記改質槽
から溢流したスラリーの炉液とろさいの洗浄液との混合
液を供給し;第5室から溢流するスラリーの一部20 
l!/hrを第1室へ循環して各室の温度を均一にした
。第6室から溢流するリン酸スラリーを遠心分離機によ
って製品湿式リン酸と含すンニ水石こうとに分離した。
The present invention will be explained below using specific examples. 7 Examples 1 to 3. Comparative Examples 1 to 2 In the first chamber of a decomposition tank, six chambers with an effective capacity of 11 each equipped with an agitator were connected in series so that the slurry sequentially overflowed, and 600 l/hr of phosphate rock, bentonite or diatomaceous earth, and the following were added. Supplying a portion of the slurry overflowing from the fifth chamber; supplying sulfuric acid with a concentration of 98 wt% and a mixed solution of the slurry furnace liquid overflowing from the reforming tank described below and the cleaning liquid of the rosai to the second chamber; Part of the slurry overflowing from the fifth chamber 20
l! /hr was circulated to the first chamber to equalize the temperature in each chamber. The phosphoric acid slurry overflowing from the sixth chamber was separated into product wet phosphoric acid and wet gypsum using a centrifuge.

該含すンニ水石こうおよび一度98 wt%の硫酸f攪
拌機つきの有効容量31!の改質槽へ供給し、pto@
2 B Wj% 、 SOa  8 Wj%の溶液中で
転移反応をおこなわせた。改質槽から溢流するスラIJ
−をグラスフィルターでろ過し、ろさいを純水で洗浄1
〜、えられたろ液および洗浄液の混合液を混合して、上
記のとおり分解槽第2室へ供給した。
Contains water gypsum and once 98 wt% sulfuric acid f effective capacity 31 with stirrer! is supplied to the reforming tank of pto@
The transfer reaction was carried out in a solution containing 2 B Wj% and SOa 8 Wj%. Slurry IJ overflowing from the reforming tank
- filtered through a glass filter and washed with pure water 1
The mixed solution of the obtained filtrate and washing solution was mixed and supplied to the second chamber of the decomposition tank as described above.

使用したリン磁石、べ/トナイトおよびケイソウ土およ
びその組成は、つぎのとおりである。
The phosphorus magnet, bethonite and diatomaceous earth used and their compositions are as follows.

リン鉱石(組成zwtチ) ファラボア鉱  モロッコ鉱 PtO督   39.58    34.14Ca0 
    53h35      54.32A1*Om
     G、 12     0.53Si、O* 
    1150     2.91F       
2.86     4.18ベントナイト 日本ベントナイト工業■製三番層阿蘇 5ift :61.93wtチ Altos : 2Q
、64wtチケイソウ士 昭和化学工業■製うジオライト600 Flin!:89.5wt% AItos : 7.5
wtチその他の条件および結果を下表に示す。
Phosphate (composition zwt) Faraboiite Moroccanite PtO 39.58 34.14Ca0
53h35 54.32A1*Om
G, 12 0.53Si, O*
1150 2.91F
2.86 4.18 Bentonite Nippon Bentonite Kogyo 3rd layer Aso 5ift: 61.93wt Altos: 2Q
, 64wt Diorite 600 Flin! manufactured by Showa Chemical Industry ■ :89.5wt% AItos: 7.5
Other conditions and results for wt-chi are shown in the table below.

1)実施例5で使用したリン鉱石に1.7アラボア鉱と
モロッコ鉱との重量比1:1の混合物である。
1) A mixture of phosphate rock used in Example 5, 1.7 Araboaite and Moroccanite in a weight ratio of 1:1.

2)比較例2では、ケイソウ士を使用17k。2) In Comparative Example 2, 17k was used.

5)改質槽から溢流するスラリーのる液とろさいの洗浄
液との混合液。
5) A mixture of the slurry overflowing from the reforming tank and the cleaning solution for the roasted sake.

4)実施例2および比較例1でえられた半水石こうのス
ケッチをそれぞれ図1および図2に示す。
4) Sketch of the hemihydrate gypsum obtained in Example 2 and Comparative Example 1 are shown in FIG. 1 and FIG. 2, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

図1および図2は、それぞれ実施例2および比較例1で
えられた半水石こうのスケッチである。 特許出願人 東洋曹達工業株式会社 1
1 and 2 are sketches of hemihydrate gypsum obtained in Example 2 and Comparative Example 1, respectively. Patent applicant: Toyo Soda Kogyo Co., Ltd. 1

Claims (1)

【特許請求の範囲】[Claims] (1)工水−半水法によって湿式リン酸を製造するにあ
たり、リン鉱石としてリン灰石を使用し、かつ、分解槽
でえられたリン酸スラリーの液相中のAl/Fl/化を
009〜1116に調節することを特徴とする、湿式リ
ン酸の製造方法、
(1) In producing wet phosphoric acid by the industrial water-half water method, apatite is used as the phosphate rock, and the Al/Fl/conversion in the liquid phase of the phosphoric acid slurry obtained in the decomposition tank is A method for producing wet phosphoric acid, characterized by adjusting the phosphoric acid to 009 to 1116,
JP18913581A 1981-11-27 1981-11-27 Manufacture of wet process phosphoric acid Granted JPS5891021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18913581A JPS5891021A (en) 1981-11-27 1981-11-27 Manufacture of wet process phosphoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18913581A JPS5891021A (en) 1981-11-27 1981-11-27 Manufacture of wet process phosphoric acid

Publications (2)

Publication Number Publication Date
JPS5891021A true JPS5891021A (en) 1983-05-30
JPH022801B2 JPH022801B2 (en) 1990-01-19

Family

ID=16235990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18913581A Granted JPS5891021A (en) 1981-11-27 1981-11-27 Manufacture of wet process phosphoric acid

Country Status (1)

Country Link
JP (1) JPS5891021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516908A (en) * 2011-06-01 2014-07-17 プレイオン テクノロジーズ Method for producing phosphoric acid of dihydrate / hemihydrate type
CN107715549A (en) * 2017-09-08 2018-02-23 瓮福达州化工有限责任公司 A kind of potassium fluosilicate/sodium separation device and its application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516908A (en) * 2011-06-01 2014-07-17 プレイオン テクノロジーズ Method for producing phosphoric acid of dihydrate / hemihydrate type
CN107715549A (en) * 2017-09-08 2018-02-23 瓮福达州化工有限责任公司 A kind of potassium fluosilicate/sodium separation device and its application

Also Published As

Publication number Publication date
JPH022801B2 (en) 1990-01-19

Similar Documents

Publication Publication Date Title
US3420622A (en) Process for obtaining fluorine compounds from digestion solutions of crude phosphates with nitric acid or hydrochloric acid
US4314979A (en) Industrial process for continuous production of zeolite A
US3949047A (en) Method of precipitating radium to yield high purity calcium sulfate from phosphate ores
US4146571A (en) Preparation of sodium percarbonate
US4639359A (en) Process of removing cationic impurities from wet process phosphoric acid
US3764655A (en) Process for purifying phosphoric acids by neutralization with an alkali metal hydroxide and/or carbonate
US2608465A (en) Process of producing lithium sulfate from lithium phosphates
US3421845A (en) Production of sodium phosphates
US3505013A (en) Wet process for the manufacture of phosphoric acid
US3632307A (en) Process for the preparation of phosphoric acid and gypsum from phosphate rock
US2799557A (en) Production of feed grade dicalcium phosphate
US4136151A (en) Phosphoric acid production
EP0094139B1 (en) Process for the preparation of pure silicon dioxide
US3506394A (en) Method for producing sodium silicofluoride from wet process phosphoric acid
JPS5891021A (en) Manufacture of wet process phosphoric acid
US3416887A (en) Method of manufacturing wet process phosphoric acid
US3800029A (en) Process for recovering sodium fluosilicate from wet process phosphoric acid
US4377560A (en) Process for producing low aluminum content phosphoric acid from high aluminum matrix
KR840002738A (en) Phosphate and Calcium Sulfate Production from Phosphate Rock (Phosphoanhydrite Process)
US4147757A (en) Method for producing ammonium phosphate which is substantially free of arsenic
US3645677A (en) Production of gypsum
US3506395A (en) Process of preparing high quality artificial cryolite
US3743725A (en) Process for the recovery in useful form of fluorine values from phosphate rock while producing phosphoric acid
US3968197A (en) Process for treating sodium silico fluoride
US2994582A (en) Production of cryolite