JPS589096Y2 - Air temperature evaporator for low temperature liquefied gas - Google Patents

Air temperature evaporator for low temperature liquefied gas

Info

Publication number
JPS589096Y2
JPS589096Y2 JP1977130888U JP13088877U JPS589096Y2 JP S589096 Y2 JPS589096 Y2 JP S589096Y2 JP 1977130888 U JP1977130888 U JP 1977130888U JP 13088877 U JP13088877 U JP 13088877U JP S589096 Y2 JPS589096 Y2 JP S589096Y2
Authority
JP
Japan
Prior art keywords
tube
liquefied gas
evaporator
gas
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977130888U
Other languages
Japanese (ja)
Other versions
JPS5456253U (en
Inventor
加藤九浩
小沢洋一
堀内健文
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP1977130888U priority Critical patent/JPS589096Y2/en
Publication of JPS5456253U publication Critical patent/JPS5456253U/ja
Application granted granted Critical
Publication of JPS589096Y2 publication Critical patent/JPS589096Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は、主に酸素や窒素などの低温液化ガスを無尽蔵
にある熱源、即ち大気を利用して蒸発気化せしめる空温
式蒸発器の改良された構造に係るものである。
[Detailed description of the invention] The present invention mainly relates to an improved structure of an air-heated evaporator that evaporates low-temperature liquefied gases such as oxygen and nitrogen by using an inexhaustible heat source, that is, the atmosphere. be.

従来、この種の空温式蒸発器ではフィン管の管壁を介し
て、大気から低温液化ガス又は低温ガス(以下管内流体
という)へ直接熱通過させているが、この様な熱通過方
法では主に蒸発部(低温液化ガスの上昇部)のフィン管
外表面に氷結が発生成長するため急速に性能が低下し、
長時間の連続運転に対して限界が生じるため、所要蒸発
量より大きい定格蒸発容量の大型蒸発器を使用せざるを
得ないという欠点があった。
Conventionally, in this type of air-heated evaporator, heat is passed directly from the atmosphere to the low-temperature liquefied gas or low-temperature gas (hereinafter referred to as the tube fluid) through the tube wall of the finned tube. Ice forms and grows mainly on the outer surface of the fin tube in the evaporation section (the rising section of low-temperature liquefied gas), leading to a rapid decline in performance.
Since there is a limit to long-term continuous operation, there is a drawback that a large evaporator with a rated evaporation capacity larger than the required evaporation amount must be used.

本考案は、熱通過方法に着目し、大気と管内流体との間
に伝熱媒体を介在させ、大気と大気側管外表面との温度
勾配を緩和することにより、上記欠点を解消し、効率的
な長時間連続運転を可能にする空温蒸発器を得んとする
ものである。
The present invention focuses on the heat transfer method, interposes a heat transfer medium between the atmosphere and the fluid inside the tube, and alleviates the temperature gradient between the atmosphere and the outer surface of the tube on the atmosphere side, thereby solving the above drawbacks and improving efficiency. The aim is to provide an air-temperature evaporator that enables long-term continuous operation.

従来の空温式蒸発器の正面図を第1図、平面図を第2図
に示す。
A front view of a conventional air-heated evaporator is shown in FIG. 1, and a plan view is shown in FIG. 2.

第1,2図において、長手方向縦フィンが列設されたフ
ィン管1(所謂スターフィン管)を複数本平行に立てた
ものを、ベンド管2で連結して釦り、低温液化ガス導入
管3から入ってきた低温液化ガスはフィン管1とベンド
管2を上下に蛇行しながら、大気の加温により蒸発、更
に昇温されて出口管4より出て使用に供される。
In Figures 1 and 2, a plurality of parallel fin tubes 1 (so-called star fin tubes) each having longitudinal fins arranged in rows are connected by a bend tube 2 and then pressed to form a low-temperature liquefied gas introduction tube. The low-temperature liquefied gas entering from 3 is evaporated by the heating of the atmosphere while meandering up and down through the fin tube 1 and the bend tube 2, and is further heated and then exits from the outlet tube 4 for use.

これを管内流体の流れについてのみ示したフローチャー
トが第3図である。
FIG. 3 is a flowchart showing only the flow of fluid in the pipe.

第3図中、矢印は管内流体の流れを示す。In FIG. 3, arrows indicate the flow of fluid within the pipe.

従来の空温式蒸発器の大気と管内流体との熱通過形態を
示したのが第4図である。
FIG. 4 shows the form of heat passage between the atmosphere and the fluid in the tube in a conventional air-heated evaporator.

第4図で曲線は温度勾配を示し、Tiは管内流体温度、
Toは管外大気温度、Twoは管外表面温度、Twj
は管内表面温度、5は管壁である。
In Figure 4, the curve shows the temperature gradient, Ti is the fluid temperature in the pipe,
To is the atmospheric temperature outside the tube, Two is the surface temperature outside the tube, Twj
is the tube inner surface temperature, and 5 is the tube wall.

管内外表面温度Twi 、 Twoは、管内外流体の
物性及び他の条件から決定される熱伝達率、及び伝熱面
積に依り決するので、管内流体が低温液化ガスと低温ガ
スとでは、当然温度勾配が異なってくる。
The inner and outer surface temperatures Twi and Two of the tubes depend on the heat transfer coefficient and heat transfer area determined from the physical properties of the fluid inside and outside the tube and other conditions, so naturally there is a temperature gradient when the fluid inside the tube is a low-temperature liquefied gas and a low-temperature gas. will be different.

液体酸素又は液体窒素が管内にあり大気の加温により相
変化する場合、Tifニー183℃又は196℃(大気
圧)と極めて低温であり、管外の大気は通常T o 中
0℃〜30℃であり、大気中の水分が氷結するに十分な
管外表面温度T woとなる。
When liquid oxygen or liquid nitrogen is inside a tube and undergoes a phase change due to the heating of the atmosphere, the temperature is extremely low, at 183°C or 196°C (atmospheric pressure), and the atmosphere outside the tube is usually 0°C to 30°C during T o. Therefore, the tube outer surface temperature T wo is sufficient to freeze moisture in the atmosphere.

そして氷結が始するとその断熱作用に依り、時間の経過
に伴い氷結域は拡大し、氷結層の厚みも増大し、その結
果蒸発器の性能が急速に低下することとなる。
Once freezing begins, the frozen area expands over time due to its insulating effect, and the thickness of the frozen layer increases, resulting in a rapid decline in the performance of the evaporator.

大気条件にもよるが、はなはだしい場合には蒸発器の大
半が氷につつ1れてし捷うこともある。
Depending on the atmospheric conditions, in extreme cases, most of the evaporator may become engulfed in ice and collapse.

尚従来の空温式蒸発器のより詳細については、実公昭5
1−29546号公報を参照されたい。
For more details on the conventional air-temperature evaporator, please refer to
Please refer to Publication No. 1-29546.

次に本考案の実施例に従って具体的に説明する。Next, the present invention will be explained in detail according to an embodiment.

本考案では、従来品の上記欠点を考慮して、熱通過方法
の改善をはかったものである。
In the present invention, the heat passing method is improved in consideration of the above-mentioned drawbacks of conventional products.

本考案の空温式蒸発器のフローチャートを第5図に示す
A flowchart of the air-heated evaporator of the present invention is shown in FIG.

第5図中、矢印は管内液体の流れを示し実線と破線の重
複部は二重管構造となっている。
In FIG. 5, arrows indicate the flow of liquid within the tube, and the overlap between the solid line and the broken line indicates a double tube structure.

蒸発を経て昇温されたガスを蒸発部の二重管部に供給し
、低温液化ガスと大気との間に伝熱媒体として介在させ
、低温液化ガスと管壁を介して熱交換させる。
The gas heated through evaporation is supplied to the double pipe section of the evaporation section, interposed as a heat transfer medium between the low-temperature liquefied gas and the atmosphere, and heat exchanged with the low-temperature liquefied gas through the tube wall.

低温液化ガスと熱交換して熱量が減少したこの昇温ガス
は再び大気温度近く1で昇温され出口より出ていくもの
である。
This heated gas, whose calorific value has been reduced by exchanging heat with the low-temperature liquefied gas, is heated again to near atmospheric temperature and exits from the outlet.

この場合、もちろん所要蒸発量に応じて出口管直前から
蒸発部に供給する事もできるし、昇温ガス全部を戻さず
一部を戻してもよい。
In this case, depending on the required amount of evaporation, it is of course possible to supply the gas to the evaporation section from just before the outlet pipe, or it is also possible to return a portion of the heated gas instead of returning all of it.

又第5図に示される実線と破線の重複部は、設計上低温
液化ガスが蒸発するに十分の長さとなっているが、実際
には低温液化ガスの一部が気化ガスの流れに随伴する可
能性も有り、二重管構造部は第5図中に示されている重
複部、即ち蒸発部のみに限定される必要はない。
Furthermore, the overlap between the solid line and the broken line shown in Figure 5 is designed to be long enough for the low-temperature liquefied gas to evaporate, but in reality, some of the low-temperature liquefied gas accompanies the flow of the vaporized gas. Possibly, the double tube structure need not be limited to only the overlapping section shown in FIG. 5, ie the evaporator section.

この二重管構造部における二重管の断面図を第6図に示
す。
A sectional view of the double pipe in this double pipe structure is shown in FIG.

第6図において内管部6には低温液化ガス又は低温ガス
が流れ、外管部7には昇温された蒸発ガスが流れ、外管
の外側は大気8である。
In FIG. 6, low-temperature liquefied gas or low-temperature gas flows through the inner tube section 6, heated evaporated gas flows through the outer tube section 7, and the outside of the outer tube is the atmosphere 8.

内管の回りには全周にわたって昇温された蒸発ガスのた
めの通路が形成されることが肝要であり、従って原則的
には内管と外管とは接触してないことが必要である。
It is important that a passage for heated evaporated gas is formed around the inner tube all around, so in principle it is necessary that the inner tube and outer tube do not come into contact with each other. .

但し内管の外周面または/および外管の内周面にフィン
を形成するとともに、該フィンの先端を相手O管の周面
に接触させて、両管が相互に支持させる程度は許容され
ることであり、これにより構造物としての安定性を達成
することは好ましいことである。
However, it is permissible to form fins on the outer circumferential surface of the inner tube and/or the inner circumferential surface of the outer tube, and to bring the tips of the fins into contact with the circumferential surface of the mating O tube so that both tubes support each other. Therefore, it is preferable to achieve stability as a structure through this.

この二重管構造部における熱通過形態を第7図に示す。FIG. 7 shows the form of heat passage in this double tube structure.

第7図で、Tjは管内流体温度、Toは管外大気温度、
Tsは伝熱媒体温度、Twloは大気側管外表面温度、
Twlsは伝熱媒体側管内表面温度、Tw2sは伝熱媒
体側管外表面温度、Tw2jは管内流体側管内表面温度
、外管壁9、内管壁10である。
In Figure 7, Tj is the fluid temperature inside the tube, To is the atmospheric temperature outside the tube,
Ts is the heat transfer medium temperature, Twlo is the outer surface temperature of the tube on the atmospheric side,
Twls is the inner surface temperature of the tube on the heat transfer medium side, Tw2s is the outer surface temperature of the tube on the heat transfer medium side, and Tw2j is the inner surface temperature of the tube on the fluid side of the tube, the outer tube wall 9, and the inner tube wall 10.

ここで大気側管外表面温度Tw1oは、昇温ガスを流す
ことにより、従来より温度勾配が緩和され管外大気温度
Toに比較的近くなる。
Here, by flowing the heated gas, the temperature gradient of the atmosphere-side tube outer surface temperature Tw1o is relaxed compared to the conventional method, and the temperature Tw1o becomes relatively close to the tube-outside atmospheric temperature To.

即ち従来の蒸発器の様に、大気と管内流体とを管壁を介
して直接熱交換させるのでなく、伝熱媒体を介在させる
ことにより、管外大気と管外表面とC8度勾配を緩和さ
せ、大気→伝熱媒体→管内流体と熱通過させ、氷結の発
生、成長を著しく防止するものである。
In other words, unlike conventional evaporators, the atmosphere and the fluid inside the tube do not directly exchange heat through the tube wall, but by interposing a heat transfer medium, the C8 gradient between the atmosphere outside the tube and the outside surface of the tube is alleviated. , allowing heat to pass from the atmosphere to the heat transfer medium to the fluid in the pipe, significantly preventing the formation and growth of ice.

第8図は、同一定格蒸発容量の従来蒸発器11と本考案
蒸発器12との蒸発容量Qと連続使用時間Hとの関係を
表わすグラフである。
FIG. 8 is a graph showing the relationship between the evaporation capacity Q and the continuous use time H of the conventional evaporator 11 and the evaporator 12 of the present invention, both of which have the same rated evaporation capacity.

第8図から、運転開始直後の微少時間Ho迄は、本考案
の蒸発器の二重管構造部に依シ蒸発容量が従来蒸発器に
比べ小さいが、Ho以後従来蒸発器では氷結に依る熱抵
抗が時間の経過と共に単調増加しそれに伴い蒸発容量が
極度に単調減少している。
From Fig. 8, it can be seen that the evaporation capacity of the evaporator of the present invention is smaller than that of the conventional evaporator until the short time Ho immediately after the start of operation, which depends on the double tube structure of the evaporator of the present invention, but after Ho, the conventional evaporator loses heat due to freezing. The resistance monotonically increases with the passage of time, and the evaporation capacity monotonically decreases accordingly.

−古本考案の蒸発器では、二重管構造による効果が極め
て顕著に働らき、時間の経過に伴う蒸発容量の減少は著
しく少ないゆるやかなカーブとなっている。
- In the evaporator devised by the secondhand book, the effect of the double tube structure is extremely significant, and the evaporation capacity decreases over time with a gentle curve.

たとえば蒸発量Q1に対して従来蒸発器では連続使用時
間がHlであるのに対し、本考案の蒸発器ではH2(>
Hl )と著しく増加しているのが分る。
For example, in the conventional evaporator, the continuous operating time is Hl for the evaporation amount Q1, whereas in the evaporator of the present invention, H2 (>
It can be seen that there is a significant increase in Hl).

このことは長時間連続運転をする場合、従来の蒸発器で
は氷結に依る極度の蒸発容量減少を予め見込んで定格蒸
発容量の大きい大型の蒸発器を使用せざるを得なかった
が、本考案に依る蒸発器では、二重管の外管部に伝熱媒
体を介在させることにより、氷結の発生、成長が著しく
防止され、長時間連続使用時の所要蒸発量に対し、小型
の蒸発器でその目的を十分に遠戚できることを示し、エ
ネルギーの有効利用、種々のコストダウンがはかれ、産
業上その価値は極めて大であると言える。
This means that when operating continuously for long periods of time, with conventional evaporators, it is necessary to use a large evaporator with a large rated evaporation capacity in anticipation of the extreme decrease in evaporation capacity due to freezing. In this evaporator, by interposing a heat transfer medium in the outer tube part of the double tube, the occurrence and growth of ice is significantly prevented. It has been shown that the purpose can be sufficiently distantly related, and it can be said to be of extremely great industrial value, as it allows for effective use of energy and various cost reductions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蒸発器の正面図、第2図は第1図の平面
図、第3図は従来の蒸発器のフローチャート、第4図は
従来の蒸発器の熱通過形態図、第5図は本考案の蒸発器
のフローチャート、第6図は二重管の断面図、第7図は
本考案の蒸発器の熱通過形態図、第8図は従来の蒸発器
と本考案の蒸発器の性能を示すグラフである。 1・・・フィン管、2・・・ベンド管、3・・・導入管
、4・・・出口管、5・・・管壁、6・・・内管、7・
・・外管、8・・・大気、9・・・外管壁、10・・・
内管壁、11・・・従来蒸発器、12・・・本考案蒸発
器。
FIG. 1 is a front view of a conventional evaporator, FIG. 2 is a plan view of FIG. The figure is a flow chart of the evaporator of the present invention, Figure 6 is a cross-sectional view of a double tube, Figure 7 is a diagram of the heat passage form of the evaporator of the present invention, and Figure 8 is a conventional evaporator and an evaporator of the present invention. It is a graph showing the performance of. DESCRIPTION OF SYMBOLS 1... Fin pipe, 2... Bend pipe, 3... Inlet pipe, 4... Outlet pipe, 5... Pipe wall, 6... Inner pipe, 7...
...Outer tube, 8...Atmosphere, 9...Outer tube wall, 10...
Inner tube wall, 11... conventional evaporator, 12... evaporator of the present invention.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 長手力向縦フィンが列設されたアルミニウム若しくは、
アルミニウム合金製押出しフィン管を、多数本縦位置に
平行配置し、低温液化ガス導入管を、該液化ガスの蒸発
部となる低温液化ガス上昇部のフィン管の下端に接続し
、該上昇部のフィン管の上端を蒸発ガス下降部のフィン
管の上端に接続し、以降も蒸発ガス加温用流体通路が順
次上下に蛇行するようにフィン管が接続されている低温
液化ガス用空温式蒸発器において、前記上昇部のフィン
管は内管と外管とからなる二重管で形成し、内管部は低
温液化ガスの通路となし、外管部は前記加温された蒸発
ガスの少くとも一部を流通させる通路となるように前記
蒸発ガス加温用流体通路に接続したことを特徴とする低
温液化ガス用空温式蒸発器。
Aluminum with rows of longitudinal fins or
A large number of extruded aluminum alloy fin tubes are arranged vertically in parallel, and the low temperature liquefied gas introduction tube is connected to the lower end of the fin tube of the low temperature liquefied gas rising section which becomes the evaporation section of the liquefied gas. The upper end of the fin tube is connected to the upper end of the fin tube in the evaporative gas descending section, and the fin tubes are connected so that the fluid passage for heating the evaporated gas meanders up and down sequentially. In the device, the fin tube in the rising section is formed of a double tube consisting of an inner tube and an outer tube, with the inner tube section serving as a passage for the low-temperature liquefied gas, and the outer tube section serving as a passageway for the heated evaporated gas. An air-heating type evaporator for low-temperature liquefied gas, characterized in that the evaporated gas is connected to the fluid passage for heating the evaporated gas so as to serve as a passage through which a portion of the evaporated gas is circulated.
JP1977130888U 1977-09-28 1977-09-28 Air temperature evaporator for low temperature liquefied gas Expired JPS589096Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977130888U JPS589096Y2 (en) 1977-09-28 1977-09-28 Air temperature evaporator for low temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977130888U JPS589096Y2 (en) 1977-09-28 1977-09-28 Air temperature evaporator for low temperature liquefied gas

Publications (2)

Publication Number Publication Date
JPS5456253U JPS5456253U (en) 1979-04-18
JPS589096Y2 true JPS589096Y2 (en) 1983-02-18

Family

ID=29096938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977130888U Expired JPS589096Y2 (en) 1977-09-28 1977-09-28 Air temperature evaporator for low temperature liquefied gas

Country Status (1)

Country Link
JP (1) JPS589096Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401000C (en) * 2005-01-22 2008-07-09 中国科学技术大学 Double swirling counter flow type heat exchanger with rib and coiled spiral flat tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4218986Y1 (en) * 1964-10-22 1967-11-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4218986Y1 (en) * 1964-10-22 1967-11-02

Also Published As

Publication number Publication date
JPS5456253U (en) 1979-04-18

Similar Documents

Publication Publication Date Title
US5666818A (en) Solar driven ammonia-absorption cooling machine
JP2006506584A (en) System and method for vaporizing liquefied natural gas
JPS589911B2 (en) Evaporator for refrigerator
JPH08503294A (en) Integrated heat exchange device
US2833121A (en) Apparatus for vaporizing volatile liquids
JPS589096Y2 (en) Air temperature evaporator for low temperature liquefied gas
JP3037073B2 (en) Cryogenic liquid vaporizer
JP2002071090A (en) Oil tank equipped with cooler for minimum flow
US7913512B2 (en) Air-heated heat exchanger
JP2001124480A (en) Heat exchanger and heat-exchanging device
JPH0741268U (en) Open rack type liquefied low temperature gas vaporizer heat transfer tube
JP2001304494A (en) Low-temperature liquefied gas carburettor and heat exchanger
CA2692229A1 (en) Thermoeletric 2-phase gravity condenser & methods of improving existing heat pipe systems
US4147135A (en) Device for reducing flue gas heat losses
JP3199287B2 (en) Heat exchanger tubes for heat exchangers
JPH0416067Y2 (en)
JPS61228292A (en) Heat transfer tube with heat pipe built-in fins
JPS5838365Y2 (en) Evaporator for refrigerator
RU2351864C1 (en) Heat exchanger
JP2017227428A (en) Evaporator, defrosting method of evaporator, and cooling device using evaporator
JP2000055520A (en) Liquefied natural gas cold using vaporizer
JPS6284258A (en) Fluid heating device
JPS6315064A (en) Evaporator for refrigerator
JPS6011432Y2 (en) Soaking device inside the vacuum container
JPS6026305Y2 (en) heat exchanger tube