JPS5890181A - Phase detector for specially-high voltage - Google Patents

Phase detector for specially-high voltage

Info

Publication number
JPS5890181A
JPS5890181A JP18960081A JP18960081A JPS5890181A JP S5890181 A JPS5890181 A JP S5890181A JP 18960081 A JP18960081 A JP 18960081A JP 18960081 A JP18960081 A JP 18960081A JP S5890181 A JPS5890181 A JP S5890181A
Authority
JP
Japan
Prior art keywords
phase
detector
detectors
ammeter
main circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18960081A
Other languages
Japanese (ja)
Inventor
Namio Tsuboya
坪谷 七三夫
Yoshihiko Watabe
渡部 善彦
Koichi Kaneizumi
金泉 孝一
Kunio Kobayashi
邦夫 小林
Michiie Yamada
山田 道家
Tadatsuyo Kashima
鹿島 忠剛
Koichi Ishizuka
石塚 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP18960081A priority Critical patent/JPS5890181A/en
Publication of JPS5890181A publication Critical patent/JPS5890181A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To increase the safety of operations and to enable the sure detection of a phase in a short time, by detecting the phase through comparison of current values generated by the phase difference of the electrostatic induction voltage of each phase of the main circuit. CONSTITUTION:After the sizes of retaining rods 13 and 14 are fixed in safe lengths, detectors 11 and 12 are fitted to the respective ends of the rods, and they are arranged and retained manually below the main circuit whose phase is to be detected, respectively. In addition, the detectors 11 and 12 detect an electrostatic induction voltage from each phase of a line switch 31, and microvoltages thus detected are led to an ammeter 17 via shield cables 15 and 16. The ammeter 17 measures a current generated by the phase difference of the microvoltages which are led therein.

Description

【発明の詳細な説明】 この発明は例えば肪路開閉器等の電力系統の検相試験に
好適する特別高圧検相器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a special high-voltage phase detector suitable for phase verification tests of electric power systems such as, for example, fat line switches.

周知のように、発14L F’)f、変電所の新設や増
設、容量変更、送電線の引出、機器の取替え、仮設備工
事等を行った後では、接続N、飴のため検相試験が必要
である。近時、この種の工事は多く検相試験の機会も増
大している。
As is well known, after starting 14L F') f, constructing or expanding a substation, changing capacity, pulling out transmission lines, replacing equipment, or performing temporary equipment construction, a phase detection test is required for connection N and candy. is necessary. Recently, there have been many construction projects of this type, and opportunities for phase verification tests have also increased.

一般に、6千■回路の検相では、配電線等で使用されて
いる市販の高圧検相器によp比較的簡単に一次検相が口
J能である。しかし、6万V以上では回路電圧が^く安
全面の問題もあって一次検相器は木だ開発されていない
現状でおる。
Generally, in phase detection of a 6,000-inch circuit, primary phase detection can be performed relatively easily using a commercially available high-voltage phase detector used in power distribution lines, etc. However, due to the circuit voltage exceeding 60,000 V and safety issues, primary phase detectors have not yet been developed.

従来、特別高圧回路の検相方法としては、(1)計器用
変圧器を介して行う二次検相、(2)絶縁抵抗器(メガ
−)を使用するメガ−検相、(3)仮設計器用変圧器を
介して行う二次検相等がある。
Conventionally, the phase detection methods for special high voltage circuits include (1) secondary phase detection using an instrument transformer, (2) megger phase detection using an insulation resistor (megger), and (3) provisional phase detection. There is secondary phase detection performed via a designer transformer.

しかし、二次検相は検相場所が限定され、且つ、大がか
りな系統変更のため複雑な系統操作が必要となり、長時
間を費やすものであった。また、仮設置1器用変圧器を
設置する場合は工事費が増大し、送N線の停止が困難な
場合には活線、おるいは活線に近接した作業となり、作
業が複雑化し、危険要素が多くなる錬点がある。このた
め、計器用変圧器を使用した間接的な二次検相ではなく
、直接主回路から検相ができる一次検相器の開発が切望
されている。
However, secondary phase inspection requires a limited number of locations for phase inspection, requires complicated system operations due to large-scale system changes, and takes a long time. In addition, when installing a temporary single-unit transformer, construction costs increase, and if it is difficult to stop the transmission N line, the work must be done on or near live lines, making the work complicated and dangerous. There is a point where the number of elements increases. For this reason, there is a strong need for the development of a primary phase detector that can perform phase detection directly from the main circuit, rather than indirect secondary phase detection using a voltage transformer.

この発明は上記事情に基づいてなされたもので、その目
的とするところは簡単な構成の検出器によって主回路の
各相より靜電紡4を圧を検出し、この電圧の位相点によ
って生ずる電流値を比軟して検相することにより、計器
用変圧器を使用した二次検相に比べて短時[1]で確実
に検相でき、しかも、工事費が低減できるとともに直接
光′岨部に′c接触することがなく作業か安全々判別高
圧検相器を提供しようとするものである。
This invention was made based on the above circumstances, and its purpose is to detect the voltage of the Seidenbo 4 from each phase of the main circuit using a detector with a simple configuration, and to calculate the current value generated by the phase point of this voltage. Compared to secondary phase detection using an instrument transformer, phase detection can be performed reliably in a shorter period of time [1] than by secondary phase detection using a voltage transformer. The purpose of this invention is to provide a high-voltage phase detector that can safely determine whether work is being done without coming into contact with the equipment.

以十、この発明の一実施例について図面を参照して説明
する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、11.J2はそれぞれ同一形状の検出
器であり、この検出器11.12は例えば直往8謹のア
ルミ・ゼイグによって構成される。即ち、この検出器J
J、12はそれぞれ長方形の外枠JJ1.J2(および
内枠112゜123ならびにこの外枠ツノ1+721.
内枠112r122をそれぞれ平面内で連結する連結部
材713 1J74 1J11I +Jl@  +J2
3+J24r12s  ・126からなシ、これら連結
部材113〜116および12s〜)26の交点には円
形状の取付部J1r+127が設けられる。第2図は検
出器1ノを取出して示すものであり、外枠11.、内枠
113の寸法t1 ・Lx  +t3  rL<Id、
それぞれ例えばL I= 500m。
In FIG. 1, 11. Detectors J2 each have the same shape, and these detectors 11 and 12 are constructed of, for example, 8-piece aluminum Zeig. That is, this detector J
J, 12 are rectangular outer frames JJ1. J2 (and the inner frame 112°123 and this outer frame horn 1+721.
Connection member 713 that connects the inner frames 112r122 within a plane 1J74 1J11I +Jl@ +J2
A circular attachment portion J1r+127 is provided at the intersection of the connecting members 113-116 and 12s-26. FIG. 2 shows the detector 1 taken out, and shows the outer frame 11. , dimension t1 of the inner frame 113 ・Lx +t3 rL<Id,
For example, L I = 500 m.

Lz=300m、t3=300++un、L4=200
+nでおる。この検出器IJ 、12の取付部J17*
127にはそれぞれ着脱自在に例えば特高検電器用絶縁
部材からなる保持棒13.14が設けられる。さらに、
前記検出器11.12の取付部jll+121にはシー
ルドケーブル15゜J6の一端部(心線)が取着される
。このシール)り−アルミ 5176の他端部(心線お
よびシールドクープル)は電流計(マイクロアンメータ
)17の接続端子171+172 .173゜174に
それぞれ接続され、この電流1J7の接地端子J 7.
にはリード781Bが接続される。
Lz=300m, t3=300++un, L4=200
+n. This detector IJ, 12 mounting part J17*
Holding rods 13 and 14 made of, for example, an insulating member for extra-high voltage detectors are detachably attached to each of the holding rods 127. moreover,
One end (core wire) of a shielded cable 15°J6 is attached to the attachment portion jll+121 of the detector 11.12. The other end of the aluminum 5176 (core wire and shield couple) is connected to the connection terminals 171+172 of the ammeter (microammeter) 17. 173° and 174, respectively, and the grounding terminal J7 of this current 1J7.
A lead 781B is connected to.

上記構成において、実際の測定に際しては、先ず保持棒
J3.14の長さを安全な長さく機器の架台の高さ以下
)に固定した後、保持棒13.14の先端部に検出器I
J、12が取着される。その扱、検出器11*12はそ
れぞれ第3図に示す如く検相する主回路(例えば線路開
閉器、9J)の下部に人手によって配役保持される。こ
の検出器jl*12は線路開閉器3ノの各相より静′邂
酵導電圧を検出するものであシ、この検出された微小電
圧はシールドケーブルJ5.J6を介して電流計17に
導ひかれる。
In the above configuration, for actual measurement, first fix the length of the holding rod J3.14 to a safe length (below the height of the equipment pedestal), and then attach the detector I to the tip of the holding rod 13.14.
J, 12 is attached. As shown in FIG. 3, the detectors 11*12 are manually placed and held under the main circuit (eg, line switch 9J) for phase detection. This detector jl*12 detects the static conduction voltage from each phase of the line switch 3, and this detected minute voltage is transmitted to the shielded cable J5. It is led to the ammeter 17 via J6.

この1m流計17は導入された微小電圧の位相差によっ
て生ずる電流を測定するものでアシ、この電流値が表示
される。このような測定が第4図に示す線路開閉器3ノ
のR相、S相、T相それぞれについて行なわれる。
This 1m current meter 17 measures the current generated by the phase difference of the introduced minute voltage, and this current value is displayed. Such measurements are performed for each of the R phase, S phase, and T phase of the line switch 3 shown in FIG.

次に、測定原理について説明する。第5図に示す如く、
真空中にある複数の点電荷Q+  +Qa  、Qsか
ら距離r1  +r2  +rB離れたP点の電位9は (但し、ε0は真空の誘電率) 5− となる。
Next, the measurement principle will be explained. As shown in Figure 5,
A plurality of point charges Q+ +Qa in a vacuum, the potential 9 at a point P located a distance r1 +r2 +rB away from Qs (where ε0 is the dielectric constant of the vacuum) becomes 5-.

また、第6図に示す如く真空中にある有限長tのiIt
籾に均密に存在する電荷(密度q)によp生ずるP点の
電位すは、電線とP点の垂直距離を81電線の断面積を
aとすると、 xl−I−i! となる。
In addition, as shown in Fig. 6, iIt of finite length t in vacuum
The electric potential at point P generated by electric charges (density q) evenly distributed in the rice grains is xl-I-i!, where the vertical distance between the wire and point P is 81, and the cross-sectional area of the wire is a. becomes.

さらに、X空中にある有限長の複数の電線に均密に存在
する電荷(密度ql  +9g  +q3・・・)によ
シ生ずるP点の電位は(2)式よシー〇−一 と々る。
Furthermore, the electric potential at point P caused by charges (density ql + 9g + q3...) uniformly existing in a plurality of electric wires of finite length in the air X is given by equation (2).

上記(1)〜(3)式を利用して電気所における三相交
流回路の電線の直下付近における電位を求めてみる。
Using the above equations (1) to (3), we will calculate the potential directly below the wires of a three-phase AC circuit at an electric station.

第7図(、)争)に示す如く、ql と−qlにより生
ずるptAの電位vllはqt とp+ との距離をb
I、+  QL とPlとの距離をS+Z、鴇、線の長
さをL)rL2とした場合、 〆S目2 +、 r、。
As shown in FIG.
If the distance between I, +QL and Pl is S+Z, and the length of the line is L)rL2, then 〆Sth 2 +, r,.

となる。ここで、66 kV断路器の場合を例にとると
、5II=1 m 、 L1== (1,5y(、S 
st= 6 m 。
becomes. Here, taking the case of a 66 kV disconnector as an example, 5II=1 m, L1== (1,5y(, S
st=6 m.

ta =1 mどなり、これを上式に代入すると=に、
 ql ’X 1.113 となる。
ta = 1 m. Substituting this into the above formula yields =,
ql 'X 1.113.

また、q2と−92にょシ生ずる21点の電位”11は となる。ここで、S 2J= 1.8 m、 11 =
 (1,5m。
Also, the potential of 21 points "11" generated by q2 and -92 is as follows. Here, S 2J = 1.8 m, 11 =
(1.5m.

5zz=6.2 m、 12 = 1 mとおくと、上
式は= Ih Qa Xo、564 となる。
If we set 5zz=6.2 m and 12=1 m, the above equation becomes = Ih Qa Xo, 564.

また、qsと−93にょp生ずる21点の電fX′L?
’ r sは (〆Ss +2+Lr2−2+X〆Ss z2+1*2
+1g)となる。ここで、5s17” 3.2m、 A
l=0.5m。
Also, the 21-point electric current fX'L?
' r s is (〆Ss +2+Lr2-2+X〆Ss z2+1*2
+1g). Here, 5s17” 3.2m, A
l=0.5m.

9− 53a=6.7m、 t2 =l mとおくと、上式は
”’Ks  qs  Xo、24 となる。
9-53a=6.7m and t2=lm, the above equation becomes "'Ks qs Xo, 24".

Ql  +  Ql  +q*  +−q2 +ql 
 l qsにより生ずる21点の電位■1は V+ =t’st+V+z十t’ts =Kg (Ql X 1.113+qaX0.564+
qsX0.243)となり、このQl  +qa  l
q8を三相交流回路にあてはめればそれぞれの位相関係
は 4 ql ・Qa =、 Qa6 3  * Q1=ql 
e−’ 3 ”であり、 lO− となる。上記引算を同様に22点およびPs点について
行ないsPR点IP、点の電位V2+v3を求めると V2 =に2(11(fl、275  jo、475)
Vs =Ks qt ((1,559jO,475)と
なる。
Ql + Ql +q* +-q2 +ql
The potential ■1 at 21 points generated by l qs is V+ = t'st + V + z + t'ts = Kg (Ql X 1.113 + qaX0.564 +
qsX0.243), and this Ql +qa l
If q8 is applied to a three-phase AC circuit, the respective phase relationships are 4 ql ・Qa =, Qa6 3 * Q1 = ql
e-'3'', which becomes lO-.Similarly, the above subtraction is performed for the 22 points and the Ps point to find the potential V2+v3 of the sPR point IP, and then V2 = 2(11(fl, 275 jo, 475 )
Vs = Ks qt ((1,559jO,475).

次に、各点間に生ずる電位差を求めると、21〜22間
の電位差VlKは VI2=V1  v。
Next, when calculating the potential difference between each point, the potential difference VlK between 21 and 22 is VI2=V1 v.

=Kzql (0,711−j O,281)−に2q
t (−(1,275−j(1,475)=Kz ql
 (0,986+j O,194)lVnl=Kz q
l Xl、005 P2〜P3間の電位差viaは ■、、:=v、  v3 =Kzq+((1,275−jO,475)Klql 
(0,599+jO,475)”K2 ql (0,3
24−j O,95)lVza I= K、 ql X
l、004P3〜P1間の電位差V81は VBl ”’ V 3  V 1 =Kz qt (0,599+jO,475)−に2 
qt (0,711[1281)”’Ka ql (1
,31+j0.756)lV+B l =に2q+ X
l、512となる。このようにして求められた各点の電
位および電位差比率ベクトルは第8図に示すようになる
。実際の測定において、前配電流引J7Kldl’Vt
1l 、1vasl 、IVIIIK比例Lt電流が流
れることに々る。第1表は66 kV断路器における電
流比率計算値および0内に実際の測定値を示すものであ
り、計算値と測定値がほぼ一致する。したがって、十分
実用に供することができる。
=Kzql (0,711-j O,281)-2q
t (-(1,275-j(1,475)=Kz ql
(0,986+j O,194)lVnl=Kz q
l Xl, 005 The potential difference via between P2 and P3 is
(0,599+jO,475)”K2 ql (0,3
24-j O, 95) lVza I= K, ql X
The potential difference V81 between P3 and P1 is VBl ''' V 3 V 1 = Kz qt (0,599+jO,475)-2
qt (0,711 [1281)”'Ka ql (1
,31+j0.756)lV+B l =2q+X
l, 512. The potential at each point and the potential difference ratio vector obtained in this manner are shown in FIG. In actual measurements, the predistribution current pull J7Kldl'Vt
1l, 1vasl, IVIIIK proportional Lt current flows. Table 1 shows the calculated current ratio in a 66 kV disconnector and the actual measured value within 0, and the calculated value and the measured value almost match. Therefore, it can be put to practical use.

第1表66 kV断路器の検相側 面、との検相器は天候条件によって測定結果に差が無く
、充電線と負荷線を比較しても変化はなかった。
Table 1 Phase check side of 66 kV disconnector There was no difference in measurement results depending on the weather conditions, and there was no change when comparing the charging line and load line.

上記実施例によれば、保持棒13.14に設けられた検
出器J1.J2および電流計17のみによって検相を行
なうことができる。したがって、装置構成が簡単で取扱
いが便利である。
According to the above embodiment, the detector J1. provided on the holding rod 13.14. Phase detection can be performed using only J2 and ammeter 17. Therefore, the device configuration is simple and handling is convenient.

また、1次検相であるため仮設置1器用変圧器やこれに
関連する系統操作が不要であり、確実且つ短時間に検相
できる。しかも、検相器の製作費は安価であるため、従
来の検相方法に比べ13−一 て大幅な工事費の低減が可能である。
In addition, since it is a primary phase detection, there is no need for a temporarily installed single transformer or related system operations, and phase detection can be performed reliably and in a short time. Moreover, since the manufacturing cost of the phase detector is low, construction costs can be significantly reduced by 13-1 compared to conventional phase detection methods.

また、検出器JJ、12の高さは架台程度でよいため直
接充電部に触れることがなく、作業を安全に行なうこと
が可能でおるO 尚、上記実施例では検出器11.12を長方形状とした
が、これに限らず例えば円形状あるいは円盤状としても
実施可能であるO その他、この発明の要旨を変えない範囲で種ai変形実
施可能なことは勿論である。
In addition, since the height of the detectors JJ and 12 is only about the height of the stand, it is possible to work safely without directly touching the live parts. However, the present invention is not limited to this, and may be implemented as a circular shape or a disc shape, for example. Other modifications may of course be made within the scope of the gist of the present invention.

以上、許述したようにこの発明によれば、従来に比べて
短時間で確実に検相でき、しかも工事費が低減できると
ともに、直接充電部に接触することがなく作業が安全な
特別高圧検相器を提供できる。
As mentioned above, according to the present invention, phase detection can be performed reliably in a shorter time than conventional methods, construction costs can be reduced, and special high-voltage detection can be performed safely without directly contacting live parts. We can provide companion equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係わる特別高圧検相器の一実施例を
示す構成図、第2凶は第1図の検出器を取出して示す正
面図、第3図は実際の測定状態の一例を説明するために
示す図、第4図は第3図の線路開閉器を示す上面図、M
5図乃至14− 第8図はそれぞれこの発ゆ」の61す定坤理を説明する
ために示す図である0 11.12・・・検出器、13.14・・・保持棒、J
7・・・ni流計。 出願人代理人  弁理士 銘 江 武 彦5− 第1図 第2図
Fig. 1 is a configuration diagram showing an embodiment of the special high voltage phase detector according to the present invention, Fig. 2 is a front view showing the detector shown in Fig. 1 taken out, and Fig. 3 is an example of an actual measurement state. Figure 4 is a top view showing the track switch in Figure 3, M
Figures 5 to 14-8 are diagrams shown to explain the 61 fixed principle of this generation, respectively.
7...ni flow meter. Applicant's agent Patent attorney Name Takehiko E 5- Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 絶縁保持棒の先端部に設けられ導電性部拐によ9て形成
された検出器と、この検出器2個が電力系統の主回路よ
p所定距離離間して設けられこの検出器によって検出さ
れた各相の静電誘導電圧の位相差によυ生ずる電流を測
定する電流計とを具備したことを特徴とする特別高圧検
相器0
A detector is provided at the tip of the insulating rod and is formed of a conductive strip, and two of these detectors are provided at a predetermined distance from the main circuit of the power system and are detected by the detector. A special high voltage phase detector 0 characterized in that it is equipped with an ammeter that measures the current generated by the phase difference between the electrostatic induced voltages of each phase.
JP18960081A 1981-11-26 1981-11-26 Phase detector for specially-high voltage Pending JPS5890181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18960081A JPS5890181A (en) 1981-11-26 1981-11-26 Phase detector for specially-high voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18960081A JPS5890181A (en) 1981-11-26 1981-11-26 Phase detector for specially-high voltage

Publications (1)

Publication Number Publication Date
JPS5890181A true JPS5890181A (en) 1983-05-28

Family

ID=16244019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18960081A Pending JPS5890181A (en) 1981-11-26 1981-11-26 Phase detector for specially-high voltage

Country Status (1)

Country Link
JP (1) JPS5890181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320068U (en) * 1986-07-24 1988-02-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320068U (en) * 1986-07-24 1988-02-09

Similar Documents

Publication Publication Date Title
Kojovic Rogowski coils suit relay protection and measurement~ of power systems\
ES2302335T3 (en) CONTROL OF PARTIAL INTERNAL DOWNLOADS IN AN ELECTRIC TRANSFORMER.
Rahmatian et al. 230 kV optical voltage transducers using multiple electric field sensors
Mor et al. Localization techniques of partial discharges at cable ends in off-line single-sided partial discharge cable measurements
US6380725B1 (en) Voltage sensor
WO2014135680A1 (en) Overcurrent protection device and method
CN110235004A (en) For detecting the waveform separator device and method of the leakage current in high voltage direct current Force system
Winkelmann et al. Monitoring of partial discharges in HVDC power cables
CN103487725A (en) Overhead distributing line ground fault indicating device based on zero-sequence component method
US4241305A (en) Method and apparatus for locating faults in electric cables
Zhao et al. Design, construction and utilization of a new reduced-scale model for the study of hybrid (AC and DC) line corona
JPS5890181A (en) Phase detector for specially-high voltage
CA1134446A (en) Cable tester
CN107271775B (en) electric power overhead line phase detection method
Shafiq et al. Online partial discharge diagnostics in medium voltage branched cable networks
CN210720621U (en) Fault testing device for power cable
CN103954889A (en) Capacitive type device insulation parameter electrification testing method based on pincerlike current sensors
Foley et al. Project EHV-preliminary corona investigations: the effect of harmonics on corona losses
CN110402074A (en) A kind of screening arrangement suitable for clamp current transducer
Li et al. Non-contact determination of the phase sequence and voltage level of overhead conductors in air insulated substations
CN108414875B (en) Positioning method and system for detecting abnormal grounding of large-scale enclosed bus shell
CN215641485U (en) System with transmission line voltage measurement and electricity test functions
JPS6321145B2 (en)
JP2019022388A (en) Cubicle type high-voltage power incoming installation
Boggs et al. Partial discharge location in gas-insulated switchgear