JPS5890125A - Measuring method for gas flow rate - Google Patents

Measuring method for gas flow rate

Info

Publication number
JPS5890125A
JPS5890125A JP18786081A JP18786081A JPS5890125A JP S5890125 A JPS5890125 A JP S5890125A JP 18786081 A JP18786081 A JP 18786081A JP 18786081 A JP18786081 A JP 18786081A JP S5890125 A JPS5890125 A JP S5890125A
Authority
JP
Japan
Prior art keywords
flow rate
container
gas
mass flow
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18786081A
Other languages
Japanese (ja)
Inventor
Kaoru Kanda
神田 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIGMA GIJUTSU KOGYO KK
Original Assignee
SIGMA GIJUTSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIGMA GIJUTSU KOGYO KK filed Critical SIGMA GIJUTSU KOGYO KK
Priority to JP18786081A priority Critical patent/JPS5890125A/en
Publication of JPS5890125A publication Critical patent/JPS5890125A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material

Abstract

PURPOSE:To accurately measure the mass flow rate of any kind of gas, by measuring the pressure in a container at a predetermined time interval and successively calculating a mass flow rate. CONSTITUTION:A gas entering through an inlet 36 is controlled by a mass flow controller 30 so as to have a constant flow rate and introduced into a container 31 and then made to flow out from an outlet 37 through a valve 33. In measurement, the valve 33 is closed, and the pressure in the container 31 is successively measured by means of a pressure gauge 32 made of stainless steel at a predetermined time interval (e.g., 0.1sec). Since the volumes of the container 31 and the piping of the measuring circuit are previously set in a memory circuit 38, a mass flow rate is calculated by an arithmetic circuit 34 according to the Boyle-Charles' law and displayed on a display 35. According to this momentary flow rate, the mass flow controller 30 is calibrated and corrected. Upon completion of the measurement, the valve 33 is opened. Thus, the mass flow rate of any kind of gas can be accurately measured.

Description

【発明の詳細な説明】 本発明は気体流量を測定する方法と装置に関する。[Detailed description of the invention] The present invention relates to a method and apparatus for measuring gas flow.

さらに詳しく言えば、気体の質量流量を制御する質量流
量制御装置を較正する方法と装置に関する。
More particularly, the present invention relates to a method and apparatus for calibrating a mass flow controller for controlling the mass flow rate of gas.

半導体の製造装置および分析装置における処理では多く
の気体例えば酸素、水素、窒素、アこれらの装置に使用
する気体の流量はl0CC/分〜1ot7分と極めて微
小流量であシ1通常、テーパ管と浮子を用いた面l*流
量計、流れの中にヒータを付加し上流と下流の温度差を
測定して質量を測定する熱式マスフロメータ、流量を一
定に保持する制御バルブとマスフロメータを組み合わせ
たマスフロコントローラが使用されている。
In processing in semiconductor manufacturing equipment and analysis equipment, many gases such as oxygen, hydrogen, and nitrogen are used. A surface l* flowmeter using a float, a thermal mass flowmeter that adds a heater to the flow and measures the temperature difference between upstream and downstream to measure mass, and a mass flowmeter that combines a control valve and mass flowmeter to maintain a constant flow rate. A flow controller is used.

本説明では、特に熱式マスフロコントローラを例にとり
説明する。
In this description, a thermal mass flow controller will be specifically taken as an example.

第1図は熱式マスフロコントローラの基本的構成図であ
る。
FIG. 1 is a basic configuration diagram of a thermal mass flow controller.

1は気体が流れる管、2は気体の入力口、3は気体の出
力口、4は管1の外周にコイル状になりたヒータ、5は
気体の上流側コイル、6は下流側コイル、7は気体の制
御バルブ、8は抵抗検出回路、9は流量設定回路、10
は比較回路。
1 is a pipe through which gas flows, 2 is a gas input port, 3 is a gas output port, 4 is a heater coiled around the outer circumference of the pipe 1, 5 is an upstream coil for gas, 6 is a downstream coil, 7 is a gas control valve, 8 is a resistance detection circuit, 9 is a flow rate setting circuit, 10
is a comparison circuit.

11は制御バルブ7の駆動回路、12は流量表示器、1
3はマスフロメータである。
11 is a drive circuit for the control valve 7; 12 is a flow rate indicator; 1
3 is a mass flow meter.

コイル5.6は管の外周にまかれ、管内部の気体温度を
抵抗値の変化として検出する。
A coil 5.6 is wound around the tube and detects the gas temperature inside the tube as a change in resistance.

入力口2から入力された気体は上流側コイル5でその温
度を検出し、下流側コイル6によりヒータ4で加熱され
た気体の温度を検出する。
The temperature of the gas input from the input port 2 is detected by the upstream coil 5, and the temperature of the gas heated by the heater 4 is detected by the downstream coil 6.

この上流側コイル5で検出された温度と下流側コイル6
で検出された温度との差は、管を流れる流体の質i尾比
例することを応用したものである。
The temperature detected by the upstream coil 5 and the downstream coil 6
This is based on the fact that the difference between the temperature detected at

抵抗検出回路8でコイル5,6の抵抗値を検出増幅し、
流量表示器12にその時の流量が表示さレル。これがマ
スフロメータ13である。一方。
A resistance detection circuit 8 detects and amplifies the resistance values of the coils 5 and 6.
The flow rate at that time is displayed on the flow rate display 12. This is the mass flow meter 13. on the other hand.

抵抗検出回路8の出力は比較回路lOにおいて流量設定
回路9と比較され、設定流量になるように駆動回路11
を経て制御パルプ7を制御する。
The output of the resistance detection circuit 8 is compared with the flow rate setting circuit 9 in the comparison circuit 1O, and the drive circuit 11 is adjusted so that the set flow rate is achieved.
The control pulp 7 is controlled through.

一方、この熱式マスフロコントローラを較正する基準器
には、予め満杯にしたタンクから流出した液体の流量を
測定して試験流量計の指示値と比較するタンク方式、ピ
ストンを一定の速さで移動させるピストン式ガスプルー
バ方式等(3) もあるが、1tA−以下の微小流量には石鹸膜プルーバ
方式が多く用いられている。
On the other hand, the reference device used to calibrate this thermal mass flow controller includes a tank method that measures the flow rate of liquid flowing out from a pre-filled tank and compares it with the indicated value of a test flow meter, and a standard device that moves the piston at a constant speed. Although there is a moving piston type gas prover method (3), the soap film prover method is often used for minute flow rates of 1 tA or less.

第2図は石鹸膜プルーバの構造図である。FIG. 2 is a structural diagram of the soap film prover.

15は気体の入力口、16は較正される熱式マスフロコ
ントローラ、17uガラス容器、18ハガラス容器17
に溶着されたガラス管、19は第1の標線、20は第2
の標線、21はゴムのう。
15 is a gas input port, 16 is a thermal mass flow controller to be calibrated, 17 is a glass container, 18 is a glass container 17
19 is the first marked line, 20 is the second
Marked line 21 is the rubber bladder.

22は石鹸水である。22 is soapy water.

気体を入力口15から入力すると気体はマスフロコント
ローラ16により制御されて、一定流量の気体がガラス
管18を流れて大気に流出する。ゴムのう21を絞ると
石鹸水22の泡がガラス管18の下面に達しガラス管1
8に石鹸膜が形成され、気体の流れにそってガラス管1
8を上昇する。該石鹸膜が第1の標線19から第2の標
線20に到達するまでの時間を測定し、その間の容積か
ら流量を算出する。
When gas is input through the input port 15, the gas is controlled by the mass flow controller 16, and a constant flow rate of the gas flows through the glass tube 18 and flows out into the atmosphere. When the rubber bag 21 is squeezed, bubbles of soapy water 22 reach the bottom surface of the glass tube 18 and the glass tube 1
A soap film is formed on the glass tube 1 along the gas flow.
Rise 8. The time it takes for the soap film to reach the second marked line 20 from the first marked line 19 is measured, and the flow rate is calculated from the volume between them.

この方式の場合、明瞭な石鹸膜を1枚だけ作成すること
が困難であり、何回もゴムのう21を絞る必要がある。
In the case of this method, it is difficult to create only one clear soap film, and it is necessary to squeeze the rubber bag 21 many times.

オだ、5t15+以上の流量を(/l) 測定しようとするとガラス管18の直径が大きくなり1
石鹸膜の作成が一層困難になるばかりでなく1石鹸膜の
ゆらぎが発生して測定精度が著しく悪くなるという欠陥
がある。
Oh, if you try to measure a flow rate of 5t15+ or more (/l), the diameter of the glass tube 18 will become larger and 1
This method not only makes it more difficult to create a soap film, but also causes fluctuations in each soap film, which significantly deteriorates measurement accuracy.

測定できないという欠陥がある。There is a flaw in that it cannot be measured.

さらに9石鹸膜プルーバ方式の場合9石鹸膜が第1の標
線19から第2の標線20に到達してからでないと流量
が算出できないという欠陥がある。
Furthermore, in the case of the 9-soap film prover method, there is a defect in that the flow rate cannot be calculated until after the 9-soap film reaches the second marked line 20 from the first marked line 19.

本発明(d上記欠陥を除去した新規な発明であって、そ
の目的は (1)気体の流量測定を高精度で行う方法と装置を提供
すること。
The present invention (d) is a novel invention that eliminates the above defects, and its objectives are (1) to provide a method and apparatus for measuring gas flow rate with high accuracy.

(2)気体流量測定を乾式で行う方法と装置を提供する
こと。
(2) To provide a method and apparatus for dry gas flow measurement.

(3)微小流量から大流量まで測定可能な流量測定方法
と装置を提供すること。
(3) To provide a flow rate measurement method and device capable of measuring from minute flow rates to large flow rates.

(4)経時変化のない流量測定方法と装置を提(5) 供すること。(4) Propose a method and device for measuring flow rate that does not change over time (5) to offer.

(5)流1較正の自動化が可能な流量測定方法と装置を
提供すること。
(5) To provide a flow rate measurement method and device that can automate flow 1 calibration.

(6)  遂次流量を算出することが可能な流量測定方
法と装置を提供すること。
(6) To provide a flow rate measurement method and device that are capable of successively calculating flow rates.

(7)繰シ返し測定が敏速圧行うことのできる流量の測
定方法と装置を提供することであシ、容器と圧力測定手
段と計時手段とを備え所定時間間隔における前記容器内
の圧力を測定することによつて達成される。
(7) To provide a method and device for measuring a flow rate that can repeatedly and quickly measure pressure, which comprises a container, a pressure measuring means, and a timing means, and measures the pressure inside the container at predetermined time intervals. This is achieved by doing.

以下9本発明を図面によシ詳細f説明する。The present invention will be explained in detail below with reference to the drawings.

第3図は本発明になる流量測定装置の構成図である。FIG. 3 is a configuration diagram of a flow rate measuring device according to the present invention.

29は流量測定装置、30は較正される熱式マスフロコ
ントローラ、31は容器、32は圧力計。
29 is a flow rate measuring device, 30 is a thermal mass flow controller to be calibrated, 31 is a container, and 32 is a pressure gauge.

33はパルプ、34は演算制御回路、35は表示器。33 is a pulp, 34 is an arithmetic control circuit, and 35 is a display.

36は気体の入力口、37は気体の流出口、38は容器
31の容積記憶回路、39は計時回路、40はマスフロ
コントローラ30の流量指示計である。
36 is a gas input port, 37 is a gas outlet, 38 is a volume storage circuit of the container 31, 39 is a timing circuit, and 40 is a flow rate indicator of the mass flow controller 30.

気体は入力口36から入力されてマス70コン(6) トロ〜う30で一定流量になるよう制御され、容器31
圧導入される。測定開始前はバルブ33は開で流出口3
7から流出される。
Gas is input from the input port 36 and controlled to have a constant flow rate by the mass 70 controller (6) to the container 31.
Pressure is introduced. Before starting measurement, valve 33 is open and outlet 3 is closed.
It will be leaked from 7.

測定開始時にバルブ33を閉としその時の容器31の圧
力P1を圧力計32で読み、計時回路39を作動して一
定時間を秒後に再度圧力計32で容器31内の圧力Pz
を読みとる。
At the start of measurement, the valve 33 is closed, the pressure P1 in the container 31 at that time is read with the pressure gauge 32, the timing circuit 39 is activated, and the pressure Pz in the container 31 is read again with the pressure gauge 32 after a certain period of time.
Read.

容器31の容積を■とするとボイルシャルルの法則によ
り PV  =  nRT 但し、T;絶対温度、R;気体定数。
If the volume of the container 31 is ■, then according to Boyle-Charles' law, PV = nRT, where T: absolute temperature, R: gas constant.

定中容積変化のない容器を使用することによりc、 =
、 v 、 f四 P80.        ■ 但し、T;測定時の温度、Ps;標準圧。
By using a container whose volume does not change during constant operation, c, =
, v, f4P80. ■ However, T: temperature at the time of measurement, Ps: standard pressure.

Ts;標準状態の温度 n+ : PH測定時の容器中の気体モル数nz ; 
Pz測定時の容器中の気体モル数T=x TB 、 p
6 W 1気圧 とするとQ−(P2h)・V・−〇 を 従って、容器31の容積を予め測定して容積記憶回路3
8にセットしておけば測定開始時と終了時の圧力P1と
P7.およびその間の時間tを測定すれば質量流量Qが
得られる。
Ts; temperature in standard state n+: number of moles of gas in the container nz during PH measurement;
Number of moles of gas in the container at the time of Pz measurement T=x TB , p
6 W 1 atm. Therefore, the volume of the container 31 is measured in advance and stored in the volume storage circuit 3.
If set to 8, the pressures P1 and P7 at the start and end of measurement. The mass flow rate Q can be obtained by measuring the time t between the two.

この質量流量を演算制御回路34で計算し表示器35に
表示する。
This mass flow rate is calculated by the arithmetic control circuit 34 and displayed on the display 35.

時間tを例えばo、1秒とし0.1秒間隔で圧カ陀P2
を遂次測定することにょシ、瞬間的な流量を遂次算出し
て表示器35に表示することが可能となる。
For example, if the time t is o, 1 second, the pressure force P2 is applied at intervals of 0.1 seconds.
By successively measuring the instantaneous flow rate, it becomes possible to successively calculate the instantaneous flow rate and display it on the display 35.

マスフロコントローラの並置指示計40ニモ瞬間的な流
量が遂次表示されているので、マスフロコントローラの
較正+YtlA整は一層容易になるという効果がある。
Since the instantaneous flow rate is successively displayed on the indicator 40 of the mass flow controller, there is an effect that the calibration + YtlA adjustment of the mass flow controller becomes easier.

測定を終了するとバルブ33を開にして容器31の気体
を流出口37から流出させる。
When the measurement is completed, the valve 33 is opened to allow the gas in the container 31 to flow out from the outlet 37.

さらに、遂次流量だけでなく、測定開始時の圧力P1と
終了時の圧力P2とトータル時間Tとから1時間Tの間
の平均流量を式■から算出することも可能なことは言う
までもな−。
Furthermore, it goes without saying that it is also possible to calculate not only the sequential flow rate but also the average flow rate for one hour T from the pressure P1 at the start of measurement, the pressure P2 at the end, and the total time T from the formula (2).

v 本実施例において圧力計32には容積−結合型のステン
レスダイヤフラム式絶対圧測定の圧力計を使用すれば腐
蝕性ガスでも使用可能で、また、誤差0.1チ以下の精
度のよい圧力測定が可能である。
v In this embodiment, if a volume-coupled stainless steel diaphragm type absolute pressure measurement pressure gauge is used as the pressure gauge 32, it can be used even with corrosive gases, and it can also be used for highly accurate pressure measurement with an error of 0.1 inch or less. is possible.

容積記憶回路38に設定する容積■は容器31だけの容
積ばかりでなくバルブ33壕での配管容積、圧力計32
までの配管容積、マスフロコントローラ30の制御バル
ブから容器31までの配管容積を含めることにより、1
度の高−流量測定が可能となる。
The volume set in the volume memory circuit 38 includes not only the volume of the container 31 but also the piping volume in the valve 33 trench and the pressure gauge 32.
1 by including the piping volume from the control valve of the mass flow controller 30 to the container 31.
This makes it possible to measure high flow rates.

今、容器31と配管の容積を含む全容積Vを1.2 t
 、測定時間を30秒、測定開始前の容器31内の絶対
圧を1気圧、測定終了時の容器31内の絶対圧を2気圧
とすれば30秒間の平均流量。は弐〇より Q=(2−1)Xl、2X − 0 (9) Q= 2.、i t1分 となる。
Now, the total volume V including the volume of the container 31 and piping is 1.2 t.
If the measurement time is 30 seconds, the absolute pressure inside the container 31 before the start of the measurement is 1 atm, and the absolute pressure inside the container 31 at the end of the measurement is 2 atm, then the average flow rate for 30 seconds. From 2〇, Q = (2-1)Xl, 2X - 0 (9) Q = 2. , it becomes 1 minute.

以上の説明からも明らかなように1本発明によれば容積
■をかえることにより容易に流量レンジを変えることも
可能である。
As is clear from the above description, according to the present invention, the flow range can be easily changed by changing the volume (2).

また9本発明によれば機械的に動作する部分がなく、ガ
ラス管を使用する必妾もないので堅牢で耐久性がよく、
さらにバルブ33を開にすれば容器31内の圧力は直ち
に大気圧になるので。
In addition, according to the present invention, there are no mechanically moving parts and there is no need to use glass tubes, so it is robust and durable.
Furthermore, if the valve 33 is opened, the pressure inside the container 31 immediately becomes atmospheric pressure.

繰り返しテストが迅速に行われるという効果もある。Another advantage is that repeated tests can be carried out quickly.

容器31.および配管材料にステンレススチールまだは
塩化ビニールを使用すれば、接ガス部は全て耐蝕性とな
り、水溶性の気体でも腐蝕性の強い気体でも測定可能で
ある。
Container 31. If stainless steel or vinyl chloride is used as the piping material, all parts in contact with the gas will be corrosion resistant, making it possible to measure both water-soluble and highly corrosive gases.

まだ1本発明の流敗測定装置は乾式なので。However, the flow measurement device of the present invention is a dry type.

汚れ等による流量誤差を発生することもなく精度の高い
測定が可能である。
Highly accurate measurement is possible without causing flow rate errors due to dirt or the like.

また、上記説明ではマスフロコントローラが熱式の場合
について述べたが9本発明はこれに(10) 限定されるものではなく質量を測定する流量計であれば
すべて本発明を実施できることは明らかである。
Furthermore, in the above explanation, the case where the mass flow controller is a thermal type has been described, but the present invention is not limited to this (10), and it is clear that the present invention can be implemented with any flowmeter that measures mass. be.

以上説明したように本発明によれば、容器と圧力測定手
段と計時手段とにより遂次流量測定が可能なので、すべ
ての気体につbて精度よく質量流量を測定することが可
能である。
As explained above, according to the present invention, since the flow rate can be measured sequentially using the container, the pressure measuring means, and the timing means, it is possible to accurately measure the mass flow rate of all gases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱式マスフロコントローラの基本的構成図、第
2図は石鹸膜プルーバの構造図、第3図は本発明になる
流量測定装置の構成図である。 1は気体が流れる管、2,15.36は気体の入力口、
3は気体の出力口、4はヒータ、5は上流側コイル、6
は下流側コイル、7は制御パルプ。 8は抵抗検出回路、9は流量設定回路、10は比較回路
、11は駆動回路、12は流量表示器、13はマスフロ
メータ、16.30ハ熱式マスフロコントローラ、17
はガラス容器、18はガラス管。 19は第1の標線、20は第2の標線、21はゴムのり
、22は石鹸水、29は流量測定装置、31は容器、3
2け圧力計、33はバルブ、34は演算制御回路、35
は表示器、37は気体の流出口、38は容積記憶回路、
39は計時回路、 40は流量指示計である。 特許出願人    シグマ技術工業株式会社代表者 神
 1)  薫 矛I履 才2図 9 +3図
FIG. 1 is a basic configuration diagram of a thermal mass flow controller, FIG. 2 is a configuration diagram of a soap film prover, and FIG. 3 is a configuration diagram of a flow rate measuring device according to the present invention. 1 is a pipe through which gas flows, 2, 15.36 is a gas input port,
3 is a gas output port, 4 is a heater, 5 is an upstream coil, 6
is the downstream coil, and 7 is the control pulp. 8 is a resistance detection circuit, 9 is a flow rate setting circuit, 10 is a comparison circuit, 11 is a drive circuit, 12 is a flow rate indicator, 13 is a mass flow meter, 16.30 is a thermal mass flow controller, 17
is a glass container, and 18 is a glass tube. 19 is a first marked line, 20 is a second marked line, 21 is rubber glue, 22 is soap water, 29 is a flow rate measuring device, 31 is a container, 3
2-piece pressure gauge, 33 is a valve, 34 is an arithmetic control circuit, 35
37 is a gas outlet, 38 is a volume storage circuit,
39 is a timing circuit, and 40 is a flow rate indicator. Patent applicant Representative of Sigma Technology Industry Co., Ltd. Kami 1) Kunbai I Ritsai 2 Figure 9 + 3 Figure

Claims (1)

【特許請求の範囲】 1、容器と圧力測定手段と計時手段とを備え所定時間間
隔における前記容器内の圧力を測定して気体の質量流量
を遂次算出することを特徴とする流量測定方法。 2、容器と圧力測定手段と計時手段と前記容器の容積を
記憶する手段と演算制御手段とからなシ遂次流量を算出
するようになしたことを特徴とする気体流量測定装置。
[Claims] 1. A flow rate measuring method comprising a container, a pressure measuring means, and a time measuring means, and successively calculating the mass flow rate of gas by measuring the pressure inside the container at predetermined time intervals. 2. A gas flow rate measuring device comprising a container, a pressure measuring means, a timing means, a means for storing the volume of the container, and an arithmetic control means, and is configured to continuously calculate a flow rate.
JP18786081A 1981-11-25 1981-11-25 Measuring method for gas flow rate Pending JPS5890125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18786081A JPS5890125A (en) 1981-11-25 1981-11-25 Measuring method for gas flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18786081A JPS5890125A (en) 1981-11-25 1981-11-25 Measuring method for gas flow rate

Publications (1)

Publication Number Publication Date
JPS5890125A true JPS5890125A (en) 1983-05-28

Family

ID=16213475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18786081A Pending JPS5890125A (en) 1981-11-25 1981-11-25 Measuring method for gas flow rate

Country Status (1)

Country Link
JP (1) JPS5890125A (en)

Similar Documents

Publication Publication Date Title
CN102483344B (en) Upstream volume mass flow verification system and method
TWI431255B (en) Mass flow verifiers capable of providing different volumes and related methods
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
US5975126A (en) Method and apparatus for detecting and controlling mass flow
JP3145052B2 (en) Container inspection equipment
US20190072453A1 (en) Device and process for determining the size of a leak hole in a sample
EP1782026B1 (en) A method and apparatus for proving flow meters
CN106679770B (en) Mass calibration system and method for mass flowmeter
KR20130031260A (en) Calibration method and flow-rate measurement method for flow-rate controller of gas supplying apparatus
JPH02221817A (en) Correction of fluid composition for flowmeter
US6935156B2 (en) Characterization of process pressure sensor
CN103822765A (en) Device for detecting air leakage rate of large-scale ventilating device
CN106643989B (en) Density calibration system and method for mass flowmeter
US4934178A (en) Method and apparatus for determining the density of a gas
RU2296958C2 (en) Method for calibrating gas flow meters and device for its realization
JP4329921B2 (en) Inspection gas mixing apparatus and mixing method
JP2000039347A (en) Flowrate inspection device
JPS5890124A (en) Measuring method for gas flow rate
JPS5890125A (en) Measuring method for gas flow rate
JP3184885B2 (en) Gas meter calibration device
CN203772508U (en) Large-scale ventilating device air leakage rate detector
CN113494946B (en) SF based on shunt method 6 Gas recovery device for gas chamber
JPS5890126A (en) Measuring method for gas flow rate
Sârbu Modern water flowmeters: Differential pressure flowmeters
Jongerius et al. Calibration facilities for industrial gas flow meters in The Netherlands