JPS5889985A - Removing method of fluorine ion in waste water - Google Patents

Removing method of fluorine ion in waste water

Info

Publication number
JPS5889985A
JPS5889985A JP18782681A JP18782681A JPS5889985A JP S5889985 A JPS5889985 A JP S5889985A JP 18782681 A JP18782681 A JP 18782681A JP 18782681 A JP18782681 A JP 18782681A JP S5889985 A JPS5889985 A JP S5889985A
Authority
JP
Japan
Prior art keywords
liquid
added
calcium
water
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18782681A
Other languages
Japanese (ja)
Inventor
Koichi Hatanaka
畠中 孝一
Tadashi Yamazaki
山崎 征
Tadashi Yoshida
正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP18782681A priority Critical patent/JPS5889985A/en
Publication of JPS5889985A publication Critical patent/JPS5889985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To prevent the generation of scale troubles in post stage installations by adding water-soluble carbonate, etc. to the liquid from the stage in which Ca compds. are added to waste water contg. fluorine ions and subjecting said liquid to solid-liquid sepn., then adding water-soluble Al salts to the separated liquid. CONSTITUTION:Ca compds. are added to waste water cont. fluroine ions in an amt. larger than reaction equiv. with fluorine, and water-soluble carbonate or bircarbonate is added to the liquid in an amt. larger than reaction equiv. with respect to excessively dissolved Ca to maintain the pH at 9-11. Thereafter, the liquid is subjected to solid-liquid sepn. and after water-soluble Al salts are added to the separated liquid, the liquid is subjected to solid-liquid sepn., whereby the fluorine ions in the waste water are removed. Aluminum sulfate, aluminum chloride, etc. are adequately usable for the above-described water soluble Al salts, and the amt. of the Al salts to be added is generally 1,000-5,000ppm with respect to the separated liquid.

Description

【発明の詳細な説明】 本発明は廃水中の弗素イオンの除去方法に関する。[Detailed description of the invention] The present invention relates to a method for removing fluoride ions from wastewater.

従来、上記方法としては、弗素イオン含有廃水にカルシ
ウム化合物および水溶性の炭酸塩または重炭酸塩(以下
、炭酸塩等と称する。)を添加し、pHを適当な値に保
って、弗化カルシウムと炭酸カルシウムを共沈させる方
法が知られている。この方法は、廃水中の弗素イオン量
の3〜7当量のカルシウムイオンを添加して弗化カルシ
ラムラ牟成させるとともに、弗化カルシウムを沈澱分離
させる際の沈降性を改善するために、別に炭酸塩等を添
加し、生成した炭酸カルシウムと前記弗化カルシウムと
を共沈させるものである。添加する炭酸塩等の量は炭酸
イオンが廃水中の弗素イオン量の1〜3当量となるよう
に選定される。従って、この方法による処理水中には、
理論上は、弗素イオン量に対して、1〜3当量の過剰な
カルシウムイオンが未反応のままで含まれることになる
。この過剰なカルシウムイオンを含む処理水は、そのま
ま公共水域へ放流する場合には、現法規制では特に問題
とはならない。しかしながら、この処理水を更に除害す
るために、後段に処理設備が続く場合には、前記過剰な
カルシウムイオンによる後段設備でのスケールトラブル
が深刻な問題となることがある。
Conventionally, the above method involves adding a calcium compound and a water-soluble carbonate or bicarbonate (hereinafter referred to as carbonate, etc.) to fluoride ion-containing wastewater, maintaining the pH at an appropriate value, and dissolving calcium fluoride. A method of co-precipitating calcium carbonate and calcium carbonate is known. In this method, calcium ions in an amount of 3 to 7 equivalents of the amount of fluoride ions in wastewater are added to form calcilama fluoride, and carbonate is added separately to improve sedimentation properties when precipitating and separating calcium fluoride. etc., and the produced calcium carbonate and the calcium fluoride are coprecipitated. The amount of carbonate, etc. to be added is selected so that the amount of carbonate ions is 1 to 3 equivalents of the amount of fluorine ions in the wastewater. Therefore, in the water treated by this method,
Theoretically, 1 to 3 equivalents of excess calcium ions are contained unreacted relative to the amount of fluorine ions. If the treated water containing excess calcium ions is directly discharged into public waters, there will be no particular problem under current legal regulations. However, in order to further abate this treated water, if a subsequent treatment facility is installed, scale troubles in the subsequent facility due to the excess calcium ions may become a serious problem.

本発明は上記従来方法の問題点を改善し、処理水中の過
剰のカルシウムイオンを後段設備でスケールトラブルを
誘起させない程度に抑えることができる廃水中の弗素イ
オンの除去方法を提供することを目的とする。
The present invention aims to improve the problems of the conventional methods described above and to provide a method for removing fluorine ions from wastewater that can suppress excess calcium ions in treated water to an extent that does not cause scale trouble in downstream equipment. do.

上記の目的を達成するために、本発明は、弗素イオン含
有廃水にカルシウム化合物を弗素との反応当量以上に添
加する第1工程と、第1工程からの液に炭酸塩等を過剰
に溶存するカルシウムに対して反応当量以上に添加し、
pHを9〜11に保持する第2工程と、第2工程からの
液を固液分離する第3工程と、第3工程の分離液に水溶
性のアルミニウム塩を添加する第4工程と、第4工程か
らの液を固液分離する第5工程とによって構成されるこ
とを特徴とする。
In order to achieve the above object, the present invention includes a first step of adding a calcium compound to fluorine ion-containing wastewater in an amount equal to or more than the reaction equivalent with fluorine, and dissolving an excessive amount of carbonate, etc. in the liquid from the first step. Add more than the reaction equivalent to calcium,
a second step of maintaining the pH at 9 to 11; a third step of separating the liquid from the second step into solid-liquid; a fourth step of adding a water-soluble aluminum salt to the separated liquid of the third step; It is characterized by comprising a fifth step of separating the liquid from the fourth step into solid-liquid.

上記の構成において、第1工程は前記従来方法と同一の
考え方により、弗化カルシウムを生成させることを目的
とする。カルシウム化合物とじては、水酸化カルシウム
、塩化カルシウム、炭酸カルシウムなどが好ましく用い
られる。カルシウム化合物の添加量は、廃水中の弗素イ
オン量の2〜7当量が好ましい。2当量未満では弗化カ
ルシウムの生成が不十分となる。7当量より多くするこ
とは経済的に無意味である。第1工程でのpHは7〜1
1が好ましい。これ以外のpHの範囲では弗化カルシウ
ムの生成が不十分である。
In the above configuration, the purpose of the first step is to generate calcium fluoride based on the same concept as the conventional method. As the calcium compound, calcium hydroxide, calcium chloride, calcium carbonate, etc. are preferably used. The amount of calcium compound added is preferably 2 to 7 equivalents of the amount of fluorine ions in the wastewater. If the amount is less than 2 equivalents, the production of calcium fluoride will be insufficient. It is economically meaningless to use more than 7 equivalents. pH in the first step is 7-1
1 is preferred. Calcium fluoride is insufficiently produced in any other pH range.

第2工程における炭酸塩等の添加は、前記従来方法にお
ける弗化カルシウムの沈降性の改善の目的とはまったく
、観点が異なる。すなわち、炭酸カルシウムの生成とい
う現像は類似するが、本工程の目的は過剰のカルシウム
を廃水中から除去するためであり、弗化カルシウムとの
共沈を目的とするものではない。炭酸塩等の添加量は前
記第1工程では未反応の過剰のカルシウムに対して反応
当量以上に添加する。このため、第2工程に′よる処理
液はカルシウムイオンの濃度が最小限に抑えられて、以
降の後段工程および他の後段設備において、カルシウム
に起因するスケールトラブルを防止できる。ただし、本
工程においては、過剰のカルシウムイオンが存在しなく
なるため、解離定数の関連から、前記第1工程で生成し
た弗化カルシウムは液中に一部が再溶解するという問題
が生じる。このため、排水のフッ素濃度が放流基準値を
満足しない場合が多い。この問題を解決するために後述
の第4工程、第5工程を設ける。炭酸塩等としては炭酸
ナトリウム、炭酸カリウム、重炭酸す) IJウムが好
しく用いられる。炭酸塩等の添加量は前記過剰のカルシ
ウムに対して、1〜2当量が好ましい。1当量未満では
カルシウムを十分に除去できない。2当量以上は余り意
味がなく、処理液中の塩濃度を高くする弊害がある。第
2工程において、PHを9〜11に限定した理由は、第
1にこのpH域域外外は弗化カルシウムが再溶解し、処
理液中の弗素イオン濃度が著しく増大するからである。
The addition of carbonate or the like in the second step is completely different from the objective of improving the sedimentation properties of calcium fluoride in the conventional method. That is, although the development of producing calcium carbonate is similar, the purpose of this step is to remove excess calcium from wastewater, not to co-precipitate it with calcium fluoride. The amount of carbonate, etc. to be added is equal to or more than the reaction equivalent amount to the unreacted excess calcium in the first step. Therefore, the concentration of calcium ions in the treatment solution in the second step is minimized, and scale troubles caused by calcium can be prevented in subsequent subsequent steps and other subsequent facilities. However, in this step, since excess calcium ions are no longer present, a problem arises in that part of the calcium fluoride produced in the first step is re-dissolved in the liquid due to the dissociation constant. For this reason, the fluorine concentration of wastewater often does not satisfy the discharge standard value. In order to solve this problem, a fourth step and a fifth step, which will be described later, are provided. As carbonates, sodium carbonate, potassium carbonate, bicarbonate, etc. are preferably used. The amount of carbonate etc. to be added is preferably 1 to 2 equivalents relative to the excess calcium. If the amount is less than 1 equivalent, calcium cannot be removed sufficiently. If the amount is more than 2 equivalents, it is not very meaningful and has the disadvantage of increasing the salt concentration in the treatment liquid. The reason why the pH is limited to 9 to 11 in the second step is that, firstly, outside this pH range, calcium fluoride is redissolved and the fluorine ion concentration in the treatment liquid increases significantly.

第3工程は、第2工程がらO液中に存在する弗化カルシ
ウムおよび炭酸カルシウムを固液分離することを目的と
する。固液分離の手段としては通常は沈殿分離を採用す
る。この際、高分子凝集剤を微量添加したのちに、凝集
沈殿分離することが好ましい。
The purpose of the third step is to separate solid-liquid calcium fluoride and calcium carbonate present in the O liquid from the second step. Precipitation separation is usually employed as a means of solid-liquid separation. At this time, it is preferable to add a small amount of a polymer flocculant and then perform flocculation and precipitation separation.

第4工程は、本発明における最も特徴的な構成部分であ
る。すなわち、本発明者らは前記第1工程、第2工程で
は除去することができなかったかもしくは再溶解した処
理液中の弗素イオンが、水溶性のアルミニウム塩を添加
することにより、きわめて良好に沈降分離することを実
験の積重ねにより見出し、本工程を弗素イオン除去の仕
上工程として組み入れたものである。水溶性のアルミニ
ウム塩としては硫酸アルミニウム、塩化アルミニウム、
ポリ塩アルミニウムなどが好ましい。本工程における作
用は必ずしも明確に解明していないが、一種の化学反応
に凝集沈殿作用が付加したものではないかと推察される
。アルミニウム塩の添加量は第3工程の分離液に対して
通常1,000〜5.00f:)ppmの範囲であるが
、処理目標によって、この範囲外の少ない量でもよく、
または多く必要とする場合もある。本工程におけるpH
条件は5〜9が好ましい。このpHM以外では処理液中
の弗素イオン濃度が著しく増大し、または、アルミニウ
ム塩の添加量を著しく増大させる必要がある。
The fourth step is the most characteristic component of the present invention. That is, the present inventors have found that by adding a water-soluble aluminum salt, the fluorine ions in the processing solution that could not be removed or were redissolved in the first and second steps were very effectively precipitated. Through a series of experiments, we discovered that fluorine ions can be separated, and this process was incorporated as a finishing process for removing fluorine ions. Water-soluble aluminum salts include aluminum sulfate, aluminum chloride,
Polysalt aluminum and the like are preferred. Although the action in this process has not been clearly elucidated, it is speculated that it is a type of chemical reaction with the addition of a flocculation-sedimentation action. The amount of aluminum salt added is usually in the range of 1,000 to 5.00 f:) ppm relative to the separated liquid in the third step, but depending on the processing target, a small amount outside this range may be used.
Or you may need more. pH in this process
The conditions are preferably 5 to 9. At a pH other than this, the fluorine ion concentration in the treatment liquid increases significantly, or it is necessary to significantly increase the amount of aluminum salt added.

第5工程は、前記第3工程と同様に通常は凝集沈殿分離
操作が行われるが、これ以外の固液分離手段を用いても
よい。第5工程の分離液(処理水)は前記第1工程から
第4工程を経ているので、弗素イオン濃度が低く、かつ
カルシウムイオンの濃度も低いので、後段設備に対して
スケールトラブルを誘起させることはない。
In the fifth step, like the third step, a coagulation-precipitation separation operation is usually performed, but other solid-liquid separation means may be used. Since the separated liquid (treated water) in the fifth step has passed through the first to fourth steps, the concentration of fluorine ions is low, and the concentration of calcium ions is also low, so it may cause scale trouble in the subsequent equipment. There isn't.

実施例1 弗素イオン濃度600 ppm、 PH2の廃水に水酸
化カルシウムをカルシウムイオン量が弗素イオン量に対
して3当量となるように添加し、PHを9に保持して十
分に攪拌した。次いで1、炭酸ナトリウムを過剰のカル
シウムイオン量に対して1.5量となるように添加し、
PHを10に保持して十分に攪拌後、高分子凝集剤t 
5 ppm添加し、凝集沈殿処理した。この分離液中の
弗素イオン濃度は31、2 P7)FW、カルシウムイ
オン濃度は39.6 pp’llLであった。上記分離
液に硫酸アルミニウムを3000 ppm添加し、PH
を7に保持して十分に攪拌後、凝集沈殿処理した。この
処理水中の弗素イオン濃度は9.lppm、カルシウム
イオン濃度は32、7 pprnであった。
Example 1 Calcium hydroxide was added to wastewater having a fluorine ion concentration of 600 ppm and a pH of 2 so that the amount of calcium ions was 3 equivalents to the amount of fluorine ions, and the mixture was sufficiently stirred while maintaining the pH at 9. Next, 1. Add sodium carbonate in an amount of 1.5 to the amount of excess calcium ions,
After maintaining the pH at 10 and stirring thoroughly, add the polymer flocculant t.
5 ppm was added and subjected to coagulation and precipitation treatment. The fluorine ion concentration in this separated liquid was 31.2 P7)FW, and the calcium ion concentration was 39.6 pp'llL. 3000 ppm of aluminum sulfate was added to the above separated liquid, and the PH
After sufficient stirring while maintaining the temperature at 7, coagulation and precipitation treatment was performed. The fluorine ion concentration in this treated water was 9. lppm, and the calcium ion concentration was 32.7 pprn.

実施例2 実施例1で用いた廃水に対して、添加した水酸化カルシ
ウム、炭酸ナトリウムおよび硫酸アルミニウムの代りに
、それぞれ塩化カルシウム、重炭酸ナトリウムおよびポ
リ塩化アルミニウムを同一の反応当量もしくは添加量と
なるように、一部または全部を取換えて、その他の条件
は実施例1と同一にして処理を行った。その結果は、第
3工程での分離液および第5工程での分離液(処理水)
ともその弗素イオン濃度、カルシウムイオン濃度は実施
例1の場合と大差がなかった。
Example 2 To the wastewater used in Example 1, calcium chloride, sodium bicarbonate, and polyaluminum chloride were added in the same reaction equivalent or addition amount in place of the added calcium hydroxide, sodium carbonate, and aluminum sulfate, respectively. The process was carried out under the same conditions as in Example 1, except that part or all of it was replaced. The results are the separated liquid in the third step and the separated liquid (treated water) in the fifth step.
The fluorine ion concentration and calcium ion concentration of the tomato were not significantly different from those of Example 1.

比較例 実施例1で用いた廃水に水酸化カルシウムをカルシウム
イオン量が弗素イオン量に対して3当量となるように添
加し、さらに炭酸ナトリウムを炭酸イオン量が上記弗化
カルシウムの生成反応では過剰と計算されるカルシウム
イオン量に対して05当量となるように添加し、PH1
0に保持して十分に攪拌後、高分子凝集剤を5 PPm
添加し、凝集沈殿処理した。この分離液(処理水)中の
弗素イオン濃度は23.8 ppmと比較的低い値を示
したが、カルシウムイオン濃度は1140 ppmとき
わめて高い値を示した。
Comparative Example Calcium hydroxide was added to the wastewater used in Example 1 so that the amount of calcium ions was 3 equivalents to the amount of fluorine ions, and sodium carbonate was added so that the amount of carbonate ions was excessive in the above calcium fluoride production reaction. 05 equivalent to the amount of calcium ions calculated as PH1
After maintaining the temperature at 0 and stirring thoroughly, add 5 PPm of polymer flocculant.
and flocculation and precipitation treatment. The fluorine ion concentration in this separated liquid (treated water) was relatively low at 23.8 ppm, but the calcium ion concentration was extremely high at 1140 ppm.

Claims (1)

【特許請求の範囲】[Claims] 弗素イオン含有廃水にカルシウム化合物を弗素との反応
当量以上に添加する第1工程と、第1工程からの液に水
溶性の炭酸塩または重炭酸塩を過剰に溶存するカルシウ
ムに対して反応当量以上に添加し、PHを9〜11に保
持する第2工程と、第2工程からの液を固液分離する第
3工程と、第3工程の分離液に水溶性のアルミニウム塩
を添加する第4工程と、第4工程からの液を固液分離す
る第5工程とを包含することを特徴とする廃水中の弗素
イオンの除去方法。
A first step in which a calcium compound is added to the fluorine ion-containing wastewater in an amount equal to or more than the reaction equivalent with fluorine, and a water-soluble carbonate or bicarbonate is added to the liquid from the first step in an amount equal to or more than the reaction equivalent to calcium dissolved in excess. a second step in which the pH is maintained at 9 to 11; a third step in which the liquid from the second step is separated into solid-liquid; and a fourth step in which a water-soluble aluminum salt is added to the separated liquid in the third step. and a fifth step of separating the liquid from the fourth step into solid-liquid.
JP18782681A 1981-11-25 1981-11-25 Removing method of fluorine ion in waste water Pending JPS5889985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18782681A JPS5889985A (en) 1981-11-25 1981-11-25 Removing method of fluorine ion in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18782681A JPS5889985A (en) 1981-11-25 1981-11-25 Removing method of fluorine ion in waste water

Publications (1)

Publication Number Publication Date
JPS5889985A true JPS5889985A (en) 1983-05-28

Family

ID=16212907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18782681A Pending JPS5889985A (en) 1981-11-25 1981-11-25 Removing method of fluorine ion in waste water

Country Status (1)

Country Link
JP (1) JPS5889985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046156A1 (en) * 1999-02-01 2000-08-10 Stella Chemifa Kabushiki Kaisha Method of removing calcium from water containing calcium hydrogen carbonate in high concentration
JP2016097330A (en) * 2014-11-19 2016-05-30 Jfeエンジニアリング株式会社 Method of producing by-product salt and method of treating salt water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046156A1 (en) * 1999-02-01 2000-08-10 Stella Chemifa Kabushiki Kaisha Method of removing calcium from water containing calcium hydrogen carbonate in high concentration
US6905606B1 (en) 1999-02-01 2005-06-14 Stella Chemifa Kabushiki Kaisha Method of removing calcium from water containing calcium hydrogen carbonate in high concentration
JP2016097330A (en) * 2014-11-19 2016-05-30 Jfeエンジニアリング株式会社 Method of producing by-product salt and method of treating salt water

Similar Documents

Publication Publication Date Title
JPS5889985A (en) Removing method of fluorine ion in waste water
US4073706A (en) Brine treatment for trace metal removal
JPH06134471A (en) Method for removing fluorine from waste water containing fluorine
JPS59373A (en) Treatment of fluorine-contg. waste water
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JP3653786B2 (en) Treatment method for waste liquid containing cadmium and lead ions
JPS5846355B2 (en) Treatment method for fluorine-containing ammonia waste liquid
JPH0811232B2 (en) Fluorine-containing wastewater treatment method
JPH10230282A (en) Treatment of fluorine-containing waste water
JP2822453B2 (en) Method of removing fluorine from flue gas desulfurization wastewater
JP4136194B2 (en) Fluorine-containing wastewater treatment method
JPS59199097A (en) Disposal of waste cement slurry
JPS6071083A (en) Removal of heavy metal in waste water
JPS5854629B2 (en) Method for treating waste liquid containing heavy metal complex salts
JPH0592198A (en) Softening treatment of hard water
JPH01249187A (en) Method for purifying waste containing gallium and arsenic
JPS60166087A (en) Treatment of waste water containing high-concentration salts, copper and zinc
JPS63190695A (en) Treatment of fluorine-containing waste water
JPH0126755B2 (en)
JP2000015264A (en) Treatment of fluorine-containing water
JPS5834194B2 (en) Suiginion no Jiyokiyohouhou
JP2834082B2 (en) Treatment method for antimony-containing water
JPS6225433B2 (en)
JPH10286577A (en) Apparatus for treating fluorine-containing wastewater and abrasion wastewater and method therefor
JPH0910774A (en) Treatment of borofluoride-containing water