JPS5889763A - Spot-like gas ion source - Google Patents

Spot-like gas ion source

Info

Publication number
JPS5889763A
JPS5889763A JP56187024A JP18702481A JPS5889763A JP S5889763 A JPS5889763 A JP S5889763A JP 56187024 A JP56187024 A JP 56187024A JP 18702481 A JP18702481 A JP 18702481A JP S5889763 A JPS5889763 A JP S5889763A
Authority
JP
Japan
Prior art keywords
gas
needle
chip
ion
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56187024A
Other languages
Japanese (ja)
Inventor
Masaaki Futamoto
二本 正昭
Ushio Kawabe
川辺 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56187024A priority Critical patent/JPS5889763A/en
Publication of JPS5889763A publication Critical patent/JPS5889763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To obtain an ion beam with high intensity by setting the tip radius of curvature of a needle-like chip for ionizing the gas using the electric field ionization phenomenon within a specific range. CONSTITUTION:A spot-like gas ion source used for an ion beam microanalyzer or the like is formed by feeding decompressed gas to the tip of a needle-like chip applied with the positive high voltage to opposing electrodes so as to ionize the gas by the action of a high electric field, and in addition the tip radius of curvature R of the needle-like chip is set within a range of 0.2mum<=R<=2mum. Accordingly, the total radiated ion current varies depending on the electric field, temperature, gas pressure, and tip radius of curvature R of the needle- like chip, thereby an ion beam with high intensity can be generated by reducing the temperature of the needle-like chip and the gas to an optimum temperature, by setting the gas pressure at an optimum value, and by optimizing the tip radius of curvature R of the needle-like chip.

Description

【発明の詳細な説明】 本発明は、イオンビー、ム微小部分分析装置(IMA)
などのイオンビーム応用機器に有用な点状ガスイオン源
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion beam micro-analyzer (IMA).
This article relates to a point gas ion source useful for ion beam application equipment such as.

イオンビーム応用機器の性能はイオン源の能力に負うと
ころが大きい。イオン源に必要な条件は高輝度の点状イ
オンビームを長時間安定に放射することである。この目
的を実現する一手段として電界イオン化現象を応用した
点状ガスイオン源がある。これは、対向電極に対して正
の高電圧を印加し九針状チップの先端部に10−”fo
rr根度に減圧したガスを供給し、高電界の作用でこの
ガスをイオン化するものである。この型のイオン源は。
The performance of ion beam application equipment depends largely on the capability of the ion source. A necessary condition for an ion source is to stably emit a high-intensity point-shaped ion beam for a long period of time. One means of achieving this goal is a point gas ion source that applies the electric field ionization phenomenon. This is done by applying a high positive voltage to the counter electrode and applying a 10-"foil to the tip of the nine-needle tip.
Gas is supplied at a reduced pressure to rr, and this gas is ionized by the action of a high electric field. This type of ion source.

従来のデュオプラズマトロンイオン源、あるいは液体金
楓イオン源よシも匿い易い高輝度の点状イオン源として
皺近国内外の注目を集め始めている。
It has begun to attract attention both domestically and internationally as a high-brightness point ion source that can be easily concealed compared to conventional duoplasmatron ion sources or liquid Kaede ion sources.

このイオン源から、高輝度のガスイオンビームを放射さ
せるためには種々の動作条件をIIk溝に設定すること
が心安となる。この型のガスイオン源のイオン電流(I
)は、電界(F)、針状チップおよびガスの龜度(Tt
、T1)−ガス圧力(P)。
In order to emit a high-intensity gas ion beam from this ion source, it is safe to set various operating conditions in the IIk groove. Ion current (I) of this type of gas ion source
) are the electric field (F), the needle tip and the gas density (Tt
, T1) - gas pressure (P).

針状チップの先端曲率半径(R)などに依存する。It depends on the radius of curvature (R) of the tip of the needle tip.

しかし、この型のガスイオン源の実用化研梵が關始され
たのは極めてRk近でるn、m通勤作条件が決定された
とはきい禰い。例えば水素ガスイオンを侍る働合にTt
およびT5を4〜20にの極低温にtj即すると高輝度
なHtイオンビームが得られること< J、vac、S
ci 、’l’echno1.l 6(1979>18
75)6るいは針状チップ材料として(110>方位の
イリジウムを用いると高輝度なイオンビームが安定に放
射されること(J、 Appl、 PhYm 50(1
979)6026)が報告されている程度+ある。
However, research into the practical use of this type of gas ion source began only after the n, m commuting operating conditions, which were extremely close to Rk, were determined. For example, when working with hydrogen gas ions, Tt
And if T5 is kept at an extremely low temperature of 4 to 20, a high-intensity Ht ion beam can be obtained < J, vac, S
ci,'l'echno1. l 6 (1979>18
75) High-intensity ion beams can be stably emitted by using iridium with (110> orientation) as a material for 6- or needle-shaped tips (J, Appl, PhYm 50(1)
979) 6026) has been reported to some extent.

こnらの場合、先端曲率半径が1000Å以下の鋭い針
状チップが使用されている。
In these cases, a sharp needle tip with a tip radius of curvature of 1000 Å or less is used.

本発明は1点状ガスイオン源の実相的な動作条件を規定
するものであシ、とくにIMAなどのイオンビーム応用
機器のイオン源として必要な針状チップのIIk逼な曲
率半径(R)を与えるものである。
The present invention specifies practical operating conditions for a single-point gas ion source, and in particular, defines the radius of curvature (R) of the needle tip, which is necessary as an ion source for ion beam application equipment such as IMA. It is something to give.

以下、実験結果にもとづいて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on experimental results.

点状ガスイオン源の全放射イオン電流(I)は先に述べ
たように電界(F)、針状チップおよびガスのmf(T
g  、Tg )−ガス圧力(P)、針状チップの先端
曲率半径(R)に依存して変化する。高輝度なイオンビ
ームを得るためには、これらのパラメータ(F、Tg 
 、T−、P、R)を最適化することが必要であシ1本
発明者らは実験によりこれらのパラメータの効果を調べ
た。
The total emitted ion current (I) of a point gas ion source is determined by the electric field (F), the needle tip and the gas mf (T
g, Tg) - varies depending on the gas pressure (P), the tip radius of curvature (R) of the needle tip. In order to obtain a high-intensity ion beam, these parameters (F, Tg
, T-, P, R).1 The inventors investigated the effects of these parameters through experiments.

11)電界(F)、針状チップおよびガス温度(Ti 
 、Tt ) 第1図は、<110>W針状チップ、R中旬00′Aを
用いてP中10−!TorrのNCガスをイオン化した
場合のFとTの工に及ぼす効果を示したものである。一
般的にはT t りT−であシ、 Tt =T。
11) Electric field (F), needle tip and gas temperature (Ti
, Tt) Figure 1 shows 10-! This figure shows the effect on F and T when ionizing Torr NC gas. In general, Tt is T−, and Tt = T.

の場合に最大のイオン電流が得られるため、ここではT
tとT、を同一温度と柔るようにした。イオン111t
流(I)はTによって差はめるがF = 1.8〜&2
V/人の範囲で直線的に急増し、ついでFの増加に対し
てゆっくり増大する。Wチップの場合、F>6.5V/
λ以上ではチップの電界蒸発が起こるので、この電界以
下で動作させることが必要である。第1図よシ明らかな
ように、工はTが低いほど増大する傾向があることがわ
かる。
Since the maximum ion current is obtained when T
t and T are made to be the same temperature. ion 111t
The flow (I) varies depending on T, but F = 1.8 ~ &2
It increases linearly rapidly in the V/person range and then increases slowly with increasing F. For W chip, F>6.5V/
Since electric field evaporation of the chip occurs above λ, it is necessary to operate below this electric field. As is clear from Fig. 1, it can be seen that the lower the T, the more the force tends to increase.

第2図は、各棟のガスについてTとI/I。の関係を示
したものである。ここで工。はT=300Kにおけるイ
オン電流でめる。イオン電流はTが低いほど増大する傾
向があるが、めまシTが低すぎるとイオン電流は急減す
る。これはガスがチップ表面で凝細し、チップ先端に供
給され難くなるためである。この堰移温匿(T)はガス
の液化温度よシ幾分低く、その差(ΔT)はガスのaI
類にょつても変化するが、ΔT=5〜40に程度である
Figure 2 shows T and I/I for gas in each building. This shows the relationship between Engineering here. is determined by the ionic current at T=300K. The ion current tends to increase as T becomes lower, but if T is too low, the ion current decreases rapidly. This is because the gas condenses on the chip surface and becomes difficult to be supplied to the tip of the chip. This weir temperature transfer (T) is somewhat lower than the liquefaction temperature of the gas, and the difference (ΔT) is the aI of the gas.
Although it often changes, it is about ΔT=5 to 40.

大きいイオン電流を得るためには、Tを遷移@度(T町
の直上に保つことが有効である。#g2図に示したTと
I/IOの関係はチップ材料にはほとんど依存せずt 
W+l *Pt 、Re +Ta+Mo+C1などいず
れの材料を用いても同様の結果が得られる。
In order to obtain a large ion current, it is effective to keep T just above the transition @ degree (T town. #g2 The relationship between T and I/IO shown in the figure is almost independent of the chip material and is
Similar results can be obtained using any of the materials, such as W+l*Pt and Re+Ta+Mo+C1.

(2)  ガス圧力(P) 第3図は、Heガス圧力(P)とイオン電流(I)の関
係を示したものである。<110.>W針状チップを用
い、T=20にである。P<P*(〜2 X 104T
orr )以下では工はPに比例して増大するが、工は
P*で極大値を示し、これ以上Pが増大すると工は減少
し、ついでグロー放電領域に入る。戸の値はガスの種類
によって若干変化したがi Hl +HCmNeIA’
 1Nl l O! +に’eXe mCH4*BHI
  5BC4+PH@  *PC4に対してh P”〜
8 X 10−”〜5 X I Q−”Torrの範囲
でほぼ10””porr機度である。上記ガスに対して
(2) Gas pressure (P) FIG. 3 shows the relationship between He gas pressure (P) and ion current (I). <110. >W needle tip is used and T=20. P<P*(~2 x 104T
orr ) or below, the force increases in proportion to P, but the force reaches a maximum value at P*, and if P increases beyond this level, the force decreases and then enters the glow discharge region. Although the value varies slightly depending on the type of gas, i Hl + HCmNeIA'
1Nl l O! +に'eXe mCH4*BHI
5BC4+PH@ *h P” for PC4
It is approximately 10'' porr degree in the range of 8 X 10-'' to 5 X I Q-'' Torr. For the above gases.

いずれも第3図と類似な特性が得られた。この図よシ明
らかなように大きいイオン電流を得るためにはpt−p
I付近に保つことが有効であることがわかる。
In both cases, characteristics similar to those shown in FIG. 3 were obtained. As is clear from this figure, in order to obtain a large ion current, pt-p
It can be seen that keeping it near I is effective.

(3)針状チップの曲率半径(R) Tt−T”直上の温度、P=P”の条件で工と凡の関係
を調べた結果を第4図に示す。ここではlは全放射イオ
ン電流の代りに単位立体角あた)に放射さKるイオン電
流で示しである。■は凡の25乗ないし3乗に比例して
増大することがわかる。第4図は電界イオン化現象を利
用したガスイオン源において、得ることのできる最大イ
オン電流を示すものでアシ、これ以下のイオン電流はP
やTt−制御することによって容易に得られる。
(3) Radius of curvature (R) of the needle-like tip Figure 4 shows the results of investigating the relationship between the radius of curvature (R) and the temperature under the conditions of Tt-T", and P=P". Here, l is the ion current emitted per unit solid angle instead of the total emitted ion current. It can be seen that (2) increases in proportion to the 25th or 3rd power. Figure 4 shows the maximum ion current that can be obtained in a gas ion source that utilizes the field ionization phenomenon.
or Tt-control.

IMAやイオンビーム描画装置などのイオンビーム応用
a器におけるイオン源では、装置の高性能化のためには
10−IA/Sr以上のイオンビームが必要でるる。第
4図よシ明らかな゛ようにI T IPを最適条件に設
定し九場合10”” A/8 r以上のイオン電流を得
るにはR,>10”A以上でめることが必要である。実
際のイオンビーム応用装置ではT、Pを長時間にわたっ
て最適値に保つことは一般的KJ11シ<、実用的にl
l1R為2X10’ 人でるることが必要でめった。凡
の上限は実用上の絶、縁耐圧よシ規定される。電界イオ
ン化現象によってガスをイオン化するKは針状チップと
対向電極の間に高電圧を印加する必要があるが、イオン
源の構造および便用可能な材料の制約によシ放電ヤ絶縁
破壊が生じないためには高電圧は100にνが実用上の
上限である。一方、ガスをイオン化するためには針状チ
ップ近傍の電界が一定の電界(F町−以上であることが
必要でおる。このF*はガスの一度とガスの種幽によっ
て変化するが* H,、He。
In an ion source in an ion beam application device such as an IMA or an ion beam lithography device, an ion beam of 10 −IA/Sr or more is required to improve the performance of the device. As is clear from Figure 4, in order to obtain an ion current of more than 10"A/8r when I T IP is set to the optimum condition, it is necessary to achieve R>10"A or more. In actual ion beam application equipment, it is common practice to keep T and P at optimum values for a long time.
l1R for 2X10' I rarely needed to be in front of other people. The upper limit is determined by the practical insulation and edge breakdown voltage. K, which ionizes gas by electric field ionization, requires the application of a high voltage between the needle tip and the counter electrode, but due to the structure of the ion source and limitations on the materials that can be used, shear discharge and dielectric breakdown occur. To avoid this, the practical upper limit for high voltage is 100 ν. On the other hand, in order to ionize the gas, it is necessary that the electric field near the needle tip be a certain electric field (F-m) or higher.This F* changes depending on the amount of gas and the amount of gas. ,,He.

Ne、IA’ # K’ * Xem Ox mN2 
+ CH4* BHs tBC4、PHs 、PCta
に対して、F〜1〜5V/AV:印〃u電圧、に:定数
(〜5)の関係が近似的に成立すルア’cメ、 V<1
00kV 、 F”>I V/人!!DRく2X10’
 人が実用的な凡の範囲となる。
Ne, IA'#K' * Xem Ox mN2
+ CH4* BHs tBC4, PHs, PCta
For, F ~ 1 ~ 5V / AV: mark u voltage, to: constant (~5) relationship is approximately established, V < 1
00kV, F”>I V/person!!DR×2X10'
A person falls within the practical range.

10”” A/S r以上のイオン電流を安定に得るた
めには2X10”<Rく2X10’Aの斃囲の先端曲め
て有効であることがわかった。実用的にとくに使い易い
凡の範囲はガスの¥Ii類によって若干異な’) * 
Ht  、A ’ + N@に対しては4 X 10”
<R<2)G O’人、Heに対しては2X10”<R
<4X10”A 、N eにnしてd3X10”くRく
lX10”人、Kr、Xe、Ot −CH,に対しては
5X10”くRく2X10’人、 BHs 。
In order to stably obtain an ion current of 10"" A/S r or more, it was found that it is effective to bend the tip of the 2X10"<R and 2X10'A. The range differs slightly depending on the gas type II') *
4 x 10” for Ht, A’ + N@
<R<2)G O' person, 2X10"<R for He
<4X10"A, Ne to d3X10"R x 10" people, 5X10"R x 2X10' people for Kr, Xe, Ot-CH, BHs.

BO2−PHs 、PO2に対しては5xlo”<Rく
1x104の範囲が良い。
For BO2-PHs and PO2, a range of 5xlo"<R and 1x104 is preferable.

以上述べたように、電界イオン化現象を利用したガスイ
オン源においては大きなイオン電流を得るためには針状
チップおよびガスの−m’を最適1度まで下げ、ガス圧
力’!に&適圧力に設定するとともに凡の大きい針状チ
ップを用いることが億めて有効でめり、本発明者らの実
験の結果望ましいRの範囲は2X1G”<1<:4X1
0’Aの範囲にあることがわかった。
As described above, in order to obtain a large ion current in a gas ion source that utilizes field ionization, the -m' of the needle tip and the gas must be lowered to an optimal 1 degree, and the gas pressure'! It is extremely effective to use a large needle-shaped tip while setting the appropriate pressure to
It was found that it was in the range of 0'A.

針状チップ材料は、F、?IV/Å以上の電界中で電界
に耐える、電気伝導性を持つ材料であれば良い。また、
イオン化するガスの種類も本明細書中で挙げたガスに限
らず、ガスでめる限シ原理的に回層でめ6つ 本発明は、高輝度なガスイオンビーム源として有望な電
界イオン化現象を利用した点状ガスイオン源を実用化す
るうえで実用上、極めて有用なものでるる。
The needle tip material is F,? Any material may be used as long as it is electrically conductive and can withstand an electric field of IV/Å or more. Also,
The type of gas to be ionized is not limited to the gases mentioned in this specification, but in principle, there are six kinds of gases that can be ionized. This will be extremely useful in practical application of a point gas ion source using a gas ion source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は点状ガスイオン源の電界強度、ガスおよび針状
チップの一度とイオン電流の関係を示す図、第2図はガ
スおよび針状チップの一度とイオン電流の関係を示す図
、第3図はガス圧力とイオン電流の関係を示す図、第4
図は針状チップの曲\ 率半径とイオン電流の関係を示す図でるる。 代理人 弁理士 薄田利幸 第 Z 図 0      56     100     150
    300シi、ノIE、(K) 第 3 図 ガス死力(Tearン
Figure 1 is a diagram showing the relationship between electric field strength of a point gas ion source, gas and needle tip, and ion current, Figure 2 is a diagram showing the relationship between gas and needle tip, and ion current. Figure 3 shows the relationship between gas pressure and ion current, and Figure 4 shows the relationship between gas pressure and ion current.
The figure shows the relationship between the radius of curvature of the needle tip and the ion current. Agent Patent Attorney Toshiyuki Usuda Z Figure 0 56 100 150
300 SI, NOIE, (K) Fig. 3 Gas dead force (Tear)

Claims (1)

【特許請求の範囲】 m界イオン化現象を用いてガスをイオン化スル方式の点
状ガスイオン源において、イオン化のための針状チップ
の先端曲率半径Rが 0.2 μm<R<2 μm の範囲にあることt−特徴とする点状ガスイオン源。
[Claims] In a point gas ion source that ionizes gas using the m-field ionization phenomenon, the radius of curvature R of the tip of the needle tip for ionization is in the range of 0.2 μm<R<2 μm. A point gas ion source characterized by:
JP56187024A 1981-11-24 1981-11-24 Spot-like gas ion source Pending JPS5889763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187024A JPS5889763A (en) 1981-11-24 1981-11-24 Spot-like gas ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187024A JPS5889763A (en) 1981-11-24 1981-11-24 Spot-like gas ion source

Publications (1)

Publication Number Publication Date
JPS5889763A true JPS5889763A (en) 1983-05-28

Family

ID=16198855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187024A Pending JPS5889763A (en) 1981-11-24 1981-11-24 Spot-like gas ion source

Country Status (1)

Country Link
JP (1) JPS5889763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182542A1 (en) * 2008-11-04 2010-05-05 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik Mbh Dual mode gas field ion source
DE112011102643T5 (en) 2010-08-06 2013-06-06 Hitachi High-Technologies Corporation Gas field ion source and method of using the same, ion beam device and emitter tip, and methods of making same
WO2013150861A1 (en) * 2012-04-03 2013-10-10 株式会社 日立ハイテクノロジーズ Gas field ion source and ion beam device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182542A1 (en) * 2008-11-04 2010-05-05 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik Mbh Dual mode gas field ion source
DE112011102643T5 (en) 2010-08-06 2013-06-06 Hitachi High-Technologies Corporation Gas field ion source and method of using the same, ion beam device and emitter tip, and methods of making same
US8847173B2 (en) 2010-08-06 2014-09-30 Hitachi High-Technologies Corporation Gas field ion source and method for using same, ion beam device, and emitter tip and method for manufacturing same
DE112011102643B4 (en) 2010-08-06 2023-05-17 Hitachi High-Tech Corporation Gas field ion source, ion beam device and emitter tip and method of manufacturing the same
WO2013150861A1 (en) * 2012-04-03 2013-10-10 株式会社 日立ハイテクノロジーズ Gas field ion source and ion beam device
US9018597B2 (en) 2012-04-03 2015-04-28 Hitachi High-Technologies Corporation Gas field ionization ion source and ion beam apparatus
JPWO2013150861A1 (en) * 2012-04-03 2015-12-17 株式会社日立ハイテクノロジーズ Gas field ion source and ion beam apparatus

Similar Documents

Publication Publication Date Title
Sengupta et al. A study on the origin of nonfaradaic behavior of anodic contact glow discharge electrolysis: the relationship between power dissipated in glow discharges and nonfaradaic yields
US5502354A (en) Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges
GB2146836A (en) A source of ions with at least two ionization chambers, in particular for forming chemically reactive ion beams
Oks Physics and technique of plasma electron sources
JPS5889763A (en) Spot-like gas ion source
EP0037455B1 (en) Ion source
Hackam et al. Electrical breakdown of a point‐plane gap in high vacuum and with variation of pressure in the range 10− 7− 10− 2 Torr of air, nitrogen, helium, sulphur hexafluoride, and argon
CN101497431A (en) Grounding-electrode wind-cooling plate type ozone-producing unit
CN112616235A (en) Application of two-dimensional titanized carbon in generating atmospheric pressure uniform dielectric barrier discharge
US2116677A (en) Gaseous electric discharge device and method of operating the same
US2056662A (en) Electric gaseous discharge device
US1266557A (en) Film-forming electrolyte.
Campbell et al. Cathodic contact glow discharge electrolysis under reduced pressure
Holland et al. The operation of a glow discharge ion gun used for specimen thinning
CN220703782U (en) Cathode magnetic ring structure for magnetron sputtering
Audi Pumping speed of sputter ion pumps
Chalmers et al. Formative time lags in nitrogen and dry air
Beukema Influence of adsorbed gases on prebreakdown currents in vacuum
US2116970A (en) Gaseous electric discharge device and method of operating same
JPH01255662A (en) Single grid ion source
FORSTER Ion diffusion in the electrode boundary layers of a cathode spotless discharge lateral to a plasma flow(Ionic diffusion in electron boundary layer of spotless discharge crossing nitrogen magnetohydrodynamic flow)
Apollonov et al. Formation of a volume discharge for the pumping of CO2 lasers
Burachevskii et al. Limiting operating pressure in a plasma source of electrons with hollow-cathode discharge
Podoinitsyn et al. Features of electrical breakdown of metal-coated track-etched membranes with cylindrical pores
JP2002008819A (en) Dry aluminum lightning arrester