JPS5889694A - Fuel composition and its preparation - Google Patents

Fuel composition and its preparation

Info

Publication number
JPS5889694A
JPS5889694A JP18682381A JP18682381A JPS5889694A JP S5889694 A JPS5889694 A JP S5889694A JP 18682381 A JP18682381 A JP 18682381A JP 18682381 A JP18682381 A JP 18682381A JP S5889694 A JPS5889694 A JP S5889694A
Authority
JP
Japan
Prior art keywords
coal
fuel
combustion
fuel composition
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18682381A
Other languages
Japanese (ja)
Inventor
Takeshi Sagai
佐賀井 武
Takeji Ogimoto
荻本 武二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP18682381A priority Critical patent/JPS5889694A/en
Publication of JPS5889694A publication Critical patent/JPS5889694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To obtain a fuel composition which can be gasified and burnt as a solid in a remarkably shortened time, and can be transported, stored and burnt in the same manner as dry powdered coal, by impregnating a methanol fuel into the micropores of coal particle. CONSTITUTION:The objective solide granular fuel composition is prepared by essentially impregnating (A) about 3-35 (wt)% methanol fuel into (B) the micropores of about 65-95% coal particles having the size of usually <=1,000mu (the major part thereof is <=300mu). The preparation of the composition can be carried out e.g. by the combination of mechanical separation and heat evaporation of the solid-liquid suspension of coal particle and methanol fuel, to separate the excess methanol fuel.

Description

【発明の詳細な説明】 重油、灯油等石油系燃料の価格上昇に伴って、近年では
発電所を始め諸工業用燃焼炉において石油系燃料から石
炭に転換する動きが見られる。又、新設の燃焼炉では石
炭の使用は大巾に増加している。
DETAILED DESCRIPTION OF THE INVENTION With the rise in prices of petroleum-based fuels such as heavy oil and kerosene, there has been a movement in recent years to switch from petroleum-based fuels to coal in power plants and other industrial combustion furnaces. Additionally, the use of coal in newly constructed combustion furnaces has increased significantly.

しかしながら、石炭を使用する燃焼炉設計上の大きな間
開点は、石油系燃料に比し石炭粒子の燃焼速1が極端に
遅いことに主因する燃焼性の悪さである。そのため、発
電用微粉炭燃焼ボイラーを例にとると、重油燃焼の場合
、燃焼室熱発生率(燃焼室容積l−当Dり1時間に供給
される熱量)は大略soo、 ooo〜2、000.0
00 Keel/jhで小るのに対し、石炭の場合大略
Woo、 000〜200.0OOK旬ル−hで−あり
、炭化度の進んだ石炭が多い豪州、カナダ等海外炭燃燐
ボイラーでは大略150.000Ke& l/d h以
下とするのが一般的である。このことは、重油燃焼時と
同じ発生熱量を得ようとすゐと、石炭ではボイラーを数
10−大きくする必要があり、又石炭と重油の混合燃料
であるCOMは単位重量当外の発熱量が石炭より大きい
こともあって、燃焼室熱発生率は石炭より大きく出来る
が、石炭粒子の燃焼性は相変らず改善されていない。
However, a major drawback in the design of combustion furnaces using coal is poor combustibility, which is mainly caused by the extremely slow combustion speed 1 of coal particles compared to petroleum-based fuels. Therefore, taking a pulverized coal combustion boiler for power generation as an example, in the case of heavy oil combustion, the combustion chamber heat release rate (the amount of heat supplied per hour per combustion chamber volume L-D) is approximately soo, ooo ~ 2,000. .0
00 keel/jh is small, while for coal it is approximately Woo, 000 to 200.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 for coal-fired boilers, it is approximately 150. Generally, it is .000Ke&l/d h or less. This means that if you want to generate the same amount of heat as when burning heavy oil, you will need to make the boiler several tens of times larger with coal, and with COM, which is a mixed fuel of coal and heavy oil, the calorific value is higher than the unit weight. Although the combustion chamber heat release rate can be higher than that of coal because of the fact that it is larger than that of coal, the combustibility of coal particles has not been improved as usual.

本発明は石炭粒子の燃焼速度を向上させることにより、
石炭の燃焼性を改善し、石炭燃焼の重油のそれに対する
不利益を緩和しようとするtのである。
The present invention improves the combustion rate of coal particles, thereby
The aim is to improve the combustibility of coal and alleviate the disadvantages of coal combustion compared to heavy oil.

石炭粒子の燃焼は、周知のように石炭中の揮発分がガス
化して燃焼するガス化燃焼とそれに絖く残留固体燃焼(
残留炭素燃焼)の2段燃焼が行われるものであるが、後
半の同体燃焼速度が非常に遅く全体として燃焼所要時間
が長くなる。これに反して、重油、メタノール等の液体
燃料は固体燃焼部分がさ少であるか、めるいFifiと
んとないので燃焼速度が速い。石炭と液体との混合費料
の場合、石炭と重油混合のCOM を例にとると、重油
は石炭粒子のミクロボア中に浸入せず石炭粒子の表面を
ぬらす状態又は包む状態になっている。
As is well known, the combustion of coal particles involves gasification combustion in which the volatile matter in the coal is gasified and combusted, and residual solid combustion (
Although two-stage combustion (residual carbon combustion) is performed, the combustion rate of the latter half is very slow and the overall combustion time is longer. On the other hand, liquid fuels such as heavy oil and methanol have a small solid combustible portion or a large amount of heat, so the combustion rate is fast. In the case of a mixture of coal and liquid, for example, if COM is a mixture of coal and heavy oil, the heavy oil does not penetrate into the micropores of the coal particles but instead wets or envelops the surface of the coal particles.

一方、石炭とメチル燃料混合の燃料組成物においては、
メチル燃料は重油と比較して分子量、表面張力および粘
1が小さく、水との相溶性は大きい等の理由により石炭
粒子のきクロボア中に浸入し、同ミクロボア中の水と置
換する現象がある。このミクロボア中のメチル燃料が燃
焼速度向上に影響することを見いだし本発明に到達[7
た、 即ち、本発明は「石炭粒子とメチル燃料からなり、石炭
粒子のミクロボア中にメチル燃料が実質的に浸透してい
る可燃性の固体粉粒状体燃料組成物およびその製造法」
で套る。
On the other hand, in the fuel composition of coal and methyl fuel mixture,
Compared to heavy oil, methyl fuel has a lower molecular weight, surface tension, and viscosity1, and has greater compatibility with water, so there is a phenomenon in which it penetrates into the micropores of coal particles and replaces water in the same micropores. . The present invention was achieved by discovering that methyl fuel in these microbores has an effect on improving the combustion rate [7]
In other words, the present invention provides "a combustible solid powder fuel composition consisting of coal particles and methyl fuel, in which the methyl fuel substantially permeates into the micropores of the coal particles, and a method for producing the same."
I'm wearing it.

本発明の燃料組成物の燃焼試験によると、燃焼挙動は石
炭粒子と同様に2段燃焼することが認められる。ここに
個々の燃焼の挙動を分析すると、石炭燃焼においては第
1段のガス化燃焼に際し安定した輝炎を形成し、その燃
焼初期と終期とでは粒の容積基準比表面積径にほとんど
変化が見られず、82段の固体燃焼に移行する。又、C
OMの燃焼では、石炭と同様に2段燃焼するものである
が第1段のガス化燃焼に際し、石炭以上に長大な安定し
良輝炎が見られ、滴又は粒の容積基準比表面積径は石炭
と同様Kitとんど変化がなく残留囲体の分裂もみられ
ず第2段に移行する。
According to the combustion test of the fuel composition of the present invention, it is recognized that the combustion behavior is two-stage combustion similar to that of coal particles. Analyzing the behavior of individual combustions, we find that in coal combustion, a stable luminous flame is formed during the first stage of gasification combustion, and there is almost no change in the volume-based specific surface area diameter of the grains between the early and final stages of combustion. Instead, the process shifts to 82-stage solid combustion. Also, C
In the combustion of OM, there are two stages of combustion similar to coal, but during the first stage of gasification combustion, a long, stable and bright flame is observed, which is longer than that of coal, and the volume-based specific surface area diameter of the droplets or particles is similar to that of coal. As in the case of Kit, there is almost no change and no fragmentation of the remaining enclosure is observed, leading to the transition to the second stage.

これに対し、本発明の燃料組成物は前2者と同様に2段
燃焼するが、石炭粒子のミクロボアの中に浸透したメチ
ル燃料が第1段のガス化燃焼中に表面近くから逐次急激
に気化膨張し、固体粒を破砕飛散しながら爆発的に燃焼
するので、火花を伴った輝炎を形成し、容積基準比表面
積径を著しく減少する。このため、ガス化燃焼時間を短
縮すると共に固体燃焼時間を大巾に短縮する。従って、
全体の燃焼時間は同一条件で石炭単体と比較すると石炭
の種類により多少の差異は認められるが、大略2/3〜
1/!に短縮出来る。
On the other hand, the fuel composition of the present invention undergoes two-stage combustion like the first two, but the methyl fuel that has permeated into the micropores of the coal particles is gradually and rapidly released from near the surface during the first-stage gasification combustion. It evaporates and expands, crushing and scattering solid particles and combusts explosively, forming a bright flame accompanied by sparks and significantly reducing the volume-based specific surface area diameter. Therefore, the gasification combustion time is shortened, and the solid combustion time is also greatly shortened. Therefore,
When comparing the overall combustion time with coal alone under the same conditions, there are some differences depending on the type of coal, but it is approximately 2/3 ~
1/! It can be shortened to

と 現在、燃焼炉で石炭粒予告噴霧燃焼させる1場合燥焼効
率を維持するため、石炭粒子の大きさは、燃焼速度を考
慮して74μ以下のものが大略60〜80 wt嗟とす
るのが一般的である。しかし、石炭を微粉砕する動力は
大きく、粉砕螢の石炭粒子の大きさが小さければ小さい
ほど動力費は大きくなる。これに反して、本発明の石炭
粒子は1000μ以下で、しかも大部分が300μ以下
でさしつかえないので石炭粒子の製造費が格段と割安に
なる。
Currently, when coal particles are sprayed and burned in a combustion furnace, in order to maintain the drying efficiency, the size of the coal particles is approximately 60 to 80 wt. Common. However, the power required to pulverize coal is large, and the smaller the size of the coal particles in the pulverized firefly, the greater the power cost. On the other hand, the coal particles of the present invention have a particle size of 1000 μm or less, and most of them may have a particle size of 300 μm or less, so the manufacturing cost of the coal particles is significantly reduced.

石炭粒子の大きさが300μを超えるものが・増加する
と、石炭粒子のミクロボア中に浸入するメチル燃料が減
少し、期待する嫌どの燃焼性向上は望めず本発明の目的
が達せられない。
If the size of the coal particles exceeds 300 μm, the amount of methyl fuel penetrating into the micropores of the coal particles decreases, and the desired improvement in combustibility cannot be expected and the object of the present invention cannot be achieved.

又、石炭に混合するメチル燃料Fi5 wt−を下まわ
ると石炭粒子と均一な混合状態をっくることが困−で弗
り、かつ石炭の燃焼性向上が捻とんと期待出来ない。又
、石炭の種類によって大きく異なるが、メチル燃料が3
5vt91を超えると石炭が湿潤状態になり貯蔵及び燃
焼炉への噴霧に支障を生ずる可能性が大きい。
Furthermore, if the methyl fuel mixed with coal is less than Fi5 wt-, it will be difficult to achieve a uniform mixture with coal particles, and further improvement in the combustibility of coal cannot be expected. Also, although it varies greatly depending on the type of coal, methyl fuel
If it exceeds 5vt91, the coal will become wet and there is a high possibility that storage and spraying into the combustion furnace will be hindered.

即ち、本発明の燃料組成物は輸送、貯蔵、燃焼に際し、
付着水分を1011以下に乾燥した微粉炭に準じ良取扱
いが可能な優れた固体粉粒体燃料ということが出来る。
That is, when the fuel composition of the present invention is transported, stored, and burned,
It can be said to be an excellent solid powder fuel that can be handled as easily as pulverized coal that has been dried to a moisture content of 1011 or less.

本明細書にあげる石炭粒子とは、無煙炭、瀝青炭、亜瀝
青炭、褐炭等の石炭を粉砕して製造するすべての粒子を
さす。メチル燃料とはメタノール単体からなるものでも
良く、また大部分がメタノールであれば2〜4個の炭素
原子を有する低級アルコール等の含酸素化合物との混合
物であっても良いし、さらには約20 wt* 1での
水分を含有していて亀さしつかえない。
The coal particles mentioned in this specification refer to all particles produced by pulverizing coal such as anthracite coal, bituminous coal, subbituminous coal, and brown coal. Methyl fuel may be composed of methanol alone, or if it consists mostly of methanol, it may be a mixture with oxygen-containing compounds such as lower alcohols having 2 to 4 carbon atoms, or even about 20 methanol. It contains water at wt * 1 and cannot be used as a tortoise.

本発明の燃料組成物の製造法Kti2つの方法がある。There are two methods for producing the fuel composition of the present invention.

第1Fi、第1図に示すようにメチル燃料と石炭からな
る液体一固体懸濁体を貯槽1からメチル燃料分離機2に
供給する。メチル燃料と石炭からなる液体一固体懸濁体
ii国内、国外の産炭地域郷で製造し輸送され良ものを
使用する。メチル燃料分離機としては主として重力を利
用する機能のものは分離が充分でないため好ましくなく
遠心力利用を主とするものが良い。さらには遠心力利用
等機械的分離と加熱蒸発分離を併用すると効果的である
1. As shown in FIG. 1, a liquid-solid suspension consisting of methyl fuel and coal is supplied from a storage tank 1 to a methyl fuel separator 2. A liquid-solid suspension consisting of methyl fuel and coal ii. Use quality products produced and transported in coal-producing regions in Japan and abroad. As a methyl fuel separator, one that mainly uses gravity is not preferable because separation is not sufficient, but one that mainly uses centrifugal force is preferable. Furthermore, it is effective to use a combination of mechanical separation, such as using centrifugal force, and thermal evaporation separation.

しかし多量の熱量を加えることは石炭のミクロボア中の
メチル燃料を気散してしまい、燃焼において石炭粒子の
分裂燃焼の効果を減するので好ましくない。メチル燃料
分離機2から出たメチル燃料を一部分離し九本発明の燃
料組成物は貯槽3に、メチル燃料は貯槽4に貯蔵され、
それぞれ消費地に輸送され消費さ ゛れる。
However, adding a large amount of heat is undesirable because it dissipates the methyl fuel in the micropores of the coal and reduces the effect of fragmentation and combustion of coal particles during combustion. The methyl fuel discharged from the methyl fuel separator 2 is partially separated, and the fuel composition of the present invention is stored in a storage tank 3, and the methyl fuel is stored in a storage tank 4.
Each is transported to the consumption area and consumed.

第2Fi、第2図に示すように石炭は粉砕機1で所期O
粒子K調整されついで混合機2に送られる。混合機では
別系統から送られるメチル燃料と混合する。石炭粒子と
メチル燃料が均一に混合することが好ましく、このため
混合機としては流動ima合機、回転円*m搗合機又は
気流型混合機等の粒子浮遊攪拌式混合機を使用しなけれ
ばならない、。混合機2から重要本発明の燃料組成物は
貯槽3に貯蔵され、消費地に輸送され消費される。
2nd Fi, as shown in Figure 2, the coal is heated to the desired temperature in the crusher 1.
The particles K are adjusted and then sent to the mixer 2. The mixer mixes it with methyl fuel sent from another system. It is preferable that coal particles and methyl fuel are mixed uniformly, and for this reason, a particle suspension agitation type mixer such as a fluidized ima combiner, a rotating circle *m mixer, or an air flow type mixer must be used. It won't happen. From the mixer 2, the fuel composition of the present invention is stored in a storage tank 3, transported to a consumption point, and consumed.

次に実施例燃焼試験1〜3、比較例燃焼試験1〜9によ
抄本発明をさらに明確にする。
Next, the present invention will be further clarified with reference to Example Combustion Tests 1 to 3 and Comparative Example Combustion Tests 1 to 9.

実施例燃焼試験1〜3、比較例燃焼試験1〜9 強制着火による懸垂率−滴および粒の燃焼試験を本−明
、の燃料組成物および比較として重油、C0M1石炭に
ついて実施した。試験は燃焼用空気を800〜1000
℃の範囲内で一定温度に加温し、0.76 Kl/wi
−s  の質量流量で試料に供給する。試料の着火は強
制着火を行い、前述の高温空気流中で燃焼させ燃焼挙動
を計測した。燃焼速度に関する試験結果を第3表および
第3図に示す。第3表および第3図は総括燃焼速ば係数
に・゛と残留固体含有量−ReIJj−との関係グラフ
である。
Examples Combustion Tests 1 to 3, Comparative Examples Combustion Tests 1 to 9 Suspension rate droplet and grain combustion tests by forced ignition were carried out on the fuel compositions of the present invention and heavy oil and C0M1 coal as a comparison. The test was conducted using combustion air of 800 to 1000
Heating to a constant temperature within the range of ℃, 0.76 Kl/wi
A mass flow rate of −s is applied to the sample. Forced ignition was used to ignite the sample, and the combustion behavior was measured by burning it in the aforementioned high-temperature air flow. The test results regarding the burning rate are shown in Table 3 and Figure 3. Table 3 and FIG. 3 are graphs showing the relationship between the overall combustion rate coefficient .゛ and the residual solid content -ReIJj-.

00 Koはα)式によって定義される。00 Ko is defined by the equation α).

Do:  燃焼初期の滴又は粒の容積基準比表面積)l
(m) Dn:  燃焼後における灰の容積基準比!I!面積1
K(■) to:  燃焼所要時間(8) 一方、−一シシーは試料1−中に含まれるガス0G 化燃焼後固体燃焼する残留同体量を表わす。
Do: Volume-based specific surface area of droplets or grains at the initial stage of combustion)
(m) Dn: Volumetric ratio of ash after combustion! I! Area 1
K(■) to: Required time for combustion (8) On the other hand, -1 ssi represents the amount of residual isomer contained in sample 1 which is combusted as a solid after being combusted to 0G gas.

RC:  總残留固体分(vtlG) L: 試料の!l(J’/、1) 燃焼試験に使用し友“燃料組成物は次のようにして製造
し斥。カナダC炭、米1iM炭、インドネシアに炭をそ
れぞれ別個に、乾燥後、粒子の大きさが1.00声以下
70 wtll Kなゐよう粉砕し、重量当り同量のメ
タノールと混合してメタノールと石炭の液体一固体懸濁
体とし、さらに遠心分離機にて石炭とメタノールを分離
し石炭80 wtlG、メタノール20vtlGの固体
燃料組成物を製造した。試験にはpt−pt−ith熱
電対(素線@ a l mφ)で小さなバスケットを作
製し、その中に約L3〜′Ls−径になるよう本発明の
燃料組成物を装入して試料とした。
RC: Total residual solid content (vtlG) L: Sample! l(J'/, 1) The fuel composition used in the combustion test was manufactured as follows.Canadian C charcoal, American 1iM charcoal, and Indonesian charcoal were each used separately, and after drying, the particle size was determined. The powder is crushed to a particle size of 70 wtll K or less, mixed with the same amount of methanol per weight to form a liquid-solid suspension of methanol and coal, and then separated from the coal and methanol using a centrifuge. A solid fuel composition of 80 wtlG of coal and 20 vtlG of methanol was produced.For the test, a small basket was made with a pt-pt-ith thermocouple (plain wire @ a l mφ), and in it a A sample was prepared by charging the fuel composition of the present invention so that the fuel composition of the present invention was obtained.

比較燃焼試験に使用し九〇〇M、重油、石炭は次のよう
Kして試料を製造し良。COMはカナダ石炭を乾燥後粒
子の大きさがフ4J以下7 O’vt1gになるよう粉
砕し、重量当り同量のC重油と混合した。試料は、pt
−pt−iih熱電対(素線径α1■φ)の先端に懸垂
し約L3〜25箇径の滴を造った。
Samples of 900M, heavy oil, and coal used for comparative combustion tests were prepared as follows. For COM, Canadian coal was dried and ground to a particle size of 4J or less, 7 O'vt1g, and mixed with the same amount of heavy oil C per weight. The sample is pt
-pt-iih A droplet with a diameter of about L3 to 25 was created by hanging from the tip of a thermocouple (wire diameter α1■φ).

C重油の試料はCOM と同様の滴を造った。The C heavy oil sample produced droplets similar to COM.

石炭単体の試料は前述のカナダ石炭、米−M責、インド
ネシアに炭の石炭を破砕し粒子の大きさ2−3■にし、
本発@O燃料組成物と同様にバスケットに装入した。
Single coal samples were the aforementioned Canadian coal, American coal, and Indonesian coal, which were crushed to a particle size of 2-3cm.
It was charged into a basket in the same manner as the @O fuel composition of the present invention.

本発明の実施例燃焼試験および比較例燃焼試験に使用し
た石炭の物性を鮪1表、第2表に示す。
Tables 1 and 2 show the physical properties of the coal used in the combustion tests of the examples and comparative combustion tests of the present invention.

第11!中におけろ水分、灰分、揮発分、固定炭素の表
示はJI8M8812 に、全硫黄はJI8M8813
に、発熱量はJI8M8814による。第2表はJIg
M8813による。
11th! The display of moisture, ash, volatile matter, and fixed carbon is JI8M8812, and the total sulfur is JI8M8813.
The calorific value is based on JI8M8814. Table 2 shows JIg
According to M8813.

試験の結果F′i第3表および第3図から明らかなよう
にCOM 、重油、石炭はいずれもK。
As is clear from the test results F'i in Table 3 and Figure 3, COM, heavy oil, and coal were all K.

が−R64’  K nぼマイナス−乗に比例するが、
00 本発明の燃料組成物は高い値が得られ、他の燃料と異っ
た機構で燃焼するため一般的な原則に合わず、燃焼性が
優れていることを示している。本発明の燃料組成物の燃
焼挙動を観察すると、COM および石炭についてはガ
ス化燃焼時石炭粒子の分裂はなく、−個の滴又は粒とし
て燃焼するのに対し、本発明の燃料組成物は分裂しなが
ら燃焼する。そのため残留固体が多いにもかかわらず高
い燃焼速度係数を示す亀のと考れられる。
is proportional to -R64' K n to the minus power,
00 The fuel composition of the present invention has a high value, indicating that it burns in a different mechanism from other fuels and therefore does not conform to general principles and has excellent flammability. Observing the combustion behavior of the fuel composition of the present invention, it is found that in the case of COM and coal, there is no splitting of coal particles during gasification combustion, and the coal particles are burned as - droplets or grains, whereas the fuel composition of the present invention splits. burn while doing so. Therefore, it is thought that the tortoise exhibits a high burning rate coefficient despite having a large amount of residual solids.

第1I!   石炭の工業分析値等 第2表  石炭の元素分析値(単位vtll )第3表
  111E3図に対応する表
1st I! Coal industrial analysis values, etc. Table 2 Coal elemental analysis values (unit: vtll) Table 3 Table corresponding to Figure 111E3

【図面の簡単な説明】[Brief explanation of drawings]

菖1図、IF5図は本発明の燃料組成物の製造法の一例
のフローシートである。I11図中1・・・メチル燃料
と石炭からなる液体−同体懸温体貯槽、2・・・分離機
、3・・・燃料組成物貯槽、4・・・分離され九メチル
燃料貯槽を示す。第2図中1・・・石炭粉砕機、2・・
・混合機、3・・・燃料組成物貯槽を示す。 第3図は、本発明の燃料組成物の実施91働焼試験およ
び比較例燃焼試験を表わす。図中Ko−・・総括燃焼速
度係数(−/8)シ5...試料1−中に含まれるガス
化燃焼後の0G 固体燃焼する残留固体量(j’/7)を表わす。 出願人 三井鉱山株式会社 第J111       $2tffi第31 ””  (11/cd) O0
Figure 1 and Figure IF5 are flow sheets of an example of the method for producing the fuel composition of the present invention. In Fig. I11, 1 shows a storage tank for a suspended liquid-solid body consisting of methyl fuel and coal, 2 shows a separator, 3 shows a fuel composition storage tank, and 4 shows a separated 9-methyl fuel storage tank. In Figure 2, 1... Coal crusher, 2...
- Mixer, 3... indicates a fuel composition storage tank. FIG. 3 represents the Example 91 combustion test and the Comparative Example combustion test of the fuel composition of the present invention. In the figure, Ko-...Overall combustion rate coefficient (-/8)5. .. .. Sample 1 - Represents the amount of residual solids (j'/7) that burn at 0G solids after gasification combustion contained in sample 1. Applicant: Mitsui Mining Co., Ltd. No. J111 $2tffi No. 31 “” (11/cd) O0

Claims (1)

【特許請求の範囲】 (1)  石炭粒子がメチル燃料からなり、石炭粒子の
ミクロボア中にメチル燃料が実質的に浸透している可燃
性の固体粉粒状体燃料組成物。 e)石炭粒子、メチル燃料の割合がそれぞれ65−96
 WtlG、 5〜36 vt−T6!41許111求
の範8嬉1項記載の燃料組成物。 (3)石炭粒子の大きさが1000J1以下で、しかも
大部分が300μ以下である特許請求の範囲第1項又は
第2項記載の燃料組成物。。 (4)石炭粒子とメチル燃料からなる液体−固体懸濁体
から過剰のメチル燃料を分離することを特徴とする特許
請求の範囲第4項記載の燃料組成物の製造法。 (5)、メチル燃料の分−に機械的分離と加熱蒸発分−
を併用する特許請求の範囲第4項記載の燃料組成物の製
造法。 (6)石炭を粉砕して所望の粒子に調整し、皺粒子に適
蟲量のメチル燃料を加え、粒子浮遊攪拌式混合機で混合
することを特徴とする特許請求の範囲第1項記−の燃料
組成物の製造法。
[Scope of Claims] (1) A combustible solid powder fuel composition in which the coal particles are made of methyl fuel, and the methyl fuel substantially permeates into the micropores of the coal particles. e) The proportion of coal particles and methyl fuel is 65-96 respectively.
WtlG, 5-36 VT-T6!41 The fuel composition according to Section 8, Paragraph 1 of 111. (3) The fuel composition according to claim 1 or 2, wherein the coal particles have a size of 1000J1 or less, and most of the coal particles have a size of 300μ or less. . (4) A method for producing a fuel composition according to claim 4, characterized in that excess methyl fuel is separated from a liquid-solid suspension consisting of coal particles and methyl fuel. (5) Mechanical separation and heating evaporation of methyl fuel
5. A method for producing a fuel composition according to claim 4, in which the fuel composition is used in combination with the following. (6) Coal is pulverized to obtain desired particles, an appropriate amount of methyl fuel is added to the wrinkled particles, and the mixture is mixed in a particle suspension agitation mixer. A method for producing a fuel composition.
JP18682381A 1981-11-24 1981-11-24 Fuel composition and its preparation Pending JPS5889694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18682381A JPS5889694A (en) 1981-11-24 1981-11-24 Fuel composition and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18682381A JPS5889694A (en) 1981-11-24 1981-11-24 Fuel composition and its preparation

Publications (1)

Publication Number Publication Date
JPS5889694A true JPS5889694A (en) 1983-05-28

Family

ID=16195226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18682381A Pending JPS5889694A (en) 1981-11-24 1981-11-24 Fuel composition and its preparation

Country Status (1)

Country Link
JP (1) JPS5889694A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490308A (en) * 1977-12-05 1979-07-18 Energy & Minerals Res Co Thixotropic gel fuel and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490308A (en) * 1977-12-05 1979-07-18 Energy & Minerals Res Co Thixotropic gel fuel and method of making same

Similar Documents

Publication Publication Date Title
Zandi et al. Biomass for iron ore sintering
Borowski et al. Effect of starch binder on charcoal briquette properties
Pandey et al. Pine needle briquettes: A renewable source of energy
Das et al. Single particle combustion studies of coal/biomass fuel mixtures
Ikelle et al. The characterization of the heating properties of briquettes of coal and rice husk
WO2001025689A1 (en) Method for burning biofuel in a furnace using fossil fuel
JPS5889694A (en) Fuel composition and its preparation
Jiříček et al. A thermogravimetric study of the behaviour of biomass blends during combustion
US2849300A (en) Igniter
US2604389A (en) Compressed fuel units of diisopropylideneglyoxal
Valiullin et al. Ignition of hovering droplets of organic coal water fuels
SU1759857A1 (en) Laminated peat briquette
US1674163A (en) Fuel lighter
Simanjuntak et al. A Preliminary Study of Peat Gasification Characteristics in an Improved Biomass Stove
Sani et al. Comparative studies of physical and combustion characteristics of rice husk briquettes produced using different binding agents
CN109028027A (en) Novel biomass boiler oil preheating and drying fire grate subsystem
US2370060A (en) Briquette and process of manufacturing same
Vershinina et al. Combustion of Coal Flotation Wastes and Woodworking Wastes in Blends and Suspensions
Bamisaye et al. PRODUCTION AND CHARACTERIZATION OF BRIQUETTES FROM CASHEW LEAVES AND BANANA LEAVES ADMIXTURE.
Putri et al. Effect of Drying Temperature of Sawdust Biobriquettes with Used Lubricant Oil Adhesive Volume Variation over Carbonization Process.
Senchi et al. Physiochemical and combustion properties of briquettes produced from rice husk and corncob admixture
US1430767A (en) Artificial-fuel briquettes
Haykiri-Acma et al. Combustion characteristics of blends of lignite and bituminous coal with different binder materials
Quang Nguyen An Approach to Biomass Selection Based on Thermal Properties for Co-firing Technology
US563162A (en) hotter