JPS5889693A - Fuel composition and its preparation - Google Patents

Fuel composition and its preparation

Info

Publication number
JPS5889693A
JPS5889693A JP18682281A JP18682281A JPS5889693A JP S5889693 A JPS5889693 A JP S5889693A JP 18682281 A JP18682281 A JP 18682281A JP 18682281 A JP18682281 A JP 18682281A JP S5889693 A JPS5889693 A JP S5889693A
Authority
JP
Japan
Prior art keywords
coal
fuel
particles
mineral oil
coal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18682281A
Other languages
Japanese (ja)
Inventor
Akira Iijima
晃 飯島
Hiroshi Hamazaki
浜崎 博
Mitsunori Sueyasu
末安 満則
Tsugio Sakata
坂田 二男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Mitsui Mining Co Ltd
Original Assignee
Mitsui Toatsu Chemicals Inc
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc, Mitsui Mining Co Ltd filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP18682281A priority Critical patent/JPS5889693A/en
Publication of JPS5889693A publication Critical patent/JPS5889693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

PURPOSE:To obtain a fuel composition which can be gasified or burnt in a solid state in a remarkably short time, and has excellent physical stability, by impregnating methanol fuel into coal particles, and dispersing the particles in mineral oil. CONSTITUTION:The objective liquid-solid suspension fuel composition is prepared by impregnating (A) about 3-30(wt)% methanol fuel into (B) about 25- 55% coal particles, and dispersing the impregnated particles in (C) about 20- 70% mineral oil. The component (B) is e.g. anthracite, semi-bituminous coal, bituminous coal, brown coal, etc., and the crushing of the coal can be carried out either by dry process or by wet process.

Description

【発明の詳細な説明】 本発明はメチル燃料を含浸した石炭粒子を鉱油中Kli
濁させてなる安定性のある燃料組成物及びその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for preparing coal particles impregnated with methyl fuel in mineral oil.
The present invention relates to a stable fuel composition obtained by making it cloudy and a method for producing the same.

近年石油系燃料に代わり石炭が注目されており、従来の
鉱油燃焼を石炭燃焼に転換する計画も数多くみられる。
In recent years, coal has been attracting attention as an alternative to petroleum-based fuels, and there are many plans to replace conventional mineral oil combustion with coal combustion.

しかし、石炭燃焼に□転換する罠は石炭が固体燃料であ
る几め、貯蔵、輸送及び消費において技術的な制約が大
きく因−な場合が多い。そこで鉱油の使用量を減少させ
、しかも鉱油に準じた取扱いが可「ヒな燃料として、鉱
油と石炭粒子を混合した流体化燃料(以下COMと略称
する)が開発されている。COMは鉱油中[30〜50
 vt優の石炭粒子を混合した液体−同体懸濁体である
が、燃料として使用する・場合の大きな問題点は鉱油に
比し石炭粒テの燃焼速度が極端に遅いことに主因する燃
料組成物としての燃焼性の悪さである。そのため重油火
力発電所のがイラーYCOM燃焼に転換する場合な例に
とると、通常その発生可能熱量は鉱油に比し数lO慢減
少し、発電容量4同様に低下する。
However, the trap of converting to coal combustion is often largely due to technical constraints in the preparation, storage, transportation, and consumption of coal, which is a solid fuel. Therefore, fluidized fuel (hereinafter abbreviated as COM), which is a mixture of mineral oil and coal particles, has been developed as a more efficient fuel that can reduce the amount of mineral oil used and can be handled in the same way as mineral oil. [30-50
Although it is a liquid-isomer suspension containing a mixture of coal particles with a high temperature, the major problem when using it as a fuel is the fuel composition, which is mainly due to the extremely slow combustion rate of coal particles compared to mineral oil. This is due to its poor flammability. For this reason, when a heavy oil-fired power plant is converted to Ilar YCOM combustion, the amount of heat that can be generated normally decreases by several 1O compared to mineral oil, and the power generation capacity decreases as well.

本明細書中のメチル燃料とは、メタノール単体からなる
ものでも、又大部分がメタノールからなり、2〜4個の
炭素原子を有する低級アルコール等の含酸素化合物との
混合物でも良く、あるいは約20 vt噛までの水分を
含有してもさしつかえない、鉱油とは、ある程度の粘度
をもった鉱物系の油をさし、石油及び石油製品、オイル
シェール又はオイルサンドの抽出油および石炭からの合
成油を含むものである。又、石炭粒子は無煙炭、瀝宵炭
、亜瀝青炭、褐炭の群から選ばれた少くとも1稙の石炭
を粉砕し、その粒子の大きさ74JI以下な大略60〜
90 vNIとし友ものである。
In this specification, methyl fuel may be composed of methanol alone, or may be composed mostly of methanol in a mixture with an oxygen-containing compound such as a lower alcohol having 2 to 4 carbon atoms; Mineral oil refers to mineral-based oil with a certain degree of viscosity, which can contain up to 50% water, and includes petroleum and petroleum products, extracted oil from oil shale or oil sands, and synthetic oil from coal. This includes: In addition, the coal particles are obtained by crushing at least one grain of coal selected from the group of anthracite, bituminous coal, subbituminous coal, and lignite, and the particle size is approximately 60 to 74JI or less.
90 vNI and friends.

こ−で、COMの燃焼は、周仰のように最れに絖〈残留
固体燃焼の2段燃焼が行われんガス化燃焼では鉱油の単
体燃焼に似た安定した輝炎が認められ滴又は粒の容積基
準比表面積径の変化はあるものの分裂は認められない。
In this way, the combustion of COM is the best as in the previous case (two-stage combustion of residual solid combustion is not performed). Although there is a change in the volume-based specific surface area diameter of the grains, no splitting is observed.

その後の固体燃焼期間の挙動は石炭の単体燃焼と#1と
んど同じで、その燃焼速度は非常圧遅い、(燃料協会誌
第59巻642号822〜831頁、同誌第60巻第6
47号183〜191頁参照) 一方、メチル燃料を含浸し友石炭粒子の燃焼は、COM
と同様2段燃焼するが個々の燃焼の挙動はCOMとは異
っている。COMでは鉱油は石炭粒子の2クロポア中に
浸入せず石炭粒子の表面をぬらす状態又は包む状態にな
っているのに対し、メチル燃料を含浸した−6炭粒子の
場合メチル燃料が重油と比較して分子量、表面張力およ
び粘度が小さく水との相溶性は大きい等の理由により石
炭粒子のミクU/ア中に浸入し同ミクロfア中の尿と置
換する現象がある。このためメチル燃料を含浸した石炭
粒子の燃焼に際しては、石炭粒子のtioxttア中に
&入したメチル燃料が第1段のガス化燃焼中に石炭の表
面近くから順次急激和気化膨張し、固体粒を破砕飛散し
ながら爆発的に燃焼するので、容積基準比表面積径の減
少割合も大きく、ガス化熔焼時間を短縮すると共に固体
燃焼時間を大巾に短縮させる。
The behavior during the subsequent solid combustion period is almost the same as #1 single combustion of coal, and the combustion speed is extremely low (Journal of Japan Fuel Association Vol. 59, No. 642, pp. 822-831, Vol. 60, No. 6 of the same journal)
47, pp. 183-191) On the other hand, the combustion of friendly coal particles impregnated with methyl fuel is
Similar to COM, there is two-stage combustion, but the behavior of each combustion is different from COM. In COM, mineral oil does not penetrate into the two-crop pores of coal particles and instead wets or envelops the surface of the coal particles, whereas in the case of -6 coal particles impregnated with methyl fuel, methyl fuel is used in comparison with heavy oil. Due to its low molecular weight, surface tension, and viscosity, and high compatibility with water, it penetrates into the microfa of coal particles and replaces urine in the microfa. Therefore, during the combustion of coal particles impregnated with methyl fuel, the methyl fuel that has entered the tioxtt a of the coal particles is rapidly vaporized and expanded from near the surface of the coal during the first stage of gasification combustion, and the solid particles Since the material is explosively combusted while being crushed and scattered, the volume-based specific surface area diameter decreases at a large rate, and the gasification and sintering time is shortened, as well as the solid combustion time.

本発明はメチル燃料を含浸し次石炭粒子を鉱油が包込ん
でいる液体一固体懸濁体を作ることKより、COMの高
発熱性の長所を失することなく、大きな短所である燃焼
性の悪さt改善しようとするものである0本発明の燃料
組成物(以下メタコムと略称する)の燃焼挙動は、試験
によると期待した通りの効果が得られ、全体の燃焼時間
は同一条件でCOMと比較すると石炭及び鉱油のMIi
類、石炭と鉱油との混合割合によっても異なるが大略2
/3〜1/2忙短縮出米る。
By impregnating methyl fuel and creating a liquid-solid suspension in which coal particles are encapsulated in mineral oil, the present invention does not lose the advantage of high calorific value of COM, but reduces the combustibility which is a major disadvantage. According to tests, the combustion behavior of the fuel composition of the present invention (hereinafter referred to as Metacom), which is intended to improve the negative effects, achieved the expected effect, and the overall combustion time was equal to that of COM under the same conditions. In comparison, the MIi of coal and mineral oil
Although it varies depending on the mixing ratio of coal and mineral oil, it is approximately 2
/3 to 1/2 shortened schedule.

一方、石炭粒子中にメチル燃料を含浸させることKより
、メタコムは石炭粒子が鉱油中に実質的に均一に分散し
ている状態、すなわち物理的な安定性の優れた燃料組成
物となる。
On the other hand, by impregnating methyl fuel into coal particles, Metacom becomes a fuel composition in which coal particles are substantially uniformly dispersed in mineral oil, that is, excellent in physical stability.

COMの安定性機構一ついては一般に次のように考えら
れている0石炭粒子表面は通常無機質、炭化水素等の混
在状態であ−9、水は無機質等極性の大きい部分に優先
的に付着していると見做されるが、この石炭粒子を鉱油
と混合するとその界面に大きな界面張力を生じ、系のエ
ネルギーレベルが高くなるため、互に結合して凝集する
。この凝集して大きくなった石炭粒子群は直径の2乗に
比例した速度で沈降し、凝結して貯蔵容器底部に、いわ
ゆる圧密層を形成する。これt解消し再び全体をもとの
均一な懸濁体とすることは困−で界面会力を低下させ水
が石炭te1う状態にするため、石炭粒子が水を介して
弱い結合状寒を示し凝集せず、安定した状Nt/保持す
るものである。
The stability mechanism of COM is generally thought to be as follows.The coal particle surface is usually in a mixed state of inorganic substances, hydrocarbons, etc.9, and water preferentially attaches to the highly polar parts of the inorganic substances. However, when these coal particles are mixed with mineral oil, a large interfacial tension is created at the interface, which increases the energy level of the system, causing them to bond with each other and coagulate. The aggregated and enlarged coal particles settle at a speed proportional to the square of the diameter, condense, and form a so-called consolidated layer at the bottom of the storage container. It is difficult to eliminate this problem and return the whole to the original homogeneous suspension, so in order to reduce the interfacial force and create a state where the water is mixed with the coal, the coal particles form a weak bond through the water. It exhibits no agglomeration and maintains a stable state of Nt/.

と\で、メチル燃料は水に比べ表面張力。And\, methyl fuel has a higher surface tension than water.

粘度も低いメタノールが主成分であるため。Because the main component is methanol, which has a low viscosity.

適当量のメチル燃料を含浸させた石炭粒子を用いてメタ
コムを作ると、界面活性剤V添加しないCOMK比べ界
面張力は低い、そのためメチル燃料が石炭表面t−aう
状11になり石炭粒子が凝集せず、石炭粒子間に弱い結
合状態ヲつくって粒子の沈降を妨げるため優れた安定性
を示すものと考察される。
When Metacom is made using coal particles impregnated with an appropriate amount of methyl fuel, the interfacial tension is lower than that of COMK without the addition of surfactant V. Therefore, the methyl fuel forms a t-a shape 11 on the coal surface, causing the coal particles to aggregate. It is considered that this method shows excellent stability because it creates a weak bond between coal particles and prevents the particles from settling.

更に本燃料組成物の特徴は、石炭粒子2クロIア中に含
浸さnているメチル燃料の外面Y鉱油が包んでいるので
、メタノールの沸点付近である60〜65℃に加温して
も気散分離することなく安定状態で存在する。
Furthermore, the feature of this fuel composition is that the outer surface of the methyl fuel impregnated in the coal particles is surrounded by mineral oil, so even when heated to 60 to 65 degrees Celsius, which is around the boiling point of methanol. Exists in a stable state without being dispersed.

本発明における燃料組成物の各成分の混合比としては石
炭粒子25〜55wtl51メチル燃料3〜30wt憾
、鉱油20〜70 vtllの範囲から実施者において
適宜選択出来る。4hシ石炭粒子25wt4、メチル燃
料a vt憾、鉱油20 wt警未滴のとき又は石炭粒
子55 wt4、メチル燃料30vt憾、鉱油70 w
t嘔を超えるときは技術的経済的に本発明の目的が達成
されない。
The mixing ratio of each component of the fuel composition in the present invention can be appropriately selected by the practitioner from the range of 25 to 55 wtl of coal particles, 51 to 51 wtl of methyl fuel, and 20 to 70 wtl of mineral oil. 4h coal particles 25wt4, methyl fuel AVT, mineral oil 20wt when no drops or coal particles 55wt4, methyl fuel 30Vt, mineral oil 70W
If the amount exceeds 10,000 yen, the objective of the present invention cannot be achieved technically and economically.

次に本発明の製造方法を第1図〜第2図に基づいて説明
する。第1図の方法では石炭を乾式粉砕機1で適当な粒
度の石炭粒子に粉砕し、この石炭粒子を混合機2で適当
量のメチル燃料と混合する。こうして得たメチル燃料含
浸石炭粒子を混練機4に送り、こ\で鉱油と混練してメ
タコムとする。第2図の方法では石炭とメチル燃料を湿
式粉砕機1に入れ、適当な石炭粒子に粉砕し、且つメチ
ル燃料と混合する。メチル燃料としては新規のメチル燃
料および/又は脱液機3で回収するメチル燃料を使用す
る。メチル燃料との混合物はメチル燃料が過剰のとき、
脱液機3で余剰のメチル燃料を回収する。又適当な割合
の混合物のときはそのま\混練機4に送り、C−で鉱油
と混練してメタコムとする。
Next, the manufacturing method of the present invention will be explained based on FIGS. 1 and 2. In the method shown in FIG. 1, coal is pulverized into coal particles of an appropriate particle size in a dry pulverizer 1, and these coal particles are mixed with an appropriate amount of methyl fuel in a mixer 2. The methyl fuel-impregnated coal particles thus obtained are sent to a kneader 4 where they are kneaded with mineral oil to form Metacom. In the method shown in FIG. 2, coal and methyl fuel are placed in a wet pulverizer 1, pulverized into suitable coal particles, and mixed with methyl fuel. As the methyl fuel, new methyl fuel and/or methyl fuel recovered by the dehydrator 3 is used. When the mixture with methyl fuel is in excess,
Surplus methyl fuel is recovered by dehydrator 3. When the mixture is in an appropriate proportion, it is sent as is to the kneading machine 4 and kneaded with mineral oil in C- to form Metacom.

石炭粒子、メチル燃料および鉱油の混合割合は特許請求
の範囲(2)K記載の割合の範囲内において実施者にお
いて適宜選択出来る。
The mixing ratio of coal particles, methyl fuel and mineral oil can be appropriately selected by the practitioner within the range of the ratios described in claim (2)K.

又粉砕時間、混合時間、脱液時間および混練時間は使用
する石炭および鉱油の種llv勘案して実施者において
適宜選択出来るものである。
Further, the grinding time, mixing time, deliquification time and kneading time can be appropriately selected by the practitioner in consideration of the type of coal and mineral oil used.

粉砕機としては市販のものが使用可能である。混合機と
しては攪拌式で4粒子浮遊式でも便用可能であるが、粒
子浮遊式混合機を使用する場合は、石炭粒子に粉霧する
メチル燃料を調整することにより、任意の量のメチル燃
料を含浸した石炭粒子が製造でき、場合によっては脱液
機を油路することができて好ましい、脱液機、混練機は
市販のものが使用で−きる。   パ 以下実施例、比較例により本発明klK明確圧する。
A commercially available crusher can be used. As a mixer, a stirring type and 4-particle suspension type can be conveniently used, but when using a particle suspension type mixer, by adjusting the amount of methyl fuel that is sprayed onto the coal particles, it is possible to mix the desired amount of methyl fuel. It is possible to produce coal particles impregnated with the dewatering machine, and in some cases, the dewatering machine can be connected to an oil line. Commercially available dewatering machines and kneading machines can be used. The following Examples and Comparative Examples clearly demonstrate the present invention.

実施例1 米−M炭(Am育炭、)v気乾後、乾式粉砕機振動ミル
で74s以下が大略70m含むように粉砕し1000F
の石炭粒子を得几。この20分かけて石炭粒子に含浸し
ていない余剰のメタノールを脱液しメタノール含浸石炭
粒子690Fを得友、これを回転式混合機に入れ、中)
[CX油500 tlに加L60℃テ45分混練してメ
タコムを造った。このメタコムを1000−メスシリン
ダーに移し60℃で14日間靜置後、圧密層の淳さを測
定したところ2■であった。このことにより該組成物は
安定性のある液体一固体懸濁体であることがわかる。圧
密層の測定には6mφ、409の鉄棒な使用した。
Example 1 Rice-M charcoal (Am charcoal raising) v After air drying, it was pulverized with a dry pulverizer vibrating mill so that it contained approximately 70 m of 74 s or less at 1000 F.
obtained coal particles. Over the course of 20 minutes, excess methanol that has not been impregnated into the coal particles is removed to obtain methanol-impregnated coal particles 690F, which are then placed in a rotary mixer (middle).
[Metacom was made by adding 500 tl of CX oil and kneading at 60°C for 45 minutes. This Metacom was transferred to a 1000-meter cylinder and left at 60 DEG C. for 14 days.The thickness of the compacted layer was measured and found to be 2. This indicates that the composition is a stable liquid-solid suspension. A 6 mφ, 409 iron rod was used to measure the consolidated layer.

尚、使用した米国M炭の工業分析値等は次の通りである
The industrial analysis values of the US M coal used are as follows.

水分  灰分  揮発分 固定炭素 全硫黄 発熱量(
vNl)  (vtl) (vtl)  (vtl) 
 (wtl)  (Kj/X?)17.3  6.8 
 32.6  43.3  0.8  5500実施例
2 カナダC炭(◆瀝育炭)を実施例1と同様に粉砕し10
00Fの石炭粒子を得た。この石炭粒子500fY実施
例1と同一操作で処理し、メタノール含浸石炭粒子77
0fV得た。これV実施例1同様中東C重油500tを
加え60℃で45分混練してメタコムを造った。該メタ
コムについて実施例1と同じ試験を行なったところ、圧
密層の厚さは!−であった。このことから、該組成物は
安定性のある液体一固体懸濁体であることがわかる。
Moisture Ash Volatile matter Fixed carbon Total sulfur Calorific value (
vNl) (vtl) (vtl) (vtl)
(wtl) (Kj/X?) 17.3 6.8
32.6 43.3 0.8 5500 Example 2 Canadian C coal (◆bitten coal) was crushed in the same manner as in Example 1 and 10
Coal particles of 00F were obtained. This coal particle 500fY was treated in the same manner as in Example 1, and methanol-impregnated coal particle 77
Obtained 0fV. Similar to Example 1, 500 tons of Middle East C heavy oil was added and kneaded at 60° C. for 45 minutes to produce Metacom. When the same test as in Example 1 was conducted on the Metacom, the thickness of the consolidated layer was found to be! -It was. This indicates that the composition is a stable liquid-solid suspension.

尚、使用したカナダC炭の工業分析値は次の通りである
The industrial analysis values of the Canadian C charcoal used are as follows.

水分  灰分  揮発分 固定炭素 全硫黄 発熱量(
wn) twtl)  (vtl)  (vtl)  
(wt憾)  (Kmvkc9)?、0  10.1 
 33.8  49.1  0.2  6220比較例
1 実施例1で得た74μ以下が大略704含む米国M炭5
00t1に1回転混合機に入れ、これに中![C重油5
00 f)r加え、60℃で45分混練してCOM!作
った。該COMを1000−のメスシリンダーに移し、
60℃で100時間靜置後置後密層の厚さを測定したら
160■あった、このことから界面活性剤の入らないC
OMは不安定な液体一固体懸濁体である。
Moisture Ash Volatile matter Fixed carbon Total sulfur Calorific value (
wn) twtl) (vtl) (vtl)
(wt regret) (Kmvkc9)? ,0 10.1
33.8 49.1 0.2 6220 Comparative Example 1 U.S. M Coal 5 containing approximately 704 μm or less of 74μ obtained in Example 1
00t1, put it in a mixer for 1 revolution, and add it to this! [C heavy oil 5
Add 00 f)r, knead at 60℃ for 45 minutes, and COM! Had made. Transfer the COM to a 1000-meter graduated cylinder,
After standing at 60°C for 100 hours, the thickness of the dense layer was measured to be 160cm, which indicates that C without surfactant.
OM is an unstable liquid-solid suspension.

比較例2 実施例2で4ftカナダC炭を用いたほかは比較例1と
全く同じ操作でCOMをつくった。
Comparative Example 2 A COM was produced in exactly the same manner as in Comparative Example 1, except that 4ft Canadian C coal was used in Example 2.

icOMKついて比較例1と同様の操作を行い、圧密層
の厚さを測定したら170■であった。このことから該
COMは不安定な液体一固体rrss体であることが分
る。
The same operation as in Comparative Example 1 was performed on icOMK, and the thickness of the consolidated layer was measured to be 170 . This shows that the COM is an unstable liquid-solid rrss body.

次に実施例1.2のメタコム及び比較例1.20COM
の燃焼試験結果について説明する。
Next, Metacom of Example 1.2 and Comparative Example 1.20COM
We will explain the combustion test results of

強制盾火による懸垂率−滴の燃焼試験をメタコム及び比
較としてCOMKついて実施した。試験は燃焼用空気t
900℃に加温し、一定流速で試料に供給する。試料の
着火+S強制着火を行い、燃焼挙動を計測した。試験4
1゜0.1■φの白金素線の先端に試料vs垂し約2雪
径の#Iをつくって行った。
Suspension rate-drop combustion tests with forced shield fire were conducted on Metacom and COMK as a comparison. The test was conducted using combustion air
It is heated to 900°C and supplied to the sample at a constant flow rate. Ignition of the sample + S forced ignition was performed, and combustion behavior was measured. Exam 4
A specimen #I with a diameter of about 2 snow was made by hanging the sample from the tip of a platinum wire with a diameter of 1°0.1■.

試験の結果を燃焼速度係数にで表示し、第1表に示す、
には(1)式によって定義される。
The test results are expressed as burning rate coefficients and are shown in Table 1.
is defined by equation (1).

DJ−DJ [m −−−−(1) D、: 燃焼初期の滴の容積基準比表面積径(■) D、: 燃焼後における灰の容積基準比表面積径(−) t:燃焼所要時間(a)、 第111に示すとおり、メタコムのKw&ICOHのそ
れに対し米−M炭では2.26倍、カナメC炭では1.
58倍になり、極めて優れた燃焼性を示すことも表わし
ている。メタコムの燃焼挙#を**すると、fスイヒ燃
焼時COMは石炭粒子の分裂はなく一個の滴として燃焼
するのに対し、メタコムは分裂しながら燃焼する。その
沈め高い燃焼速度係数を示すものと考えられる。
DJ-DJ [m ----(1) D,: Volume-based specific surface area diameter of droplets at the initial stage of combustion (■) D,: Volume-based specific surface area diameter of ash after combustion (-) t: Required combustion time ( a) As shown in No. 111, the rice-M coal is 2.26 times that of Metacom's Kw & ICOH, and the Kaname C coal is 1.
58 times, indicating extremely excellent combustibility. If we look at the combustion behavior of Metacom, we can see that during f-suihi combustion, COM burns as a single droplet without splitting the coal particles, whereas Metacom burns while splitting. This is thought to indicate a high burning rate coefficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本願発明の燃料組成物の製造方法の一
例のフローシートである。 図中 1・−粉砕機 2・・・混合機 3・・・脱液機4−混
線機 5・・・燃料組成物貯槽を表わ鳴第11n 茎tm
FIGS. 1 and 2 are flow sheets of an example of the method for producing the fuel composition of the present invention. In the figure, 1.--Crusher 2.-Mixer 3.-Delictor 4-Mixer 5.-Represents fuel composition storage tank No. 11n Stem tm

Claims (5)

【特許請求の範囲】[Claims] (1)  メチル燃料を含浸した石炭粒子を鉱油が包込
でいる液体一固体S温体燃料組成物。
(1) A liquid-solid S hot body fuel composition in which mineral oil encapsulates coal particles impregnated with methyl fuel.
(2)石炭粒子25〜55 wt4、メチル燃料3−〜
3 Ovt憾、鉱油20〜70 wt4からなる特許請
求の範囲第1項記載や燃料組成物。
(2) Coal particles 25-55 wt4, methyl fuel 3-~
3 Ovt, mineral oil 20 to 70 wt4 or a fuel composition according to claim 1.
(3)石炭粒子が無煙炭、瀝育炭、亜瀝青炭、褐炭の群
から選ばれた少くとも1種の石炭の粒子である特許請求
の範囲第2項記載の燃料組成物。
(3) The fuel composition according to claim 2, wherein the coal particles are particles of at least one type of coal selected from the group of anthracite coal, bituminous coal, subbituminous coal, and brown coal.
(4)石炭を乾式粉砕し、これにメチル燃料を加え混合
してメチル燃料含浸石炭粒子とし、これに鉱油を加え混
練して製造する特許請求の範囲第1項記載の燃料組成物
の製造方法。
(4) A method for producing a fuel composition according to claim 1, which comprises dry-pulverizing coal, adding methyl fuel thereto and mixing to obtain methyl fuel-impregnated coal particles, and adding mineral oil thereto and kneading. .
(5)  石炭粒子にメチル燃料を加えて湿式粉砕し、
余剰のメチル燃料を脱液してメチル燃料含浸石炭粒子と
し、これに鉱油を加え混練して製造する特許請求の範囲
第1項記載の燃料組成物の製造方法。
(5) Wet-pulverize coal particles by adding methyl fuel,
The method for producing a fuel composition according to claim 1, which comprises deliquifying excess methyl fuel to produce methyl fuel-impregnated coal particles, adding mineral oil to the coal particles, and kneading the particles.
JP18682281A 1981-11-24 1981-11-24 Fuel composition and its preparation Pending JPS5889693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18682281A JPS5889693A (en) 1981-11-24 1981-11-24 Fuel composition and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18682281A JPS5889693A (en) 1981-11-24 1981-11-24 Fuel composition and its preparation

Publications (1)

Publication Number Publication Date
JPS5889693A true JPS5889693A (en) 1983-05-28

Family

ID=16195207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18682281A Pending JPS5889693A (en) 1981-11-24 1981-11-24 Fuel composition and its preparation

Country Status (1)

Country Link
JP (1) JPS5889693A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141307A (en) * 1977-05-16 1978-12-09 Keller Corp Stable dispersed body of carbon in hydrocarbon fuel and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141307A (en) * 1977-05-16 1978-12-09 Keller Corp Stable dispersed body of carbon in hydrocarbon fuel and production thereof

Similar Documents

Publication Publication Date Title
JP2607424B2 (en) Use of low-grade coal and peat
US6818027B2 (en) Organically clean biomass fuel
WO1983004046A1 (en) A process for producing a slurry of a pulverized carbonaceous material
US20130330677A1 (en) Coal paste for use as fuel and methods of using same
US4083697A (en) Combustible composition
US4089657A (en) Stabilized suspension of carbon in hydrocarbon fuel and method of preparation
Liu et al. An experimental study of rheological properties and stability characteristics of biochar-glycerol-water slurry fuels
US5830246A (en) Process for processing coal
EP0023829B1 (en) Combustible compositions and processes for their production
US4358292A (en) Stabilized hybrid fuel slurries
EP0047123B1 (en) Combustible compositions, firelighters, barbeque starters and firelogs
JPS5889693A (en) Fuel composition and its preparation
IE50034B1 (en) Combustible compositions and process for their production
JPS6158109B2 (en)
CN107429179A (en) liquid biofuel composition
EP0047125B1 (en) Combustible compositions, firelighters, barbeque starters and firelogs
SE443797B (en) DISPERSION FUEL AND PROCEDURE FOR ITS PREPARATION
JPH0349318B2 (en)
Umar et al. Preparation of carbonized biomass water mixture and upgraded coal water mixture
GB550167A (en) Process of making solid fuel briquettes
WO2002010319A2 (en) Ground organic fuel
WO2022085163A1 (en) Slurry fuel and method for producing same
GB2101627A (en) Mixed coal and oil fuels
Lava THE POSSIBLE USE OF PHILIPPINE COALS FOR LIQUID FUEL
Sheppard Colloidal Fuels, Their Preparation and Properties.