JPS588935B2 - Manufacturing method of heat-generating self-hardening water-soluble mold - Google Patents

Manufacturing method of heat-generating self-hardening water-soluble mold

Info

Publication number
JPS588935B2
JPS588935B2 JP55157711A JP15771180A JPS588935B2 JP S588935 B2 JPS588935 B2 JP S588935B2 JP 55157711 A JP55157711 A JP 55157711A JP 15771180 A JP15771180 A JP 15771180A JP S588935 B2 JPS588935 B2 JP S588935B2
Authority
JP
Japan
Prior art keywords
mold
weight
heat
sodium aluminate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55157711A
Other languages
Japanese (ja)
Other versions
JPS5781938A (en
Inventor
倉部兵次郎
村松晃
牧口利貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP55157711A priority Critical patent/JPS588935B2/en
Publication of JPS5781938A publication Critical patent/JPS5781938A/en
Publication of JPS588935B2 publication Critical patent/JPS588935B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム合金、銅合金、鋳鋼などの鋳造に
使用する発熱自硬水溶性鋳型の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-generating self-hardening water-soluble mold used for casting aluminum alloys, copper alloys, cast steel, etc.

現在鋳物工場では鋳型として、硅砂を骨材にした生型、
無機自硬性鋳型、有機自硬性鋳型およびセメント鋳型が
使用されている。
Currently, foundries use green molds made of silica sand as aggregate,
Inorganic self-hardening molds, organic self-hardening molds and cement molds have been used.

生型は比較的小物鋳物の製造に用いられ、他の鋳型は強
度の高いところから中物鋳物、大物鋳物の製造に用いら
れている。
Green molds are used for producing relatively small castings, while other molds are used for producing medium and large castings due to their high strength.

従来のこれらの鋳型は型ばらしが容易でなく、その際、
騒音、振動、粉塵または臭気などが発生し、作業環境の
悪化ならびに公害の発生源となる問題点があった。
These conventional molds are not easy to disassemble;
There are problems in that noise, vibration, dust, odor, etc. are generated, deteriorating the working environment and causing pollution.

本発明者はこの問題点を解消するために、さきに、鋳込
み後の型ばらしを水により容易に行うことができる発熱
自硬水溶性鋳型を開発した。
In order to solve this problem, the present inventors first developed a heat-generating self-hardening water-soluble mold that can be easily disassembled using water after casting.

この鋳型はアルミナ砂100重量部に対し、粘結剤とし
てアルミン酸ナトリウム3〜10重量部、およびアルミ
ニウム粉末0.3〜1重量部を配合造型した発熱自硬水
溶性鋳型である。
This mold is a heat-generating self-hardening water-soluble mold made by mixing and molding 100 parts by weight of alumina sand, 3 to 10 parts by weight of sodium aluminate as a binder, and 0.3 to 1 part by weight of aluminum powder.

すなわち、アルミナ砂を骨材とし、粘結剤としてアルミ
ン酸ナトリウムとアルミニウム粉末を使用するものであ
り、アルミン酸ナトリウムのアルカリ分とアルミニウム
粉末とが反応して発熱してアルミン酸ナトリウムを生成
硬化させるものである。
That is, it uses alumina sand as an aggregate and sodium aluminate and aluminum powder as a binder, and the alkaline content of sodium aluminate and aluminum powder react to generate heat and harden to form sodium aluminate. It is something.

この鋳型は高融点の鋳鋼、鋳鉄および銅合金の鋳造にも
十分耐え、しかも鋳込み後水により粘結剤は溶解するの
で容易に型ばらしができると共にアルミナ砂の回収も容
易にできる等の優れた特長を有している。
This mold can withstand the casting of cast steel, cast iron, and copper alloys with high melting points, and the binder is dissolved by water after casting, so it can be easily disassembled and the alumina sand can be easily recovered. It has special features.

しかしながら、アルミン酸ナトリウムとアルミニウム粉
末の硬化反応は混練すると直ちに反応が開始し、鋳型を
造形する時間が充分得られない、すなわち、可使時間が
短い難点があった。
However, the hardening reaction of sodium aluminate and aluminum powder starts immediately after kneading, and there is a drawback that sufficient time is not available for forming a mold, that is, the pot life is short.

本発明はこの可使時間の短い難点を解決することを目的
としたものであり、鋳型の造型に際し、アルミナ砂に液
体窒素を混合して冷却し、これにアルミン酸ナトリウム
とアルミニウム粉末を配合し造型することにより解決し
得た。
The purpose of the present invention is to solve this problem of short pot life, and when making a mold, alumina sand is mixed with liquid nitrogen and cooled, and sodium aluminate and aluminum powder are mixed with this. The problem could be solved by molding.

アルミナ砂に液体窒素を混合することによりアルミナ砂
は極めて容易に冷却され、これに配合されるアルミン酸
ナトリウムとアルミニウム粉末との硬化反応は低温であ
るため、反応速度がおそくなり、鋳型の造型時間を延ば
すことができる。
By mixing alumina sand with liquid nitrogen, the alumina sand can be cooled very easily, and the curing reaction between the sodium aluminate and aluminum powder that is mixed in this sand is at a low temperature, so the reaction rate is slow and it takes time to make the mold. can be extended.

しかも、液体窒素を使用するため、(1)アルミナ砂に
液体窒素が直接接触し、かつ低温であるため、冷却を効
率よく短時間に行うことかできる。
Furthermore, since liquid nitrogen is used, (1) the alumina sand is brought into direct contact with the liquid nitrogen, and the temperature is low, so cooling can be performed efficiently and in a short time.

(2)冷却するための特別の装置を必要としない。(2) No special equipment for cooling is required.

(3)混合量によって適正温度にすることが容易である
ため造型も能率よくできる。
(3) Since it is easy to adjust the temperature to the appropriate temperature by changing the amount of mixture, molding can be done efficiently.

(4)液体窒素であるため、作業環境の悪化ならびに公
害の発生源となることがなく、また火災の原因を起すこ
ともない等の優れた効果を有する。
(4) Since it is liquid nitrogen, it has excellent effects such as not deteriorating the working environment, not becoming a source of pollution, and not causing a fire.

本発明において使用する骨材のアルミナ砂は60〜15
0メッシュの高純度アルミナが適している。
The aggregate alumina sand used in the present invention is 60 to 15
0 mesh high purity alumina is suitable.

またアルミン酸ナトリウムはNa20/A l 2 0
3のモル比が1.5〜3.0で水分量が60重量%以
上のものがよい。
Also, sodium aluminate is Na20/A l20
It is preferable that the molar ratio of 3 to 3 is 1.5 to 3.0 and the water content is 60% by weight or more.

モル比が1.5より小さくなるとアルカリ分が小さ過ぎ
硬化が悪くなり、3.0より多くなるとアルミン酸ナト
リウム水溶液が変質し保存し難くなる。
When the molar ratio is less than 1.5, the alkali content is too small and curing becomes poor, and when it is more than 3.0, the sodium aluminate aqueous solution deteriorates and becomes difficult to store.

また水分が60重量%より少いと十分な反応が得られず
硬化し難くなる。
Further, if the water content is less than 60% by weight, sufficient reaction cannot be obtained and curing becomes difficult.

アルミナ砂に混合する液体窒素量はアルミナ砂の温度が
少くとも0℃以下になるまでの量である,またアルミナ
砂に対するアルミン酸ナトリウムとアルミニウム粉の配
合量の下限値は、鋳型の有効強さを示す限界量であり、
その上限値は粘結剤が多くなると造型が困難になるので
その限界量であることが必要である。
The amount of liquid nitrogen mixed with the alumina sand is the amount that will keep the temperature of the alumina sand at least below 0℃.The lower limit of the amount of sodium aluminate and aluminum powder mixed with the alumina sand is determined by the effective strength of the mold. is the limit amount indicating
The upper limit value needs to be the limit amount, since molding becomes difficult when the amount of the binder increases.

従って、アルミナ砂100重量部に対し、アルミン酸ナ
トリウム3〜10重量部、アルミニウム粉末0.3〜1
重量部である。
Therefore, for 100 parts by weight of alumina sand, 3 to 10 parts by weight of sodium aluminate and 0.3 to 1 part by weight of aluminum powder.
Parts by weight.

これらの粘結剤も冷却して配合してもよい。These binders may also be blended after cooling.

実施例 70〜150メッシュの高純度アルミナ砂3kg(10
0重量部)に、210g(7重量部)の液体窒素を混練
して−10℃に冷却した。
Example 70-150 mesh high purity alumina sand 3 kg (10
0 parts by weight) was kneaded with 210 g (7 parts by weight) of liquid nitrogen and cooled to -10°C.

これにNa2O/ A l 2 0 3のモル比1.7
、水分量65%のアルミン酸ナトリウム90P(3重量
部)を配合混練し、さらにアルミニウム粉末23g(0
.75重量部)を配合混練した。
To this, the molar ratio of Na2O/A1203 is 1.7.
, 90P (3 parts by weight) of sodium aluminate with a moisture content of 65% was mixed and kneaded, and further 23g (0
.. 75 parts by weight) were mixed and kneaded.

これと比較するため、液体窒素で冷却しない同様なもの
を作った。
For comparison, we made a similar device that was not cooled with liquid nitrogen.

これらの調整砂で80xl20X140mmのブロック
を造型し、中心部の温度を測定した。
A block of 80xl20x140mm was molded using these prepared sands, and the temperature at the center was measured.

その結果は第1図の通りであった。The results were as shown in Figure 1.

図中、1は液体窒素で冷却した場合における経過時間と
発熱温度との関係曲線、2は冷却しない場合における同
様な曲線である。
In the figure, 1 is a relationship curve between elapsed time and exothermic temperature in the case of cooling with liquid nitrogen, and 2 is a similar curve in the case of no cooling.

この結果が示すように、冷却しない場合は、発熱開始時
間が非常に堅く、しかも温度上昇が急で僅か7分で最高
温度の100℃に達し、可使時間か短か過ぎて造型が難
しい。
As shown in the results, without cooling, the heat generation start time is very short, and the temperature rises rapidly, reaching the maximum temperature of 100° C. in just 7 minutes, making it difficult to mold the product because the pot life is too short.

これに対し、液体窒素で冷却した場合は、15分経過す
るまでは発熱上昇勾配がゆるやかであり、それを過ぎる
と急上昇するが、可使時間が15分に延長され造型も容
易となった。
On the other hand, when cooling with liquid nitrogen, the gradient of increase in heat generation was gradual until 15 minutes had elapsed, after which it rose sharply, but the pot life was extended to 15 minutes and molding became easier.

前記と同様な原料を使用し、JIS規格に従い50mm
径×50m11Lの標準試験片を作り、鋳型の圧縮強さ
を調べた結果は第1表の通りであった。
Using the same raw materials as above, 50mm according to JIS standard
A standard test piece with a diameter of 50 m and 11 L was prepared, and the compressive strength of the mold was examined. The results are shown in Table 1.

この結果が示すように、本発明の場合、経過時間1時間
では冷却しない場合と同じ圧縮強さを有するが、24時
間後では2〜3kg/cm2圧縮強さが弱くなるが、最
低で15kg/cm2を有し、強さの面では問題がない
As shown by this result, in the case of the present invention, the compressive strength is the same as that without cooling after 1 hour elapsed time, but after 24 hours, the compressive strength becomes weaker by 2 to 3 kg/cm2, but at a minimum of 15 kg/cm2. cm2, and there is no problem in terms of strength.

この原料で鋳型を造型し、FC20相当の鋳鉄を鋳込み
、鋳物が冷却した後、水圧1kg/cfi2、水量10
l/分の条件で水溶させた結果、鋳型は容易に崩壊した
A mold is made from this raw material, cast iron equivalent to FC20 is cast, and after the casting has cooled, the water pressure is 1 kg/cfi2 and the water amount is 10.
As a result of dissolving in water at 1/min, the mold easily collapsed.

しかも健全な鋳物が得られた。Moreover, a sound casting was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の場合と、冷却しない場合における硬化反
応における経過時間と発熱温度との関係図である。 1:本発明の場合、2:冷却しない場合。
The drawing is a diagram showing the relationship between elapsed time and exothermic temperature in the curing reaction in the case of the present invention and in the case of no cooling. 1: In the case of the present invention, 2: In the case of no cooling.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ砂100重量部に対し、粘結剤としてアル
ミン酸ナトリウム3〜10重量部およびアルミニウム粉
末0.3〜1重量部を使用した鋳型の造型に際し、アル
ミナ砂に液体窒素を混合して冷却し、アルミン酸ナトリ
ウムとアルミニウム粉末を配合造型することを特徴とす
る発熱自硬水溶性鋳型の製造法。
1 When molding a mold using 100 parts by weight of alumina sand, 3 to 10 parts by weight of sodium aluminate and 0.3 to 1 part by weight of aluminum powder as a binder, the alumina sand is mixed with liquid nitrogen and cooled. , a method for producing a heat-generating self-hardening water-soluble mold, characterized by blending and molding sodium aluminate and aluminum powder.
JP55157711A 1980-11-11 1980-11-11 Manufacturing method of heat-generating self-hardening water-soluble mold Expired JPS588935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55157711A JPS588935B2 (en) 1980-11-11 1980-11-11 Manufacturing method of heat-generating self-hardening water-soluble mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55157711A JPS588935B2 (en) 1980-11-11 1980-11-11 Manufacturing method of heat-generating self-hardening water-soluble mold

Publications (2)

Publication Number Publication Date
JPS5781938A JPS5781938A (en) 1982-05-22
JPS588935B2 true JPS588935B2 (en) 1983-02-18

Family

ID=15655695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55157711A Expired JPS588935B2 (en) 1980-11-11 1980-11-11 Manufacturing method of heat-generating self-hardening water-soluble mold

Country Status (1)

Country Link
JP (1) JPS588935B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9512927D0 (en) * 1995-06-24 1995-08-30 Air Prod & Chem Method for forming a mould for use in casting and mould formed by said method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261126A (en) * 1975-11-15 1977-05-20 Nat Res Inst Metals Water soluble mold for casting
JPS5570439A (en) * 1978-11-20 1980-05-27 Agency Of Ind Science & Technol Extension method of service life of self-hardening mold sand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261126A (en) * 1975-11-15 1977-05-20 Nat Res Inst Metals Water soluble mold for casting
JPS5570439A (en) * 1978-11-20 1980-05-27 Agency Of Ind Science & Technol Extension method of service life of self-hardening mold sand

Also Published As

Publication number Publication date
JPS5781938A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
US5474606A (en) Heat curable foundry binder systems
CN105964891B (en) A kind of phosphate inorganic adhesive sand with high fluidity and preparation method thereof
US4357165A (en) Aluminosilicate hydrogel bonded granular compositions and method of preparing same
KR100369887B1 (en) Foundry exothermic assembly
US3203057A (en) Process for making cores and molds, articles made thereby and binder compositions therefor
CN111718175A (en) CO (carbon monoxide)2Hardened inorganic binder and method for producing same
US4763720A (en) Microwave process for the fabrication of cores for use in foundry casting
JPH0824996B2 (en) Water-soluble core and method for producing the same
JPS588935B2 (en) Manufacturing method of heat-generating self-hardening water-soluble mold
US3826658A (en) Foundry moulding materials
GB738981A (en) Improved process of manufacturing precision casting moulds for metals
US3970462A (en) Self setting molding process
US3960798A (en) Process for regulating hardening speed of self-hardening mold
JPS588934B2 (en) Manufacturing method of heat-generating self-hardening water-soluble mold
JP2021104544A (en) Method for molding casting mold and core
JPH0636954B2 (en) Composition for easily disintegrating mold
JP3043812B2 (en) Binders for thermosetting molds and their uses
CN109047648A (en) A kind of defeated and dispersed reinforcing agent of sodium silicate sand used for casting
CN107282858A (en) A kind of pump housing sand casting casting model powder
US4131477A (en) Moulding composition for making foundry moulds and cores
CN117383947B (en) Self-hardening core material without heating and preparation method thereof
RU2207932C1 (en) Sand for making of moulds
JP2788063B2 (en) Erasable mold core containing self-hardening ceramic material and method for producing the same
RU1770021C (en) Composition for ceramic form moulding
JP2004130380A (en) Mold composition, and method for producing mold