JPS5888704A - Manufacture of multiple optical fiber - Google Patents

Manufacture of multiple optical fiber

Info

Publication number
JPS5888704A
JPS5888704A JP56187298A JP18729881A JPS5888704A JP S5888704 A JPS5888704 A JP S5888704A JP 56187298 A JP56187298 A JP 56187298A JP 18729881 A JP18729881 A JP 18729881A JP S5888704 A JPS5888704 A JP S5888704A
Authority
JP
Japan
Prior art keywords
intervening
glass
strands
oxide
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56187298A
Other languages
Japanese (ja)
Inventor
Atsushi Uchiumi
内海 厚
Masaharu Noguchi
野口 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP56187298A priority Critical patent/JPS5888704A/en
Publication of JPS5888704A publication Critical patent/JPS5888704A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres

Abstract

PURPOSE:To prevent bubbling among quartz type optical fiber elements, by bundling >=1,000 of them, and causing prescribed liquid materials to intervene among them, and drawing them. CONSTITUTION:A bundle of at least >=1,000 quartz type optical fiber elements 1a is inserted into a dummy glass tube 5, connected by melting, and put into a reaction tube 6 made of quartz glass. A mixture of the vapor of a glass-forming oxide, such as oxide of B, P, Ge, or Sb; a glass-modifying oxide, such as Bi, Sn, or Tl oxide; and an intermediate oxide, such as Ti, Cd, or Pb oxide; and a carrier gas are introduced into the reactor kept at 800 deg.C through a feed tube 7 to deposit them as intervening materials to the surface of each fiber element 1a, and the bundle is drawn at 1,950-2,100 deg.C. In drawing, the intervening materials are liquefied, and bubbling among the fibers are prevented.

Description

【発明の詳細な説明】 本発明は、多数本の石英ガラス系元ファイバ素偉が融着
果合してなる光学用マルチプルファイバの新規な製法f
こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel manufacturing method for optical multiple fibers formed by fusing together a large number of quartz glass-based original fibers.
Regarding this.

石英ガラス系のマルチプルファイバは、画像を簡接伝送
する手段として種々の分野にる・いて用途が期待されて
おり、特にその優れた耐熱性、耐放射線性の故lこ、溶
鋼炉、原子炉等の内部を観察する手段として豊している
Silica glass-based multiple fibers are expected to be used in a variety of fields as a means of easily transmitting images, and are particularly useful in applications such as melting furnaces, nuclear reactors, etc. due to their excellent heat resistance and radiation resistance. It is a rich means of observing the inside of things such as

マルチプルファイバは、ガラス系光ファイバ索線を多数
本重ねて、その一端より高温度に加熱して線引きし、各
素線の断面積を軛少させるとともに互に隣接する素Iv
il同士を融着すること1こより、更lこ必要ならばか
くして得たマルチフルファイバの多数本を束ねて再び上
記と同様の鞄引きを行うことζこより製造される。
Multiple fibers are produced by stacking a large number of glass-based optical fiber cables and heating them at a high temperature from one end to draw them.
It is manufactured by fusing the fibers together, and if necessary, bundling a large number of the thus obtained multi-full fibers together and carrying out the same bag-pulling process as described above.

ところで、上記の線引きにより、各ニレメン1間に空泡
が残溜して、得られたマルチプルファイバの画像伝送性
能を低丁させる問題があることから、本発明場らは、先
に谷エレメント間Iこ液体の介在Pa ’14を介在さ
せて線引きする技術を開発し、この技術により上記の問
題を解決することIこ成功した。
By the way, due to the above-mentioned line drawing, there is a problem that air bubbles remain between each nire element 1 and reduce the image transmission performance of the obtained multiple fiber. We have developed a technique for drawing wire with the presence of a liquid Pa'14, and have succeeded in solving the above problem using this technique.

マルチプルファイバを画1象伝送体として使用する場合
、光フアイバ素線数が少ないと伝送画像が不鮮明となる
ことから、少なくと−もその素絨数か1000のものか
必要となる。
When multiple fibers are used as a single image transmission body, if the number of optical fiber strands is small, the transmitted image becomes unclear, so it is necessary to have at least 1000 strands.

z巌6’ +”o ’o oのマルチブルファイバヲ製
造ン するには、たとえば33本の光ファイバ素線の束を用い
て紬引きにより光ファイバ素線数53のマルチチルファ
イバを得、次いて、かくして得たマルチプルファイバ3
3本の束を線引きすればよい。しかしながら、かくして
得たマルチプルファイバ中の素線は、33本の素線を小
単位としてハネカム状に融着集合するので、このハネカ
ムか眼ざ障りとなる問題がある。
In order to manufacture a multi-chill fiber of z 6' + "o 'o o," for example, a bundle of 33 optical fibers is used to create a multi-chill fiber with 53 optical fibers by pongee-pulling. Next, the thus obtained multiple fiber 3
All you have to do is draw a line between the three bundles. However, since the strands in the multiple fiber thus obtained are fused and aggregated in a honeycomb shape with 33 strands as a small unit, there is a problem that this honeycomb is unpleasant to the eyes.

ところで、本発明者らの引続く研究番こよれば、外径1
胴未滴の細い光フアイバ素線を画像伝送上必要となる本
数、すなわち、少なくとも1000本を束ねて素線間に
特定の介在物質を介在させて線引きすると、素線間に空
泡の残存がなく、また、前記したハネカム状集合のない
マルチプルファイバが得られる。本発明は上記新知見1
こもとすいて開発したものであって、その要旨とすると
ころは外径1 mm未祠の細い石英ガラス系光フアイバ
素線を少なくとも1000本束ね、該素線の間に線引き
温度憂こおいて液状の介在物質が介在する状態のもとて
前記素線束を線引きすることからなり、前記介在物質か
ガラス形成酸化物、ガラス修飾酸化物および中間酸化物
よりなる群から選ばれた少なくとも1種からなることを
特徴とするものである。
By the way, according to the inventors' subsequent research, an outer diameter of 1
When the number of thin optical fibers with no droplet droplets required for image transmission, that is, at least 1000, are bundled and drawn with a specific intervening substance interposed between the strands, no air bubbles remain between the strands. Moreover, multiple fibers without the above-mentioned honeycomb-like aggregation can be obtained. The present invention is based on the above-mentioned new findings 1.
It was developed by Komo, and its gist is to bundle at least 1,000 thin quartz glass optical fibers with an outer diameter of 1 mm and set the drawing temperature between the strands. The wire bundle is drawn in the presence of a liquid intervening substance, and the intervening substance is at least one selected from the group consisting of glass-forming oxides, glass-modifying oxides, and intermediate oxides. It is characterized by:

第1図は、本発明1こよる光学用マルチプルファイバの
製法の線引き時の様子を概略的薔こ示すものであって、
以下、本図にもとすき、本発明の方法の概略及び光フア
イバ素線(思−1=、単ζこ素線と称す)の間での空泡
発生の防止薔こ関して考えられる機構につき説明する。
FIG. 1 schematically shows the drawing process of the optical multiple fiber manufacturing method according to the present invention.
The following is a diagram showing an outline of the method of the present invention and a possible mechanism for preventing the generation of air bubbles between optical fiber strands (referred to as single ζ strands). I will explain about it.

第1図において多数本の素線1は、それらの間に介在物
質2か存在する状態1こおいて項状の電気炉等の加熱手
段3により周囲から均一1こかつ、素線1を構成する石
英ガラスの軟化点以上の高温度に加熱され、矢印の方向
に線引きされる。この線引きにより素侶1は、互に隣接
するもの同士融着し合い、而して全体として1つの集合
体に融着しこの結果1本のマルチプルファイバ4が製造
される。本発明において、線引きW&とは線引き工程の
定常状態において素線1が線引きのために加熱されたと
きに到達する温度を意味するが、線引き時の加熱手段、
たとえば電気炉のヒートゾーンの温度をはソ同温と考え
てよい。
In FIG. 1, a large number of strands 1 are heated uniformly from the periphery by a heating means 3 such as an electric furnace in a state 1 in which an intervening substance 2 is present between them to form the strands 1. The glass is heated to a high temperature above the softening point of quartz glass and drawn in the direction of the arrow. By this drawing, the fibers 1 that are adjacent to each other are fused to each other, and the fibers 1 are fused as a whole into one aggregate, and as a result, one multiple fiber 4 is manufactured. In the present invention, the wire drawing W& means the temperature reached when the strand 1 is heated for drawing in the steady state of the drawing process, and the heating means during drawing,
For example, the temperature of the heat zone of an electric furnace can be considered to be the same temperature.

介在物質の存在にもとずく空泡の発生防止機構を説明す
る前Iこ、介在物質を存在せしめない従来法における空
泡発生の機構を簡単に説明すると、多数σ)素胛は、そ
の占積系か通常最大となるように密に東ねられた状態で
一端において加熱され侍引きされるか、個々の緊線は外
径、断面形状、直線性等において必ずしも均一でなく素
線間に多少のバラツキがあるため、加熱線引き前の束ね
られた状態においては、隣り合う素線間で互に表向同士
が接触している部分と非接触の部分とが生じており、か
\る状態において、−引きのために加熱されたとき、予
め接触していた表向同士の融着が早く進んでこの結果、
素線間に空隙かとり残され、該空隙は、線引き時の高温
度によりその部分て膨張して空泡となる。
Before explaining the mechanism for preventing the generation of air bubbles based on the presence of intervening substances, I will briefly explain the mechanism of air bubble generation in the conventional method that does not allow the presence of intervening substances. Either the laminated wire is heated at one end in a state where it is tightly bent to the maximum, and the individual wires are not necessarily uniform in outer diameter, cross-sectional shape, straightness, etc., and there is a Due to slight variations, in the bundled state before heating wire drawing, there are parts where the front surfaces of adjacent strands are in contact with each other and parts where they are not, resulting in a wary state. When heated for pulling, the surfaces that had been in contact with each other rapidly fused together, resulting in
A void is left between the strands, and the void expands to form a void due to the high temperature during wire drawing.

これ薔こ対して、介在物質2が素線間に存在していると
次のような磯榴を乙より空泡の発生が防止されるものと
考えられる。
On the other hand, if the intervening substance 2 exists between the strands, it is thought that the following air bubbles are prevented from forming in the strands.

即ち、本発明において用いられる介在物質は線引きされ
つつある素線の間にあっては液体として存在する。
That is, the intervening substance used in the present invention exists as a liquid between the strands that are being drawn.

さて、素線の曲に液状の介在物質が介在すると該介在物
質は、素線同士の局部的な早期融着をある程度防止する
ほか、液体憂こ固有の潤滑作用や表面張力によるひきつ
け作用により、たとえ融着前に素線の局部的曲り等によ
りその平列整列性に異状があっても、融着時又はその前
段階において軟化した素線を平列に整列させるように1
9&能し、同時に素線間の間隙を充填する。
Now, when a liquid intervening substance is present in the curve of the strands, the intervening substance not only prevents local early fusion of the strands to some extent, but also has a lubricating effect inherent to the liquid and a attracting effect due to surface tension. Even if there is an abnormality in the parallel alignment due to local bending of the strands before fusion, the strands that have been softened at the time of fusion or in the previous stage are aligned in parallel.
9 & function, and at the same time fill the gaps between the strands.

以上の効果によって線引き過程憂こおいて素線間で空隙
の封鎖が生じず、而して空泡の発生が防止される。
Due to the above-mentioned effects, the voids between the strands are not blocked during the drawing process, and the generation of voids is thus prevented.

素線は、純石英ガラスのコアとドーパントを含む石英ガ
ラスのクラッドとからなるもの、ドーパントを含む石英
ガラスのコアと純石英ガラスのクラッドとからなるもの
あるいは、コア、クラッドとも1・−パントを含む石英
ガラスからなるもの等の石英ガラス系のものである。勿
論、各素線はクラッド層の外側に勺ボート層を有してい
てもよい。線引きされる前の素線は、外径1馴未満の細
いものであるが、外径数十μm〜数百μm、特に50μ
m〜800μm程度のものかJ内当である。
The wire may consist of a core of pure silica glass and a cladding of silica glass containing a dopant, a core of quartz glass containing a dopant and a cladding of pure silica glass, or a wire consisting of a core of quartz glass containing a dopant and a cladding of pure silica glass, or a wire with a 1-punto core and a cladding of pure silica glass. It is a quartz glass type material, such as one made of quartz glass containing quartz glass. Of course, each strand may have a boat layer on the outside of the cladding layer. The strands before being drawn are thin, with an outer diameter of less than 1 mm, but with an outer diameter of several tens of μm to several hundred μm, especially 50 μm.
If the diameter is about m to 800 μm, it is within J range.

本発明においては、まず、素線の間に介在物質を有する
素線束を作成するが、この束に含める中間体の本数は、
少なくとも1000本であるが、好ましくは、5,00
0〜50,000本程度が適当であり、線引炉が大きけ
れば、too 、ooo本以上の多数本としてもよい。
In the present invention, first, a wire bundle having an intervening substance between the wires is created, and the number of intermediates included in this bundle is as follows:
at least 1000, but preferably 5,000
Approximately 0 to 50,000 wires is suitable, and if the drawing furnace is large, the number may be more than 0 to 50,000 wires.

次に本発明において介在物質として用いられる物質、並
びに介在物を介在させる方法につき説明する。なお、素
線間に介在物質を介在させる前の段階憂こおいて、素線
の表面番こ本発明においては介在物質としては使用し得
ない制融点の不純物が(9着してあ一す、そのような不
純物を除去することなく介在物質を介在させると、上記
ない場合かあるので、本発明ICおいては介在工程に入
る前に、素線の各表面を光ファイバの製造において慣用
されている洗浄法、たとえば、超音波を作用させなから
フッ酸水溶液と蒸溜水とで洗浄する方法、等で洗浄する
ことか望ましい。
Next, the substance used as the intervening substance in the present invention and the method for intervening the intervening substance will be explained. Note that before intervening an intervening substance between the strands, impurities with a melting point that cannot be used as an intervening substance in the present invention are removed from the surface of the strands. If an intervening substance is interposed without removing such impurities, the above may not occur. Therefore, in the IC of the present invention, before entering the intervening step, each surface of the strand is treated with a method commonly used in the manufacture of optical fibers. It is desirable to use a conventional cleaning method, for example, a method of cleaning with a hydrofluoric acid aqueous solution and distilled water without applying ultrasonic waves.

本発明に用いる介在物質は、ガラス形成酸化物、ガラス
修飾酸化物まだは中間酸化物であって、かつ前記定義の
線引き温度において液体となりうるものである。
The intervening substance used in the present invention is a glass-forming oxide, a glass-modifying oxide, or an intermediate oxide, and is capable of becoming a liquid at the drawing temperature defined above.

前記1こおいてガラス形成酸化物とは、単独で安定なガ
ラスネットワークを形成しつるものであり、よく知られ
たザカリアセン(Zacharias”en)のガラス
形成条件を真足するものである(7(とえば、森谷太部
はか編「ガラス工学ハンドブック」、10版、朝食書店
、東京、1973年、5頁参照)。
In 1 above, the glass-forming oxide is one that can form a stable glass network by itself, and truly satisfies the well-known glass-forming conditions of Zacharias (7). For example, see "Glass Engineering Handbook" edited by Haka Moritani, 10th edition, Chokoku Shoten, Tokyo, 1973, p. 5).

一般にガラス形成酸化物における単結合の強さく酸化物
の解離エネルギーを配位数で割っだ値)は約80にca
e11上である。またがラス延飾酸化物とは、単独では
ガラス形成能力を有さないが、ガラスネットワークに混
入されたばあいに安定に存在し、ガラスの特性を変更し
うる物質である(前記交1獣の5〜6頁参照)。一般に
ガラス修飾酸化物番こおける単結合の強さは約10−6
0 kcaeテある。
Generally, the strength of single bonds in glass-forming oxides (the value calculated by dividing the dissociation energy of the oxide by the coordination number) is approximately 80 ca.
It is on e11. On the other hand, the lath-decorated oxide is a substance that does not have the ability to form glass by itself, but when mixed into the glass network, it exists stably and can change the properties of the glass. (See pages 5-6). Generally, the strength of single bonds in glass-modified oxides is approximately 10-6.
There are 0 kcae.

また中間酸化物とは、前記ガラス形成酸化物とガラス修
飾酸化物との中間的性質を有するものであり、その単結
合の強さは一般lこ約60〜80 kca/である(前
記文献の6頁参照)。
Further, the intermediate oxide has properties intermediate between the glass-forming oxide and the glass-modifying oxide, and the strength of its single bond is generally about 60 to 80 kca/1 (as described in the above literature). (See page 6).

本発明において介在物質としてガラス形成酸化物、ガラ
ス修飾酸化物または中間酸化物を用いる理由は、線引き
幅屓において、素線を構成する石英ガラスと比較して低
い溶融粘度を有し、かつ石英ガラスに対して良好なぬれ
性を示し、素線同士の融着を良好に行わしめる作用を有
するからである。
The reason for using a glass-forming oxide, a glass-modifying oxide, or an intermediate oxide as an intervening substance in the present invention is that it has a lower melt viscosity in the drawing width than quartz glass constituting the wire, and quartz glass This is because it exhibits good wettability to the wires and has the effect of favorably fusing the strands together.

上記酸化物のうちでも、周期律表@II族〜第V族の元
素の1陵化物は上記の観点から介在物質として好ましい
Among the above-mentioned oxides, compounds of elements belonging to groups II to V of the periodic table are preferable as intervening substances from the above viewpoint.

素線を構成するbiu□又はそれを主成分とする石英系
ガラスの溶融粘度は、その他の元素の寂化物の溶融粘度
と比較して格段に高い。換言すれば、線引き温度1こお
いて、上記のような酸化物からなる本発明の介在物質の
溶融粘度は、軟化変形の過程番こある素線の粘度と比較
して著しく低粘度であるので、この大きな粘度差により
液体として前記した整列作用を果す。線引き温ボイズの
粘度を有する介在物質か好ましい。介在物質の線引き温
度における粘度が過大であると、一般に、前述の潤滑効
果、表面張力によるひきつけ効果、あるいは空隙充填効
果などが乏しくなり、線引き時における素線の間での空
泡の発生を防止する機能が乏しくなる。介在物の低すぎ
゛る粘度は左程問題とはならないが、゛それでも空泡の
発生を防止する機能か乏しくなる傾向薔こある。なお、
5i02はガラス形成酸化物として知られているが、単
独では素線構成材料と同程度の^溶融粘度であるので、
 S40.の単独物のみは本発明における介在物質とし
て使用することができない。しかしながら、後記する通
り他の無機化合物との併用によって溶融粘度を低下させ
て用いることができる。
The melt viscosity of biu□, which constitutes the wire, or the quartz-based glass containing biu□ as a main component is much higher than the melt viscosity of silicides of other elements. In other words, at a drawing temperature of 1, the melt viscosity of the intervening substance of the present invention made of the above-mentioned oxide is significantly lower than the viscosity of the strand during the softening and deformation process. Due to this large viscosity difference, the above-mentioned alignment effect is achieved as a liquid. An intervening material having a viscosity of a wire drawing temperature void is preferred. If the viscosity of the intervening substance at the drawing temperature is excessive, the above-mentioned lubricating effect, attraction effect due to surface tension, or void filling effect will generally be poor, thereby preventing the generation of air bubbles between the strands during drawing. The ability to do so becomes scarce. Although the viscosity of inclusions that is too low is not as problematic as the one on the left, it still tends to have a poor ability to prevent the formation of voids. In addition,
5i02 is known as a glass-forming oxide, but when used alone, it has a melt viscosity comparable to that of the wire constituent material, so
S40. alone cannot be used as an intervening substance in the present invention. However, as described later, it can be used in combination with other inorganic compounds to lower the melt viscosity.

線引きされつつある素線の間隙は狭隘であり、介在物質
か蒸発する面積が小さいので、比較的低沸点のまたは揮
発性の物質でも線引き中液体状態で存在しつる。しかし
過度に低沸点のものや高揮発性のものは、線引き中に蒸
発して本発明の目的を達成することかできないので、本
発明に用いる介在物質としては沸点が1200℃以上も
しくはそれと同程度の低揮発性のものが好ましく用いら
れる。
Since the gap between the strands being drawn is narrow and the surface area for intervening substances to evaporate is small, even relatively low boiling point or volatile substances remain in a liquid state during drawing. However, substances with an excessively low boiling point or high volatility may evaporate during drawing, making it impossible to achieve the purpose of the present invention. Therefore, the intervening substance used in the present invention should have a boiling point of 1200°C or higher or the same level as that. Those with low volatility are preferably used.

本発明に用いる介在物質の好ましい例をあげると、ガラ
ス形成酸化物に属する、B、P、Ge、sbなどの元素
の酸化物、ガラス修飾酸化物にIQするBi、 Sn、
1gなどの元素の酸化物、中間酸化物に1萬する、’f
’i 、 Cd、 Pbなどの元素の酸化物があげられ
る。具体的(こはB2O3、P2O5、GeO3,5b
2U、、 Bi2O3,S n02. Ir2O3,’
f°iu□。
Preferred examples of intervening substances used in the present invention include oxides of elements such as B, P, Ge, and sb, which belong to glass-forming oxides, Bi, Sn, etc. that add IQ to glass-modified oxides,
10,000 in oxides and intermediate oxides of elements such as 1g, 'f
Examples include oxides of elements such as 'i, Cd, and Pb. Specific (This is B2O3, P2O5, GeO3, 5b
2U, Bi2O3,S n02. Ir2O3,'
f°iu□.

しdO11′bOなどである。これら酸化物は単独で使
用してもよく、2種以上を混合して1吏用してもよい。
and dO11'bO. These oxides may be used alone or in combination of two or more.

とくに好ましいものはt5ρ3.1)bOl”120a
、5b2OB、T i02、G e 02である。多く
の無機物質はSiu。の浴融粘度を低下せしめる作用が
ある。したかつて、Sr 02は、前記した通り、単独
では用いられないが、S r 02以外の無機物質の1
種または2種以上との混合物(以下混合!介在物質と称
す)は、線引き温度馨こおける溶融粘度か10ポイズ以
下の液状介在物として用いうるし、またこれは好ましい
介在物質でもある。
Particularly preferred is t5ρ3.1)bOl”120a
, 5b2OB, T i02, and G e 02. Many inorganic substances are Siu. It has the effect of lowering the bath melt viscosity. As mentioned above, Sr 02 is not used alone, but it can be used as an inorganic material other than Sr 02.
A species or a mixture of two or more species (hereinafter referred to as a mixed intervening substance) can be used as a liquid inclusion having a melt viscosity of 10 poise or less at the drawing temperature, and is also a preferred intervening substance.

さi 02と混合して用いられる無機物質としては、た
とえば前記文献において定義されたガラス形成酸化物、
ガラス修飾酸化物または中間酸化物憂こ嘱する酸化物が
あり−られ、具体的1こはb、1)、Ge、Sb%Bi
、 Sn、 Te、 ’1:’i、 Cd、 Pb、 
Ag、 Maなどの元素ノ111化物、15208、P
2O5、Gem2.5b208、B I 20 a、S
nO2、Te2o3、T r 02、CdO,P bo
 、A I、Ot、BaOなどである。他の無機物質の
好ましい例としてフッ素かあけられる。Sr 021こ
加えられる前3〜1000重量部、好ましくは10〜5
00重量部である。
Examples of inorganic substances used in admixture with i02 include, for example, the glass-forming oxides defined in the above-mentioned document;
Glass-modified oxides or intermediate oxides include oxides such as b, 1), Ge, Sb%Bi, etc.
, Sn, Te, '1:'i, Cd, Pb,
111 compounds of elements such as Ag and Ma, 15208, P
2O5, Gem2.5b208, B I 20 a, S
nO2, Te2o3, T r 02, CdO, P bo
, AI, Ot, BaO, etc. A preferred example of other inorganic substances is fluorine. 3 to 1000 parts by weight, preferably 10 to 5 parts by weight before adding Sr021
00 parts by weight.

本発明において好ましく用いられる混合介在物質ハ、B
2O8、′110゜、P2O6、Ge1、B12o8、
Ae2o8及びPbOからなる群から選ばれた少なくと
も1橿とSiO3との混合物、更にはB2O3,1’ 
+ 02、Bi20B、及びPbOからなる群から選ば
れた少なくとも1Nと5iu2との混合物、特に5iu
2と5i02 + 00重を部あたり5〜500重量部
の82()B ト2−100 重ill (1,) ’
rj(J2 トカラナル混合物である。これら混合介在
物質は、線引き温度において素線lこ対する。ぬれ性、
共存性など憂こおいて優れ、そのため素線同士を一層均
一に融着果合せしめ、しかも線引き過程において素線の
断面形状が異形化する度合が小さくなり、その結果、画
像分解能、画像伝送能力か一層優れたマルチプルファイ
バが得られる。
Mixed intervening substance preferably used in the present invention C, B
2O8, '110°, P2O6, Ge1, B12o8,
A mixture of at least one member selected from the group consisting of Ae2o8 and PbO and SiO3, furthermore B2O3,1'
+02, Bi20B, and a mixture of 5iu2 and at least 1N selected from the group consisting of PbO, especially 5iu
2 and 5i02 + 00 weight per part 5-500 parts by weight of 82()B t2-100 weight ill (1,)'
rj (J2) is a tocaranal mixture. These mixed intervening substances are mixed with the strand l at the drawing temperature. Wettability,
It has excellent coexistence, and as a result, the wires can be fused together more uniformly, and the cross-sectional shape of the wires is less likely to change shape during the drawing process, resulting in improved image resolution and image transmission ability. Or even better multiple fibers can be obtained.

本発明においては、線引き前の段階においては、介在物
質は粉末状などの固体状態であってもよい。粉末状の介
在物質を使用して素煉間に介在させるばあいは、該粉末
の堆積物中に所定本数の素線を沈め、該堆積物の内で該
素線を束ねる方法番こよってよく、あるいは予め束ねら
れた素線束の間隙に概束の一端より微粉末の介在物質を
適当なキャリヤガス、たとえばN、0、空気などととも
に強制的に流し込む方法などで行う。
In the present invention, the intervening substance may be in a solid state such as powder at a stage before drawing. When using a powdered intervening substance to intervene between the wires, the most preferred method is to sink a predetermined number of wires into a deposit of the powder and bundle the wires within the deposit. Alternatively, a fine powder intervening substance is forcibly poured into the gap between pre-bundled wire bundles from one end of the wire bundle together with a suitable carrier gas such as N, 0, air, etc.

また固体状介在物質は、適当な溶剤の溶液または分散液
としであるいは加熱して溶融状態として用いてもよい。
Further, the solid intervening substance may be used as a solution or dispersion in a suitable solvent or in a molten state by heating.

そのばあい、素線束を溶液または分散液中もしくは溶融
物中に浸漬する、あるいは素線束の一端から溶液または
分散液もしくは溶融物を流し込むなどの方法で介在させ
ることができる。
In that case, the interposition can be carried out by immersing the wire bundle in a solution or dispersion or in a melt, or by pouring the solution, dispersion, or melt into one end of the wire bundle.

本発明ζご2いては、素線の間に介在させる介在物質の
楡は少量でよく、該素線の表面に付着した状態における
介在物質の墳を該素線の断面積1こ対する面積化で表わ
せば、たとえば素線の断面積の0.1〜1%程度、で充
分である。介在物質を溶液または分散液の形態で使用し
たときは、勝引き工程に入る前に素線束に加熱処理など
を施して、溶剤や分散剤を除去するとよい。
In accordance with the second aspect of the present invention, only a small amount of intervening material is required between the wires, and the area of the intervening material attached to the surface of the wire is calculated as follows: For example, about 0.1 to 1% of the cross-sectional area of the wire is sufficient. When the intervening substance is used in the form of a solution or dispersion, it is preferable to heat the wire bundle to remove the solvent and dispersant before entering the winning process.

素線の間に介在物質を介在させる好ましい方法は介在物
質の前駆体を用いる方法である。ここにおいて前駆体と
は分解、酸化、あるいはその他の化学反応により、線引
き時またはその前段階における加熱により素線の間にお
いて前記したことき介在物質を生成する物質のことであ
って、たとえば介在物質を構成する元素の酸、核酸の塩
、または該元素の炭酸塩、硝酸塩、硫酸塩、ハロゲン化
物、水酸化物、有機酸塩、キレート化合物などの多くが
前駆体として用いることかできる。たとえば介在物質が
B2O3であるはアイ、ホウ素の酸す々わちHBBOB
やホウ素の塩化物B CeBなどは前駆体として用いる
ことかできる。1(3B08は約190℃に加熱される
と分解してl3208を生成し、BCe8は0゜ガスの
共存のもとて約700℃程度に加熱すると13シeaと
0゜とが反応してM 2Ua lを生成する。別の例と
して、介在物質かSiO3ととB2O3との混合介在物
質であるときは、S+ CB4とBCg8を前駆体とし
て用い、該前駆体を02共存下で約800℃程度に加熱
すると、SiO3と)08の混合物を生成する。
A preferred method for interposing an intervening substance between the strands is a method using a precursor of the intervening substance. The term "precursor" as used herein refers to a substance that generates the above-mentioned intervening substances between the strands by decomposition, oxidation, or other chemical reactions, and by heating during or in the preliminary stage of drawing, such as intervening substances. Many salts of acids and nucleic acids of the elements constituting the element, or carbonates, nitrates, sulfates, halides, hydroxides, organic acid salts, and chelate compounds of the elements can be used as precursors. For example, if the intervening substance is B2O3, then boron acid is HBBOB.
, boron chloride B, CeB, etc. can be used as a precursor. 1 (3B08 decomposes when heated to about 190°C to produce 13208, and when BCe8 is heated to about 700°C in the presence of 0° gas, 13 seaa and 0° react to form M As another example, when the intervening material is a mixed intervening material of SiO3 and B2O3, S+ CB4 and BCg8 are used as precursors, and the precursors are heated at about 800°C in the coexistence of 02. When heated to , a mixture of SiO3 and )08 is produced.

上記0外の具体的な前駆体としては、BHgなど(7)
 ホ7 ン、Bzイ2F 、BdF2、BF3、B1−
12CI 、 BHC12、BHg1などのハロゲン化
ポラン、B2H6などのシボシン、 B(UCt(a)
3などのアルコキン化ホウ素、’T’+F4 、 ’1
.’+Ce4、TiBr4’z 、!l” 0) ハO
ケン化f !I ン、k!に−48などのホスフィン、
PH2F 、PHF2、PF3、IIH2Ce、PHC
e2、PCl3、PH213r 、 1’H13r2f
z トノハaゲン化ホスフィン POCIB、1’0B
r3などのオキシハロゲン化リン、<pノ”、rc42
)B 、(i)I”Jce2)4、(i’Ncp2)s
 、(t’l’Jce2)6 、 (PNC12)7、
などの塩化ホスホニトリル、 GeM、sなどのゲルマ
ン、GeHB F 、Get(2F2、Get(Fa、
Ge F4、GeHa Ce 、 Getl 2(、、
i12、GeM(−e B、Ge Ce4、GeHf3
r 、GeHBr8、GeHBr8、GeBr4などの
ハロゲン化ゲルマン、あるいはAeCe8.5bce8
.5bCe5、 CdCe2、’rlC1、B + G
 12.81 シB a、5nCe2.5nCe4、P
bCe2などのハロゲン化物が好ましく用いられる。
Specific precursors other than the above 0 include BHg (7)
7 Hon, Bz-2F, BdF2, BF3, B1-
12CI, halogenated porans such as BHC12, BHg1, cibocines such as B2H6, B(UCt(a)
Alcokylated boron such as 3, 'T' + F4, '1
.. '+Ce4, TiBr4'z,! l” 0) HaO
Saponification f! I n, k! phosphine such as -48,
PH2F, PHF2, PF3, IIH2Ce, PHC
e2, PCl3, PH213r, 1'H13r2f
z Tonohalogenated phosphine POCIB, 1'0B
Phosphorus oxyhalide such as r3, <pno”, rc42
)B , (i)I”Jce2)4, (i'Ncp2)s
, (t'l'Jce2)6, (PNC12)7,
Phosphonitrile chloride such as GeM, germane such as GeHB F, Get(2F2, Get(Fa,
GeF4, GeHaCe, Getl2(,,
i12, GeM(-e B, Ge Ce4, GeHf3
r, halogenated germane such as GeHBr8, GeHBr8, GeBr4, or AeCe8.5bce8
.. 5bCe5, CdCe2, 'rlC1, B + G
12.81 CiB a, 5nCe2.5nCe4, P
A halide such as bCe2 is preferably used.

S ’ U2の前記以外の前駆体としては、たとえばS
 + H4などのシラン、5it(8F、 SiH2F
2.5iHF8.5ip4.5iH8tr:6 、5i
H2C12,5ince8.5iH8Br 。
Examples of precursors of S'U2 other than those mentioned above include, for example, S
+ Silane such as H4, 5it (8F, SiH2F
2.5iHF8.5ip4.5iH8tr:6,5i
H2C12,5ince8.5iH8Br.

SiH1(r  5iHBr  5iBr  SiHI
 、5it−1212などの22’       8’
41   3ハロゲン化シランなどかあけられる。なか
でもパーハロゲン化物、とりわけS iC%が好ましい
SiH1(r 5iHBr 5iBr SiHI
, 22'8' such as 5it-1212
41 3 Halogenated silane etc. can be used. Among these, perhalides, particularly SiC%, are preferred.

上記の前、盟休は、酸素元素たとえば酸素ガスの共存下
で高温度、たとえば500℃以上、特に800℃以上に
加熱されると介在物質たる酸化物を生成する。
Before the above, when the lily pad is heated to a high temperature, for example, 500° C. or higher, particularly 800° C. or higher, in the coexistence of an oxygen element, such as oxygen gas, it forms an oxide as an intervening substance.

一般1こ、前駆体の多くは、介在物質自体と比較して低
温度において液体、気体のV態にあり、あるいは水、そ
の他の溶剤に溶解した溶液をえやすい。気体、液体ある
いは溶液などの液体の形態で未載の間に介在物質を介在
させうることは、粉末を用いるばあいと比較して各素線
の表面に介在物質を均一に付着させることができる。
General 1. Many of the precursors are in the V state of liquid or gas at a lower temperature than the intervening substance itself, or are easily obtained as a solution dissolved in water or other solvents. The fact that the intervening substance can be present in the form of a liquid such as a gas, liquid, or solution between unloaded wires allows the intervening substance to adhere uniformly to the surface of each strand compared to when powder is used. .

谷素線の表面への介在物質の均一(4着は本発明の目的
を達成するうえで効果があるので、本発明ζこおいては
、介在物質の介在手段として容易薔こ液体となしうる前
駆体の使用はきわめて好ましい。
Uniformity of the intervening substance on the surface of the valley wire (4) is effective in achieving the object of the present invention, so in the present invention, it is possible to easily use the liquid as a means for intervening the intervening substance. The use of precursors is highly preferred.

気体状の前駆体を用いるときは、素線の束の温度を、該
前駆体の沸点以下の低温度に保持しておいて、前駆体ガ
スを、あるいは前駆体ガスをチ・ソ素、酸素、空気など
のキャリャガスと一緒に前記束の一端から連続的に素線
の間隙に流して、前駆体ガフを未載の表面上に縦組させ
るとよい。あるいは逆に、素線の束を前駆体ガスが反応
して介在物aを生成する温度に保持しておき、前躯体ガ
スを、必要醗こ応して介在物質の生成に必要な反応を生
せしめるだめのガスと一緒に流し、素線表面上を通過す
る間に反応して介在物質を生成させるとともに生成した
介在物質を素線表面上ζこ沈着するようにしてもよい。
When using a gaseous precursor, the temperature of the wire bundle is maintained at a low temperature below the boiling point of the precursor, and the precursor gas or precursor gas is The precursor gaff may be vertically assembled on the unloaded surface by flowing the precursor gaff continuously from one end of the bundle into the gap between the strands together with a carrier gas such as air. Or, conversely, the bundle of strands is held at a temperature at which the precursor gas reacts to produce inclusions a, and the precursor gas is used to generate the reactions necessary to generate the inclusions as needed. It may also be made to flow together with a gas in a reservoir to react and generate an intervening substance while passing over the surface of the wire, and to deposit the generated intervening substance on the surface of the wire.

なお、前駆体としては、キャリャガス、特にば素ガスと
とも薔こガス状で流しつる、換言すれば酸化物を生成せ
しめる温度たとえば800℃〜1500℃においてキャ
リヤガス+oo容111部に対して約01〜200容I
L好ましくは約05〜100容帽部、なかんづく約1〜
50容着部の割合で混合しつるものか好ましい。1だ前
駆体とキャリヤガスとの混合ガスを低温で移送しうると
、混合ガスの移送管の保温か容易になるので、かかる観
点からは低温度で充分な蒸気圧を有するもの、具体的に
は300℃で少なくとも10 tmnH9の蒸気圧を有
する物質が好ましい。
In addition, the precursor is about 0.01 parts per 111 parts of the carrier gas +oo volume at a temperature such as 800°C to 1500°C that flows together with the carrier gas, particularly the boron gas, in the form of a gaseous gas, in other words, produces oxides. ~200 volume I
L is preferably about 05 to 100, especially about 1 to
Preferably, the mixture is mixed at a ratio of 50 parts. First, if a mixed gas of a precursor and a carrier gas can be transferred at a low temperature, it will be easier to maintain the temperature of the mixed gas transfer pipe. Preferably, the material has a vapor pressure of at least 10 tmnH9 at 300°C.

第2図は、前記の前駆体ガスを用い、これを反応させて
生じた介在物質を素線の表面に沈着さる方法を具体的t
C睨説明る図面である。
Figure 2 shows a specific method for depositing the intervening substance produced by reacting the precursor gas on the surface of the strand.
This is a drawing to explain C.

第2図(こおいて、多数本の素線(1a)からな断m1
−LJ形の石英ガラス管などからなる反応管(6)のな
かに収容される。(6a)は反応管(6)の内側壁に設
けられた突起であって、該突起(6a)により素線束i
l+は反応管ものlよは中心に保持される。ダミーガラ
ス管(5)か取付けられた側とは反対側の束+l+の端
部こガス供給管(7)を、束(1)が該供給管(70こ
きつらり挿入する状態にて取付け、東illか挿入され
た供給管(7)の端部はフッ紫樹脂製などの耐熱ンーリ
ング(8)を介して反応管(61に気密に固定される。
Figure 2 (here, a section m1 from a large number of strands (1a)
- It is housed in a reaction tube (6) made of an LJ-shaped quartz glass tube or the like. (6a) is a protrusion provided on the inner wall of the reaction tube (6), and the protrusion (6a) allows the wire bundle i to
l+ is held at the center of the reaction tube. Attach the gas supply pipe (7) to the end of the bundle +l+ on the opposite side to the side where the dummy glass tube (5) is attached, with the bundle (1) firmly inserted into the supply pipe (70), The end of the supply tube (7) into which the tube was inserted is airtightly fixed to the reaction tube (61) via a heat-resistant ring (8) made of fluorocarbon resin or the like.

ガス供給管(7)を取付けた反応管(61の反対側には
、フッ素樹脂製などの耐熱性栓(10)を介して排気室
(9)が反応管(6)と気密番ご取付けられる。供給管
(7)と排気管(9)とを回転軸として反rc+ ’W
 +61およびその内部に設置した束fl+を数ないし
数十r、p、m、程度の速度で回転させる(回転させな
くてもよい)とともに0反16管(61の外部より反応
管(61と平行に往復移動するバーナー(川により束t
ll k介在物質の生成する反応を生ぜしめるに必要な
温度ζこ加熱する。バーナー(11)に代えて固定式の
直気炉など、他の加熱手段によってもよいことは勿論で
ある。前記の加熱温度は、使用する前駆体ガスの反応温
度により異なるか、充分に酸化物を生成させるために、
少なくとも約500℃、特に少lくとも約800℃とす
ることが好ましい。なお、該加熱温度か高過ぎると生成
した酸化物の蒸発や素−〇変形などが生じるのて170
0℃lンス下、特に1500℃以下とすることが好まし
い。一般に、最も叶ましい加熱温度は900〜1200
℃である。
On the opposite side of the reaction tube (61) to which the gas supply pipe (7) is attached, an exhaust chamber (9) is attached to the reaction tube (6) and an airtight plug via a heat-resistant stopper (10) made of fluororesin or the like. .Reverse rc+'W with the supply pipe (7) and exhaust pipe (9) as rotation axes.
+61 and the bundle fl+ installed inside it are rotated (does not need to be rotated) at a speed of several to several tens of r, p, m, and the reaction tube (parallel to 61) is A burner that moves back and forth to
Heating is performed to a temperature ζ necessary to cause a reaction that produces intervening substances. It goes without saying that the burner (11) may be replaced by other heating means such as a fixed direct-air furnace. The heating temperature may vary depending on the reaction temperature of the precursor gas used, or may vary depending on the reaction temperature of the precursor gas used.
Preferably it is at least about 500°C, especially at least about 800°C. Note that if the heating temperature is too high, evaporation of the generated oxide and deformation of the element may occur.
Preferably, the temperature is 0°C or lower, particularly 1500°C or lower. Generally, the most suitable heating temperature is 900-1200
It is ℃.

かくして供給管+51を通じて前記の前駆体とキャリヤ
ガスとの混合ガスを反応管(611こ供給すると、混合
ガスの大部分は束+11を構成する個4の素線間の間隙
を通過し、この間部こ移動バーナー(11)によって高
温度に保持された部分1こおいて反応して介在物質を生
成物などはダミーガラス管(6)をiM して排気管(
9)より外WHs tこ排気する。
Thus, when a mixed gas of the precursor and carrier gas is supplied to the reaction tube (611) through the supply pipe +51, most of the mixed gas passes through the gap between the four wires forming the bundle +11. The reaction occurs in the part 1 kept at a high temperature by the moving burner (11), and the intervening substances and products are removed through the dummy glass tube (6) and the exhaust pipe (
9) Exhaust the air from the outside.

前駆体をハ」いる場合、前駆体ガスとキャリヤガスとの
混合ガスを50〜2000rrLe/分程度の流量で1
0分〜10時間程度供給すると、充分な置の介在物質を
素線表面に沈着させることかできる。
When using a precursor gas, a mixed gas of the precursor gas and carrier gas is added at a flow rate of about 50 to 2000 rrLe/min.
By supplying for about 0 minutes to 10 hours, a sufficient amount of the intervening substance can be deposited on the surface of the wire.

一般に、必要な増の介在物質を急速に沈着させるよりも
少坩づつ徐4に沈着させる方が沈着層厚か均一となるの
で上記混合ガスを1000m e /分未満の低流用で
30分〜5時間程度供給することか好ましい。
In general, it is better to gradually deposit a required amount of intervening substances little by little than to deposit them rapidly, so that the deposited layer thickness will be more uniform. It is preferable to supply it for about an hour.

空泡のない画性能のマルチプルファイバを一層安定に生
産する観点から、素線の表面にまず低溶融程度を有する
介在物質を沈着し、その上(こ前記した通り素線の構成
材料に対して共存性の優れたS+02を含む混合介在物
質の層を沈着させる2段階処理とすることか好ましい。
In order to more stably produce multiple fibers with no voids and image performance, we first deposit an intervening substance with a low melting degree on the surface of the strand, and then (as mentioned above) It is preferable to use a two-step process in which a layer of a mixed intervening material containing S+02 with excellent coexistence is deposited.

上記の低溶融粘度を有する介在物質として好ましいもの
は線引き温度における粘度か10ポイズ以下ノモノ、タ
トエばB2O3、Sb2θ8、■/20,3.8120
Bなどである。なお混合介在物質層の上1こ上記第1段
階と同様の低溶融粘度の介在物質層を沈着させる3段階
処理とするもよい。
Preferred intervening substances having a low melt viscosity are those having a viscosity at the drawing temperature of 10 poise or less, Tatoe, B2O3, Sb2θ8, ■/20, 3.8120
B etc. Note that a three-step process may be performed in which an intervening material layer having a low melt viscosity similar to that in the first step is deposited on top of the mixed intervening material layer.

第1段階、第6段階(こおける介在物質の付着端は素線
の断面積に対する面積比で表わせば素線の断面積に対し
て001〜01%程度で充分であり、一方第2段階にお
ける混合介在物質のmは上記と同じ比で表わして01〜
1%程度である。
In the 1st and 6th stages (expressed as an area ratio to the cross-sectional area of the wire, it is sufficient that the adhesion end of the intervening substance is about 0.001 to 0.1% of the cross-sectional area of the wire; on the other hand, in the second stage m of the mixed intervening substance is expressed in the same ratio as above, and is 01~
It is about 1%.

本発明蚤こおいては、前記の介在物質を介在させる複数
の方法を組み合わせてもよい。好ましい組み合わせは、
F481303などの前駆体の水溶液を用いる方法と前
駆体ガスとキャリヤガスとのl昆合カス(タトえばS 
1ce4+ BCe8+02)を用いる方法との併用で
ある。かかる異種の介在方法の併用において、前駆体が
流体であるばあいは、各介在物質の介在方法の適用順序
は任意であってよく、また交互に反復適用してもよい。
In the flea cage of the present invention, a plurality of methods for intervening the intervening substance described above may be combined. The preferred combination is
A method using an aqueous solution of a precursor such as F481303 and a mixture of a precursor gas and a carrier gas (S
1ce4+ BCe8+02). In the combination of such different types of intervening methods, if the precursor is a fluid, the intervening methods for each intervening substance may be applied in any order, or may be applied alternately and repeatedly.

本発明lこおいて用いる介在物質の叫は少量であるので
、線引き後融着した素線の間に残存してもマルチプルフ
ァイバの画像伝送特性に、実捺上悪影響を及はすことは
ない。
Since the amount of the intervening substance used in the present invention is small, even if it remains between the fused strands after drawing, it will not adversely affect the image transmission characteristics of the multiple fiber in actual printing. .

本発明に用いる介在物質は、一般に素線中の光ファイバ
のコアを構成するガラス材料と屈折率を異にするし13
.Fを含む介在物質を除き、介在物質の屈折率はSiO
2のそれより大きい。屈折率かSiO□のそれよりも大
きい介在物質が線引き後もある程度の厚さで素線の界面
に残存するときは、介在物賞層は光学的に好昔しい効果
を葵する。たとえば、光ファイバの勺ボート層上に石英
ガラスより屈折率の大きい介在層か残存するときは、該
残存層が遮光層として働く。
The intervening substance used in the present invention generally has a refractive index different from that of the glass material constituting the core of the optical fiber in the strand.
.. Except for the intervening material containing F, the refractive index of the intervening material is SiO
It is larger than that of 2. When an intervening material whose refractive index is higher than that of SiO□ remains at the interface of the strand with a certain thickness even after drawing, the inclusion layer exhibits an optically favorable effect. For example, when an intervening layer having a higher refractive index than quartz glass remains on the optical fiber layer, the remaining layer acts as a light-shielding layer.

本発明においては、介在物質中に光吸収性物質を含有さ
せるのか好ましく、かくすることによってマルチプルフ
ァイバ中の個々の光素脚より漏洩せる光信号があっても
、これを吸収し、隣接する光未載中(こ入り込むのが防
止され・る。
In the present invention, it is preferable to include a light-absorbing substance in the intervening substance, so that even if there is an optical signal leaking from each optical element leg in the multiple fiber, it is absorbed and the adjacent optical fiber is absorbed. Unloaded (this will prevent it from entering).

7J′)かる光吸収性物質の例としては、波長(004
μm〜07μmの可視領域憂こおいて特性吸収ヲ不す物
質、たトエばFe、Ni、(0、Mn、Cr。
7J') Examples of such light-absorbing substances include wavelengths (004
Substances that exhibit no characteristic absorption in the visible range from μm to 0.7 μm include Fe, Ni, (0, Mn, and Cr).

Cuなどの元素を含む物質、たとえばそれらの酸化物が
あげられる。光吸収性物質は介在物質中に0.001頂
量慢程度存在せしめるだけで光分な光吸収効果を示す。
Examples include substances containing elements such as Cu, such as oxides thereof. The light-absorbing substance exhibits a significant light-absorbing effect even if it is present in the intervening substance in an amount of about 0.001.

前日己のどとき各棟の方法で介在物質を介在させた素線
束illは、反応管(61よりとり出して、あるいは反
応吉が石英ガラスからなるときは、反応管(6)1こ納
められたまま、反応管ごと線引き工程に付される。この
−引きは、石英ガラス系光ファイバの製造におりる母材
の線引と同様の方法温度条件で行うことかできる。即ち
、上記素線又は該束を納めた反応管の一端を1900〜
2200℃の温度憂こ加熱して、引きのばせばよい。
The bundle of strands with intervening substances interposed by the method of each building was taken out from the reaction tube (61), or when the reaction tube was made of quartz glass, it was placed in one reaction tube (6). The whole reaction tube is then subjected to a drawing step. This drawing can be carried out under the same method and temperature conditions as the drawing of the base material in the production of silica glass optical fibers. That is, the above-mentioned wire or One end of the reaction tube containing the bundle was heated to 1900 ~
All you have to do is heat it to 2200 degrees Celsius and stretch it out.

反応管こと線引きしたときは、互に融着した多数束の素
線の外周に石英ガラスのスキン層を有するマルチプルフ
ァイバが得られる。線引きされたマルチプルファイバの
外径は0.5〜5mm程度、そこに含まれる各素線の外
径は10〜50μm程度とするのが適当である。
When the reaction tube is drawn, multiple fibers having a skin layer of quartz glass on the outer periphery of multiple bundles of wires fused together are obtained. It is appropriate that the outer diameter of the drawn multiple fiber is about 0.5 to 5 mm, and the outer diameter of each strand contained therein is about 10 to 50 μm.

線引き温度か低いと石英系ガラスの溶融粘度か^くて素
線同士の良好な融着が阻害され、一方線引き温度が高す
ぎると石英ガラスの蒸発、昇華か著しくなるので、線引
きは1950〜2100℃程度の範囲で行うのが好まし
い。
If the drawing temperature is too low, the melt viscosity of the silica glass will be too high, which will inhibit good fusion between the wires, while if the drawing temperature is too high, the evaporation or sublimation of the quartz glass will be significant. It is preferable to carry out the heating in a range of approximately ℃.

介在物質を介在させる工程から、線引き工程に移る間に
、素線の表面番こ液体状で付着していた介在物質が固化
することがあっても別設さしつかえない。
During the transition from the step of intervening the intervening material to the wire drawing step, even if the intervening material adhering to the surface of the strand in a liquid state solidifies, there is no problem with providing it separately.

溶液や溶融状態の前駆体を用いたばあい、あるいはガス
状の前駆体を用いたばあいであって、介在物質が線引き
前、素線の表面に未だ前駆体の形で付着されているとき
は、線引きする前に、予め素線束を商温度に加熱するな
どして、前駆体に必要な反応を起こさせて介在物質を生
成させておくのが好ましい。
When a solution or molten precursor is used, or when a gaseous precursor is used, and the intervening substance is still attached to the surface of the wire in the form of a precursor before drawing. It is preferable to heat the wire bundle to a commercial temperature in advance to cause a necessary reaction in the precursor to generate an intervening substance before drawing.

発明を実施するだめの最良の形態 つぎに実施例および比較例をあげて本発明の方法をより
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the method of the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1〜12、比較例1 純石英ガラスからなる外径300μmのコア部の外側に
B2O3とFlこてドープされた石英ガラスからなる厚
さ55μmのクラッド層とさらにその上に厘さ15μ汎
の石英ガラス市ポート層を有する外径400μm、長さ
400+の素線8000本を20容置チのフッ飲水溶液
中で、ついで蒸溜水中でそれぞれ超音波を作用させて洗
浄し、蒸溜水中で束ねた。ついでその素線束を内径48
IIII11、外径51鵡、長さ800Iの合成石英パ
イプ中のほぼ中間に収納してパイプの一端を閉じ、他端
から真空引きしつつ素線束の両端を該パイプ壁と融着さ
せ、そのあと閉じた一端を再び開口した。かくして得た
素線束入りの合成石英パイプを1000℃に保持した電
気炉中Iこ1表に示す1段〜5段階の処理を行った。な
お比較例1の場合は、02ガスのみを供給した。
Examples 1 to 12, Comparative Example 1 A cladding layer with a thickness of 55 μm made of quartz glass doped with B2O3 and Fl on the outside of a core portion made of pure quartz glass with an outer diameter of 300 μm, and a cladding layer with a thickness of 15 μm on top of the cladding layer made of quartz glass doped with B2O3 and Fl. 8,000 wires with an outer diameter of 400 μm and a length of 400+, each having a quartz glass port layer, were washed in 20 volumes of fluoridated water solution and then in distilled water using ultrasonic waves, and then bundled in distilled water. Ta. Then, the wire bundle was made into an inner diameter of 48
III11, housed approximately in the middle of a synthetic quartz pipe with an outer diameter of 51 mm and a length of 800 mm, close one end of the pipe, and while drawing a vacuum from the other end, both ends of the wire bundle are fused to the wall of the pipe, and then The closed end was opened again. The synthetic quartz pipe containing the wire bundle thus obtained was subjected to the 1st to 5th stages of treatment shown in Table 1 in an electric furnace maintained at 1000°C. In the case of Comparative Example 1, only 02 gas was supplied.

このあと、合成石英パイプこと素a東を2000℃で線
引きして外径1.4膿、光ファイバeaooo本のマル
チプルファイバを得た。このマルチプルファイバの断面
を倍率50倍の光学顕微鏡で検査したところ、融着した
素線間に比較例1の場合は、極めて多数の空泡が残存し
たか、実施例1〜12の場合は、いずれも、残存空泡は
極く少量か又は全く存在しなかった。
After this, a synthetic quartz pipe, also known as Soto, was drawn at 2000° C. to obtain a multiple fiber with an outer diameter of 1.4 mm and eaooo optical fibers. When the cross section of this multiple fiber was inspected using an optical microscope with a magnification of 50 times, it was found that a very large number of air bubbles remained between the fused strands in the case of Comparative Example 1, and in the case of Examples 1 to 12. In all cases, there were very few or no remaining voids.

実施例13.14 GeL)にてドープされた純石英ガラスからなる外径2
0011mのコアの外側に純石英ガラスの)らなるj享
さ4071mのクラッド層を有する外径280 pm、
長さ50側の素線12 、000本につき、実施例1と
同様の処理(実姉例13)又は実施例8と同様の処理(
実施例14)を行ったの52000℃で鞄引きして素線
数12,000本のマルチプルファイバを得り。
Example 13.14 Outer diameter 2 made of pure silica glass doped with GeL
An outer diameter of 280 pm, with a 4071 m thick cladding layer made of pure silica glass on the outside of a 0.0011 m core;
The 12,000 strands on the length 50 side were subjected to the same treatment as in Example 1 (Sister Example 13) or the same treatment as in Example 8 (
Example 14) was carried out and a multiple fiber with 12,000 strands was obtained by bag drawing at 52,000°C.

実施例15 実施例1の前駆体ガス処理に代って、素線束を内蔵した
合成石英パイプをまること90°C+こ保持された20
重重装−ホウ酸並び(こ200ppmのCo(+N08
)、とを溶解せる水浴液(こ浸漬し、次いて該水浴液か
ら引上げた合成石英パイプを1000℃Iこ保持した電
気炉中に設置して素線表面fこ13□08とCoOの混
合物を生成せしめた点のみ実用例1と異る外径1.4間
のマルチプルファイバの製造を行った。
Example 15 Instead of the precursor gas treatment in Example 1, a synthetic quartz pipe containing a bundle of strands was kept at 90°C for 20 days.
Heavy equipment - Boric acid lined up (200 ppm Co (+N08
), and a water bath solution in which the synthetic quartz pipe was immersed and then pulled up from the water bath solution, and placed in an electric furnace maintained at 1000°C to form a mixture of 13□08 and CoO on the surface of the wire. A multiple fiber with an outer diameter of 1.4 mm was manufactured, differing from Practical Example 1 only in that it produced .

実施例13〜15て製造した各マルチプルファイバの助
面を倍率50倍の光学顕微鏡(こて検査したところいず
れの場合も融着した素線の界面に空泡の発生はみられな
かった。
When the front surface of each of the multiple fibers produced in Examples 13 to 15 was inspected using an optical microscope (with a trowel) at a magnification of 50 times, no air bubbles were observed at the interface of the fused strands in any case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の詳細な説明図であって、第1図にお
いて1aは光フアイバ素線、2は介在物質、3は線引き
のだめの加熱手段であり、第2図は、光フアイバ素線の
束の間隙に介在物質を介在させる方法の一例の説明図で
あって、1は、上記素線の束、6は反応管、11はバー
ナー、7は介在物質生成の原料となるガスを反応管6内
に供給するだめの管である。 特許出願人 大日日本電線株式会社 代表者代表取締役 青山幸雄 −3:
FIG. 1 is a detailed explanatory diagram of the present invention, in which 1a is an optical fiber element, 2 is an intervening substance, 3 is a heating means for drawing the wire, and FIG. 2 is a diagram showing the optical fiber element. 1 is an explanatory diagram of an example of a method for interposing an intervening substance in the gap between a bundle of wires, in which 1 is a bundle of the wires, 6 is a reaction tube, 11 is a burner, and 7 is a method for reacting a gas that is a raw material for generating an intervening substance. This is a reservoir tube for feeding into the tube 6. Patent applicant: Dainichi Nippon Electric Cable Co., Ltd. Representative Director Yukio Aoyama-3:

Claims (1)

【特許請求の範囲】[Claims] 外径S mrn 未謂の石英ガラス系光フアイバ素線を
少なくとも1000本束ね、核素線の間に、線引き温度
(こおいて液状の介在物質が介在する状態のもとで、前
記素線の束を線引きすることからなり、前記介在物質が
ガラス形成酸化物、ガラス修飾酸化物および中間酸化物
よりなる群から選ばれた少なくとも1柿からなることを
特徴とする光学用マルチプルファイバの製法。
Outer diameter S mrn At least 1000 virgin silica glass optical fibers are bundled together, and the strands are heated at a drawing temperature (in which a liquid intervening substance is present) between the core strands. 1. A method for producing an optical multiple fiber, which comprises drawing a bundle, and wherein the intervening substance comprises at least one persimmon selected from the group consisting of glass-forming oxides, glass-modifying oxides, and intermediate oxides.
JP56187298A 1981-11-20 1981-11-20 Manufacture of multiple optical fiber Pending JPS5888704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187298A JPS5888704A (en) 1981-11-20 1981-11-20 Manufacture of multiple optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187298A JPS5888704A (en) 1981-11-20 1981-11-20 Manufacture of multiple optical fiber

Publications (1)

Publication Number Publication Date
JPS5888704A true JPS5888704A (en) 1983-05-26

Family

ID=16203547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187298A Pending JPS5888704A (en) 1981-11-20 1981-11-20 Manufacture of multiple optical fiber

Country Status (1)

Country Link
JP (1) JPS5888704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137846A (en) * 1983-12-26 1985-07-22 Dainichi Nippon Cables Ltd Manufacture of multiple fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137846A (en) * 1983-12-26 1985-07-22 Dainichi Nippon Cables Ltd Manufacture of multiple fiber
JPH0366263B2 (en) * 1983-12-26 1991-10-16 Mitsubishi Cable Ind Ltd

Similar Documents

Publication Publication Date Title
US4264347A (en) Method of fabricating optical fiber preforms
US4082420A (en) An optical transmission fiber containing fluorine
US4161505A (en) Process for producing optical transmission fiber
SE439480B (en) PROCEDURE FOR THE PREPARATION OF A RODFORM GLASS FOR OPTICAL FIBERS
US3791806A (en) Continuous production of light-conducting glass fibers with ion diffusion
JPS58125631A (en) Manufacture of optical fiber
US4295869A (en) Process for producing optical transmission fiber
DE2507340A1 (en) METHOD OF MAKING A FIBER OPTICAL TRANSMISSION LINE
JP2002518288A (en) Optical fiber preform having OH blocking layer and method of manufacturing the same
US9533915B2 (en) Method and apparatus for processing optical fiber under microgravity conditions
US4165152A (en) Process for producing optical transmission fiber
US3901996A (en) Process for preparing a chalcogenide glass having silicon containing layer and product
KR840002444B1 (en) Method for optical multiple fiber
US4518407A (en) Optical fibre preform manufacture
US4149867A (en) Method of producing an optical fiber
JPS5888704A (en) Manufacture of multiple optical fiber
WO1983003145A1 (en) Process for manufacturing optical multiple fiber
JPS6121176B2 (en)
GB2071644A (en) Radiation Resistant Optical Fibers and a Process for the Production Thereof
JPH0210095B2 (en)
JPS62162633A (en) Production of image guide
JPS5816161B2 (en) Optical transmission line and its manufacturing method
JPS5888703A (en) Manufacture of bundle of optical fiber element
JPH02118502A (en) Image fiber and production thereof
CA1061617A (en) Limited mode optical fiber