JPS5888113A - Purification of metallic silicon - Google Patents

Purification of metallic silicon

Info

Publication number
JPS5888113A
JPS5888113A JP18304781A JP18304781A JPS5888113A JP S5888113 A JPS5888113 A JP S5888113A JP 18304781 A JP18304781 A JP 18304781A JP 18304781 A JP18304781 A JP 18304781A JP S5888113 A JPS5888113 A JP S5888113A
Authority
JP
Japan
Prior art keywords
ingot
metallic
heating
heating device
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18304781A
Other languages
Japanese (ja)
Inventor
Yozo Kuranari
倉成 洋三
Kazuo Maeda
和夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP18304781A priority Critical patent/JPS5888113A/en
Publication of JPS5888113A publication Critical patent/JPS5888113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain high purity metallic Si for the raw material of Si3N4, by heating a rod-shaped ingot of metallic Si at a specific temperature from the bottom upward using a vertically movable heating device. CONSTITUTION:Metallic Si 1 having a purity of 97-98% is roughly crushed to about 10-1mm.phi, put into a graphite die 2 placed in a high frequency induction furnace, completely molten by heating at >=1,420 deg.C, and cooled to obtain a rod- shaped ingot of 2-10cmphi. A vertically movable heating device 8 is lowered to the bottom of the ingot. After heating the ingot at 1,500-1,600 deg.C for 5-30min, the heating device 8 is shifted upward by 0.5-10cm at a rate of 0.5mm./min, and the heating is continued for 5-30min. The procedure is repeated until the heating device reaches the top of the ingot, when the ingot is cooled. Since the impurities in the metallic Si are shifted upward to the top of the layer, the crude metallic Si can be purified easily.

Description

【発明の詳細な説明】 本発明は金属珪素の精製法、特に金属珪素を完全に溶融
した後、棒状のインイツトとし、その表面から加熱して
金属ケイ素中の不純物を一方向性凝固させることにより
インゴット上部に不純物を移動させるようにしたα型窒
化ケイ素原料用の金属ケイ素の精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for refining metallic silicon, in particular, by completely melting metallic silicon, forming it into a rod-shaped inject, and heating it from the surface to unidirectionally solidify impurities in metallic silicon. The present invention relates to a method for refining metallic silicon for use as an α-type silicon nitride raw material in which impurities are moved to the upper part of the ingot.

一般に市販されているJIB 1号品は不純物としてI
Feが0.74、Mg O,0!l 9j、Atが0.
28%。
Generally commercially available JIB No. 1 products contain I as an impurity.
Fe is 0.74, Mg O,0! l 9j, At is 0.
28%.

Oao、1m程度含有されている。これ等の金属珪素か
ら高純度の窒化珪素を製造する場合、これら不純物が製
品中に混入すると、最終的に窒化珪素成形物中にガラス
相を多量生成したり、また欠陥(Si3N4とは異相で
ある金属又は空孔)となって成形物の強度を低下させる
ためその除去が要望されている。
Oao, about 1m is contained. When producing high-purity silicon nitride from these metal silicones, if these impurities are mixed into the product, a large amount of glass phase may be produced in the final silicon nitride molded product, or defects (a phase different from Si3N4) may occur. It is desired to remove these metals or voids, which reduce the strength of the molded product.

本発明は、これらの不純物を除去することを目より、そ
の上部に不純物を移動させるようにした高純度のした窒
化珪素原料用の金属珪素の精製法を提供しようとするも
のである。
The present invention aims to remove these impurities and to provide a method for refining metallic silicon for highly purified silicon nitride raw material by moving the impurities to the upper part.

本発明は金属珪素の棒状インゴットを精製する際に、そ
のインゴット表面を下部から上部に向って願に温度15
00〜1600℃に加熱した後冷却することを特徴とす
る。
In the present invention, when refining a rod-shaped ingot of metallic silicon, the surface of the ingot is heated at a temperature of 15% from the bottom to the top.
It is characterized by heating to 00 to 1600°C and then cooling.

以下さらに本発明の詳細な説明する。以下溶解炉として
高周波誘道炉について説明するが上下移動できる加熱装
置であればよくこれに限られるものではない。
The present invention will be further explained in detail below. A high-frequency induction furnace will be described below as a melting furnace, but the present invention is not limited to this as long as it is a heating device that can be moved up and down.

まず金属珪素の棒状インプットは市販の金属珪素を10
III+以下、例えば10〜111m1程度に粗砕し、
これを縦長の黒鉛ルツボに入れて、高周波誘導炉に入れ
て加熱し、その溶融温度を融点(1420°G)以上、
好ましくは1650℃程度とし完全に溶解する。次いで
これを冷却して棒状インプットとする。なお粗砕した金
属ケイ素は溶融すると容積が小さくなるので長い棒状体
を得たい場合は追加して溶融すればよい。この棒状イン
イツト表面下部から順に上部に温度、1500〜160
0℃に加熱する。この場合、その加熱はその手段直径、
長さ等にもよるが、なるべくその巾が狭くし、順に溶融
帯が移動するようにすることが好ましい。
First, the rod-shaped input of metal silicon is 10 pieces of commercially available metal silicon.
III+ or less, for example, coarsely crushed to about 10 to 111 m1,
This is placed in a vertical graphite crucible and heated in a high frequency induction furnace until its melting temperature is higher than the melting point (1420°G).
Preferably, the temperature is about 1650°C to completely dissolve. This is then cooled to form a rod-shaped input. Note that the volume of coarsely crushed metallic silicon decreases when it is melted, so if a long rod-shaped body is desired, additional melting is required. The temperature is 1500 to 160 from the bottom to the top of this rod-shaped inuit surface.
Heat to 0°C. In this case, the heating means that the diameter,
Although it depends on the length etc., it is preferable to make the width as narrow as possible so that the molten zone moves in order.

その理由としては一方向性凝固させ精製する力1らであ
る。溶融帯の巾は棒状インゴットの直径か4〜10cI
L程度のものであれば、0.5〜10cm好ましく1〜
5cm程度としその移動速度は0.5m/分以上とし、
その加熱時間は5〜30分程度で行えば本発明の目的は
達成することができる。
The reason for this is the power of unidirectional coagulation and purification. The width of the molten zone is the diameter of the rod-shaped ingot, or 4 to 10 cI.
If it is about L, it should be 0.5 to 10 cm, preferably 1 to 10 cm.
The length should be approximately 5 cm, and the moving speed should be at least 0.5 m/min.
The object of the present invention can be achieved if the heating time is about 5 to 30 minutes.

本発明に用いる金属ケイ素はSl  純度としては97
′98q6の、TIS 1〜2号程度のものが好ましい
がこれに限られるものではない。
The metal silicon used in the present invention is Sl with a purity of 97
'98q6, TIS No. 1-2 is preferred, but not limited thereto.

棒状インゴットの直径は2〜1o儂程度のものか用いら
れるか、余り径の大きいと軸方向に対して直角方向に均
一に加熱することかて蛍ないので好ましくは2〜5C1
1程度とする。
The rod-shaped ingot used should have a diameter of about 2 to 1 degrees; if the diameter is too large, it will be difficult to heat it evenly in a direction perpendicular to the axial direction, so it is preferably 2 to 5 C1.
It should be about 1.

このように棒状インゴットを下部力)ら上部に向って一
軸方向に表面から加熱することによって不純物か順上部
に移動するので簡単に金属ケイ素中の不純物を精製する
ことかできる。
In this way, by heating the bar-shaped ingot from the surface in a uniaxial direction from the bottom to the top, the impurities move upward, making it easy to purify the impurities in metallic silicon.

このような方法を繰返し2〜5回することによって殆ん
ど不純物が除去される。
By repeating this method 2 to 5 times, most of the impurities are removed.

以下実施例をあげてさらに詳しく説明する。A more detailed explanation will be given below with reference to Examples.

実施例 図面に示す富士電波製高周波誘導炉を用い黒鉛ダイス2
の中に10〜111mに粉砕したsl  純度98鴫の
5181号金属ケイ素を入れて溶融し棒状インプットを
作成した。黒鉛ダイスは外径12o4、内径404高さ
500 W (深さ25 Q m / m )のものを
用いた。加熱温度は1650℃とし、約30分間保持す
ると完全に溶融した。この溶融体を融点以下の温度に下
げて冷却し棒状のインゴットとした。次いで炉体な棒状
インク9ツトの下部に下げ温度1550℃で10分間加
熱後、炉体を50上部に動かし、再び1550℃で10
分間加熱した。この操作を繰返しながらインゴット上部
まで高周波コイルを移動後電源を切って冷却しtム黒鉛
ルツボから長さ150uのインク9ツトを取出し、その
上、下部10 Jul / 7FLの所でダイヤモンド
カッターで切断し、次いでその内側を5Mの厚さにスラ
イスし分析用サンプルとした。
Graphite die 2 was manufactured using the Fuji Denpa high frequency induction furnace shown in the example drawings.
Metallic silicon No. 5181 with a purity of 98 sl crushed to 10 to 111 m was placed in the molten metal and melted to create a rod-shaped input. The graphite die used had an outer diameter of 12o4, an inner diameter of 404, and a height of 500 W (depth 25 Q m/m). The heating temperature was 1,650°C, and the mixture was completely melted after being held for about 30 minutes. This melt was cooled to a temperature below its melting point to form a rod-shaped ingot. Next, the furnace was lowered to the bottom of the 9 rod-shaped ink rods and heated at 1550°C for 10 minutes, then moved to the upper part of the furnace and heated again at 1550°C for 10 minutes.
Heated for a minute. After repeating this operation and moving the high frequency coil to the top of the ingot, turn off the power, cool it down, take out 9 ink tubes of 150u length from the graphite crucible, and cut them with a diamond cutter at the bottom 10 Jul / 7 FL. Then, the inside was sliced to a thickness of 5M to prepare a sample for analysis.

次いでこのサンプルを用いて螢光X線にてFe。Next, using this sample, Fe was irradiated with fluorescent X-rays.

Mg、  At、 Oa  の定量分析を打込その結果
を表に
Perform quantitative analysis of Mg, At, and Oa and display the results in a table.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に用いた高周波誘導炉の断面図で
ある。 符号 1・・・・・・金属ケイ素、2・・・・・・黒鉛ダイス
、3・・・・・・黒鉛ダイス蓋、4・・・・・・測温管
、5・・・・・・石英管、6・・・・・・黒鉛台、7・
・・・・・クリデトル粒、8・・・・・・高周波コイル
The drawing is a sectional view of a high frequency induction furnace used in an example of the present invention. Code 1...Metal silicon, 2...Graphite die, 3...Graphite die lid, 4...Temperature tube, 5... Quartz tube, 6...Graphite stand, 7.
...Criditor grain, 8...High frequency coil.

Claims (1)

【特許請求の範囲】[Claims] 金属珪素の棒状インゴットを上下移動可能な加熱装置に
より該インゴット中の不純物を上部に移動させ精製する
〆方法において、前記加熱装置により1m(ンビットの
下部から上部に向って温度1500〜1600℃に加熱
した後冷却することを特徴とするα型窒化珪素の原料用
金属珪素の精製法
In the final method of purifying a rod-shaped ingot of metallic silicon by moving the impurities in the ingot to the upper part using a vertically movable heating device, the heating device heats the ingot to a temperature of 1500 to 1600°C from the bottom to the top. A method for purifying metallic silicon for use as a raw material for α-type silicon nitride, which is characterized by cooling after cooling.
JP18304781A 1981-11-17 1981-11-17 Purification of metallic silicon Pending JPS5888113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18304781A JPS5888113A (en) 1981-11-17 1981-11-17 Purification of metallic silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18304781A JPS5888113A (en) 1981-11-17 1981-11-17 Purification of metallic silicon

Publications (1)

Publication Number Publication Date
JPS5888113A true JPS5888113A (en) 1983-05-26

Family

ID=16128808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18304781A Pending JPS5888113A (en) 1981-11-17 1981-11-17 Purification of metallic silicon

Country Status (1)

Country Link
JP (1) JPS5888113A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053639C (en) * 1997-07-16 2000-06-21 孙联强 Energy-saving silicon-extracting technology
CN104528733A (en) * 2014-12-25 2015-04-22 大连理工大学 Device and method for separating high-metal-impurity region from cast ingot
CN109023521A (en) * 2018-08-29 2018-12-18 孟静 The preparation method of solar cell module polysilicon chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053639C (en) * 1997-07-16 2000-06-21 孙联强 Energy-saving silicon-extracting technology
CN104528733A (en) * 2014-12-25 2015-04-22 大连理工大学 Device and method for separating high-metal-impurity region from cast ingot
CN104528733B (en) * 2014-12-25 2016-06-01 大连理工大学 A kind of equipment and method being separated high metallic impurity district for ingot casting
CN109023521A (en) * 2018-08-29 2018-12-18 孟静 The preparation method of solar cell module polysilicon chip

Similar Documents

Publication Publication Date Title
RU2154606C2 (en) Process for production of silicon for use in solar cells
JP3000109B2 (en) Manufacturing method of high purity silicon ingot
JPS6150881B2 (en)
US4911896A (en) Fused quartz member for use in semiconductor manufacture
JPS6028761B2 (en) Method for manufacturing crystalline silicon
CN101469940B (en) Annular region smelting furnace
JPS5888113A (en) Purification of metallic silicon
JPH05262512A (en) Purification of silicon
JPH107491A (en) High-purity single crystal copper and its production and production unit therefor
KR20010109276A (en) Method and device for purifying aluminium by segregation
JP2002534603A5 (en)
US2990261A (en) Processing of boron compact
JPS58217419A (en) Method and device for manufacturing polycrystal silicon rod
JP5685894B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP6390568B2 (en) Crucible for growing gallium oxide single crystal and method for producing gallium oxide single crystal
CN104071790A (en) Device and method for purifying silicon from silicon alloy melt by electromagnetic stirring
JP3478224B2 (en) Quartz crucible recovery method
JP3069656B1 (en) Method for producing spherical metallic titanium and titanium compound
JPS6350308A (en) Method of removing carbon from fused silicon
JPS60195016A (en) Purification of metallic silicon
JP3699778B2 (en) Manufacturing method of quartz glass crucible
JP5309539B2 (en) Method for producing purified silicon
JPH06172031A (en) Graphite part for producing cubic zirconia
RU2040599C1 (en) Method for production of single crystals of rare-earth metal borides
US3468638A (en) Method of producing crystalline rods from semiconductor compounds