JPS5887195A - Method for deashing coal - Google Patents

Method for deashing coal

Info

Publication number
JPS5887195A
JPS5887195A JP18534581A JP18534581A JPS5887195A JP S5887195 A JPS5887195 A JP S5887195A JP 18534581 A JP18534581 A JP 18534581A JP 18534581 A JP18534581 A JP 18534581A JP S5887195 A JPS5887195 A JP S5887195A
Authority
JP
Japan
Prior art keywords
stirring
speed
coal
granulated
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18534581A
Other languages
Japanese (ja)
Other versions
JPH0144756B2 (en
Inventor
Hikoo Matsuura
松浦 彦夫
Kazuhiko Nakaooji
中大路 和彦
Yoichi Nakamura
陽一 中村
Shigenobu Hisatomi
久富 重信
Morihisa Maruko
丸子 盛久
Toshihiko Takahashi
利彦 高橋
Katsumi Muroi
室井 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hitachi Ltd
Original Assignee
Electric Power Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hitachi Ltd filed Critical Electric Power Development Co Ltd
Priority to JP18534581A priority Critical patent/JPS5887195A/en
Priority to CA000410440A priority patent/CA1180893A/en
Priority to AU87862/82A priority patent/AU538713B2/en
Publication of JPS5887195A publication Critical patent/JPS5887195A/en
Publication of JPH0144756B2 publication Critical patent/JPH0144756B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To granulate fine coal powder in a good yield and to improve a deashing rate, by adding a binder to a slurry of fine coal powder in water, revolving a motor at a high speed to form granulated coal powder having a small diameter, and rotating the motor at a low speed to enlarge the particle size of the granulated coal powder. CONSTITUTION:A slurry 13 of fine coal powder in water and an emulsion type binder 11 contg. fuel oil are introduced into an agitating tank 1 equipped with agitating blades 5 and a plurality of fixed backles 3. A motor 9 is driven at a high speed. Stirring is conducted such that the agitating blades 5 are revolved at a peripheral speed of 12.5-30m/s. The binder 11 is well-dispersed in the slurry 13 to deposit the binder on the whole surface of fine coal powder. Ash deposited on fine coal powder is released, and the growth of granulated coal powder in size is inhibited to a particle size of 1.5mm. or below. Then the motor is revolved at a low speed such that the agitating blades are revolved at a peripheral speed of 2.5-10m/s to enlarge the particle size of the granulated coal powder to an average particle size of 2mm. or above.

Description

【発明の詳細な説明】 本発明は石炭中の灰分な分離、除去する方法に係り、特
に脱灰率と石炭の回収率を高めるのに好適な石炭の脱灰
プロセスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and removing ash from coal, and particularly to a coal deashing process suitable for increasing the deashing rate and the recovery rate of coal.

従来の水中造粒法による石炭の脱灰プロセスは、比較的
低速な回転での攪拌によりベレット状の造粒物を得ると
同時に灰分を分離していたので、乳状で添加された結合
剤が石炭粒子の表面に十分まわり切らないうちに造粒さ
れ、造粒物中に灰分が残ったままの状態となるため、脱
灰率が十分上がらない欠点があった。
In the conventional coal deashing process using the underwater granulation method, the ash was separated at the same time as pellet-shaped granules were obtained by stirring at a relatively low speed. Since the granules are granulated before the surface of the particles has been sufficiently covered, and the ash remains in the granules, the deashing rate cannot be sufficiently increased.

本発明の目的は脱灰率と回収率の向上を図る石炭の脱灰
プロセスを提供することにJ〕る。  ゛本発明の要点
は、微粉炭・水パルプに疎水性の結合剤を乳状の状態で
加え、こバらを攪拌して造粒するプロセス薔こおいて、
高速回転による攪拌作用を与え、後に低速回転による攪
拌作用を与えることを基本構成要件とし、高速攪拌で結
合剤を石炭表面に十分にまわらせて灰分な遊離させ1次
の低速攪拌で石炭粒子を大径な造粒物に生長させて石炭
の回収率が向上できる形状とする作用を得る点にある。
An object of the present invention is to provide a coal deashing process that improves the deashing rate and recovery rate.゛The main point of the present invention is to add a hydrophobic binder to pulverized coal and water pulp in an emulsion state, and to granulate it by stirring the powder.
The basic component is to provide a stirring effect by high-speed rotation, and then a stirring effect by low-speed rotation.The high-speed stirring sufficiently spreads the binder over the coal surface to liberate ash, and the primary low-speed stirring separates the coal particles. The purpose of this method is to obtain the effect of growing large-diameter granules into a shape that can improve the recovery rate of coal.

以下に本発明の一実施例を第1図、第2図、第3図、@
4図に基づいて説明する。
An embodiment of the present invention is shown below in Fig. 1, Fig. 2, Fig. 3, @
This will be explained based on FIG.

第1図に示すような攪拌装置を用いた造粒な行う。攪拌
装置は攪拌槽1と羽根2aを回転する構NILf′I攪
拌1a2並びに槽1内に固足したバフル3より構成され
ている。この糟1内へ濃度28嗟の微粉炭(−200メ
ジ−80係)・水バルブ4と重油(対石炭比30%)よ
りなるエマルジ、ン状の結合剤5を入れて攪拌造粒する
。なお、攪拌機2の回転数は可変である。
Granulation is carried out using a stirring device as shown in FIG. The stirring device is composed of a stirring tank 1, a stirring structure NILf'I stirring 1a2 which rotates a blade 2a, and a baffle 3 fixed in the tank 1. A binder 5 in the form of an emulsion consisting of pulverized coal (-200 meds - 80) with a concentration of 28 oz., a water bulb 4 and heavy oil (30% of coal) is placed in the sieve 1 and granulated with stirring. Note that the rotation speed of the stirrer 2 is variable.

回転数の可変手段は羽根2aの回転軸に変速機を介して
モーターを連結し、変速機の切換えで羽根2aの回転数
を変更する構成でも良いし、羽根2aの回転軸に可変速
モーターを連結してモーターの速度制御で回転数を変更
する構成であっても良い。
The rotation speed variable means may be configured such that a motor is connected to the rotation shaft of the blade 2a via a transmission, and the rotation speed of the blade 2a is changed by switching the transmission, or a variable speed motor is connected to the rotation shaft of the blade 2a. The configuration may be such that the rotation speed is changed by connecting the motors and controlling the speed of the motor.

第2図は、この方法で造粒するときの造粒時間と造粒物
の平均粒径との関係を示したもので、曲線6は回転数2
00rpm一定の場合1曲線7は回転数180Orpm
一定の場合、曲線8は回転数を180Orpmで10順
攪拌造粒後、回転数20Orpmで造粒する場合を示す
。各造粒終了点9.10並びに11(いずれも45TI
un後)における造粒炭中の灰分は転成ベース(lA1
A1中の結合剤並びに水分を除いた状態)でそれぞれ5
.1 % 、 3゜9係並びに39q6となる。原炭の
灰分は転成ベース(原炭中の水分を除いた状態)で8、
+十%であるので脱灰率はそれぞれ394,54%並び
に54優となる。
Figure 2 shows the relationship between the granulation time and the average particle diameter of the granulated product when granulating using this method.
When the rotation speed is constant at 00 rpm, curve 7 is the rotation speed of 180 Orpm.
In a constant case, curve 8 shows the case where granulation is performed at a rotation speed of 20 Orpm after 10-order stirring granulation at a rotation speed of 180 Orpm. Each granulation end point 9, 10 and 11 (both 45TI
The ash content in the granulated coal is based on the converted base (lA1
5 each (without the binder and water in A1)
.. 1%, 3°9 section and 39q6. The ash content of raw coal is 8 on a converted basis (without moisture in raw coal).
+10%, so the deashing rates are 394%, 54%, and 54%, respectively.

第3図は造粒炭粒径と石炭回収率の関係を示したもので
、各々の造粒終了点9.10並びにlliこ相当する点
はそれぞれ12.14並びに13で石炭回収率はそれぞ
れ10096,94優並びに100係である。
Figure 3 shows the relationship between the granulated coal particle size and the coal recovery rate, and the points corresponding to the granulation end points of 9.10 and 13 are 12.14 and 13, respectively, and the coal recovery rate is 10096. , 94 honors and 100 rank.

鷲 攪拌装置16では低速回転でそれぞれ攪拌した場合であ
る。
This is a case where the stirring device 16 stirs at low speed.

この場合には、攪拌装置15で高速攪拌処理したバルブ
を攪拌装置16へとい17を通して流入させ、:、:テ
低速攪拌処理を実行する。このようにすれば連続処理で
きて効率が良い上暑こ攪拌用のモーターを攪拌装置15
においては高速で一定に、攪拌装置16においては低速
で一定に回転させねばよいから、回転数の可変手段は不
要となる利点がある。
In this case, the valve that has been subjected to high-speed stirring by the stirring device 15 is caused to flow into the stirring device 16 through the pipe 17, and low-speed stirring is performed. In this way, continuous processing is possible and efficient, and the motor for stirring the heat is connected to the stirring device 15.
The stirring device 16 needs to be rotated at a constant high speed, and the stirring device 16 needs to be rotated at a constant low speed, so there is an advantage that a means for varying the rotation speed is not required.

この方法でも同様な結果を得ることができる。Similar results can be obtained with this method.

このような場合にはパルプのショートパス、即ち、高速
攪拌処理を十分に受けないパルプが低速攪拌処理側へい
きなN)流入することをさける為に、高速、低速各2f
llllづつの攪拌装置を直列に連接した方がよい。
In such a case, in order to avoid a short path of the pulp, that is, a sudden flow of pulp that has not been sufficiently subjected to high-speed agitation treatment into the low-speed agitation treatment side, the high-speed and low-speed
It is better to connect 1000 stirring devices in series.

第1図に示す攪拌装置を使用した場合でも、第4図に示
す直列複数の攪拌装置を使用した場合でも、バルブは先
に高速にて攪拌され、この高速攪拌処理;こおいて、石
炭に十分に結合剤をゆきわたらせてよ媚)多くの灰分な
遊離させろととも瘉二石炭粒子間結合による大径化生長
速度を高速攪拌力でにぶ(シ、できるだけ多くの石炭表
面が結合剤と接して灰分な遊離できる状態とする。その
後暑こ、灰分が十分に遊離してfull!ねた石炭粒子
を低速にて攪拌処理し、各石炭粒子間を接触させ、結合
剤を介して結合させる。この時には、攪拌力が低速であ
るから接した石炭粒子間ははなれず−ことんどんと大径
に生成してゆき、ついには石炭をふるいを使用して回収
する除−〇ふるい目から抜は出ない大きさになって、回
収率か向上する。
Whether using the stirring device shown in Figure 1 or using multiple stirring devices in series as shown in Figure 4, the valve is first stirred at high speed; In order to release as much ash as possible, we also use high-speed agitation power to increase the growth rate of coal particles due to the bonds between the coal particles. The coal particles are brought into contact with each other so that the ash can be released.Then, in the heat, the ash content is sufficiently released and becomes full!The sticky coal particles are stirred at low speed to bring each coal particle into contact and bind them together via a binder. At this time, since the stirring force is slow, the coal particles that are in contact with each other cannot separate, and the coal particles gradually become larger in diameter, until the coal is collected using a sieve. The collection rate will improve as the size becomes smaller so that it won't come out.

各実施例において、高速回転によるm井は長時間撹拌を
?’rっでもfia物の大径化生長速度がゆるやかとな
る回転数にて行い、造粒物の平均粒径が1 m+u程反
暑こなったら低速回転にょる也拌処迎に移1ことか好ま
しく、低速回転−こよる撹拌1!、迄粒物の生長速曳か
急となる回転数4こて行い、造粒物の平均粒径か3肛以
上になった四点で、その造粒物を回収することが好まし
い。
In each example, m-wells were stirred for a long time due to high-speed rotation. Carry out the rotation at a speed that allows the growth rate of the granules to grow to a larger diameter, and when the average particle size of the granules reaches about 1 m+u, move on to stirring at a low speed. Preferably, low speed rotation - heavy stirring 1! It is preferable to carry out troweling at a speed of 4 rotations until the granules grow rapidly, and collect the granules at four points where the average particle diameter of the granules becomes 3 holes or more.

しかし、造粒物の平均粒径は回収用ふるい目の大きさや
脱灰率の所望程度によってどの程度であっても良い。高
低速撹拌回転数も造粒条件や所望脱灰率ヤ回収率番こよ
り本実施例と異なっても良い。
However, the average particle diameter of the granules may be of any value depending on the size of the recovery sieve and the desired deashing rate. The high/low speed stirring rotational speed may also be different from this example depending on the granulation conditions, desired deashing rate, and recovery rate.

以上の如く、本発明は、石炭の水中造粒プロセスにおい
で、先に被処理液に高速回転暑こよる撹拌作用を与えて
石炭に結合剤を十分番こゆきわたらせて脱灰率を向上さ
せ、次に低速回転によ4攪拌作用を与えて石炭の造粒生
長を促進させて造粒済石炭の回収しゃすべ大径化できる
ので、胛灰率の高い造粒済石炭を高回収できる状態にで
きる効果が得られる。
As described above, in the underwater granulation process of coal, the present invention first applies a stirring action to the liquid to be treated using high-speed rotation and heat to sufficiently spread the binder to the coal to improve the deashing rate, Next, a stirring action is applied by low-speed rotation to promote the granulation growth of the coal, and the diameter of the recovery chamber for the granulated coal can be increased, making it possible to recover granulated coal with a high ash rate. You can get the desired effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いた攪拌装置の検視的断
面図、第2図は各攪拌回転数における攪拌時間と造粒物
の粒径の関係を示す性能曲線図、第3図は第2図の各性
能曲線にて処理した石炭の回収率の関係を示す線図、第
4図は本発明の他の実施例による攪拌設備の検視的断面
図である。 1・・・・・・攪拌槽、2・・・・・・攪拌機、3・・
バフル、4・・・・・・微粉炭、水パルプ、5・・・・
・・結合剤、6・・・・・低速攪拌回転時粒径一時間曲
線、7・・・・・・高速攪拌同時の校径一時間曲線、8
・・・・・・高速と低速との複合攪拌回転時の粒径一時
間曲線、9・・・・・低迎攪袢回転時の造粒終了点、1
0・・・・・高速攪拌回転時の造粒終了点、11・・・
・・高速と低速との複合撹拌回転時の造粒終了点、12
・・・・・・低油攪拌回転時の造粒物回収率点、13・
・・・・高速と低速との複合情拌時の造粒物回収率点、
14・・・・鳥油攪拌回転時の造粒物回収点、15 、
16・・・・・・攪拌装置 代理人 弁理士  薄 1)利 幸 千1図        才4図 第1頁の続き [相]発 明 者 室井克美 土浦市神立町502番地株式会社 日立製作所機械研究所内 0出 願 人 株式会社日立製作所 東京都千代田区丸の内−丁目5 番1号 手続補正書(自XA) 事件の表示 昭和56 年特許願第 185345  弓発明の名称 石炭の脱灰方法 補正をする者 名  1!1    (5101株式会11  日  
立  製 作 所代 表 名  三   1)  勝 
 茂代   理   人 補正の内容 別紙のとおり 訂正明細書 発明の名称  石炭の造粒脱灰方法 特許請求の範囲 以下であり、前記高速な攪拌作用は、前記攪拌灰方法。 攪拌槽内に移して前記混合液に第1回目の低速発明の詳
細な説明 〔発明の利用分野〕 本発明は石炭の造粒と脱灰の処理方法に関するものであ
る。 〔従来技術〕 重油に石炭を混合して作った混合燃料をボイラーで燃焼
させる場合、高燃焼率とするために、従来から石炭を重
油に混合する前に、石炭中の灰分硫黄分を取り除くこと
が考えられていた。 従来、石炭中の灰分な取り除く方法としては、水中油添
造粒法が知られている。 従来の水中油添造粒法は、微粉炭と水とのスラリー液に
少量の重油を添加して作った混合液を攪拌する方法であ
る。この方法によると、混合液が攪拌されているうちに
石炭に対する親和性が良い重油が微粉炭に付着し、微粉
炭同士が重油を結合剤として結合してゆき、造粒炭とな
る。また、重油との親和性が弱い灰分は、大きく結合す
ることなく微粉炭から離れた状態で混合液中に浮遊する
。 ここで、混合液をふるいに通すと、大径になった造粒炭
がふるい上に残り、ふるい目を混合液と灰分とが通過し
て排出される。よって、灰分の少ない造粒炭がふるい上
に回収される。 このような水中油添造粒法においては、微粉炭を大径な
造粒炭にして、ふるいで高率に回収できる状態にするも
のである。しかし、従来の水中油添造粒法においては、
石炭の回収率を向上することをねらって造粒炭の大径化
が生じやすい低速な攪拌作用を混合液に与えるにすぎな
かった。このために、結合剤が微粉炭に充分に付着しな
いうちに微粉炭同士が結合し合う。よって、微粉炭の結
合間を結合剤で充満させて水分や灰分が微粉炭の間に有
性させないようにする状態が得にくい。したがって、微
粉炭が結合して生じた造粒炭に水分や灰分を多く含有す
る状態となる。 〔発明の目的〕 本発明の目的はスラリー液中の微粉炭を造粒炭として高
率で、回収するとともに同時に脱灰率な向上することに
ある。 〔発明の概要〕 この発明の基本構成要件は、微粉炭と水とのスラリー液
に結合剤を加えた混合液を攪拌する造粒方法において、
前記混合液に高速な攪拌作用を与えて小径な造粒炭を作
り、その後に前記混合液に低速な攪拌作用を与えて前記
小径な造粒炭を大径化することを特徴とした石炭の造粒
脱灰方法であって、この方法により、高速な攪拌作用で
微粉炭が大径な造粒炭になることを抑制しつつ微粉炭に
充分に結合剤を付着させ、且つ灰分な微粉炭から離し、
次に低速な攪拌作用で、結合間を水分や灰分が入り込め
ないように結合剤で充満させた微粉炭の結合状態を急速
に促進させ、造粒炭の粒径な急速に大径化することによ
り、回収しやすい大径な造粒炭を脱灰率の高い状態で得
るようにした。 〔発明の実施例〕 第1図において、攪拌槽1の内面にはバッフル3が複数
枚固定されている。攪拌槽1の中には攪拌羽根5が入れ
られており、この羽根5はシャフト7に固定される。シ
ャフト7は上方へ延長すして可変速電動モーター9の回
転軸に連結されている。モーター9は攪拌槽lに据付け
ても良く、又は攪拌槽lとは別の部分に据付けても良い
。 攪拌槽1内には、水に微粉炭(200メツシユアンダ一
80%)を混ぜて作った濃度28%のスラリー液13を
入れる。次に重油が対石炭比30チとなる量を含んだニ
ブルジョン状の結合剤11を攪拌槽l内に入れる。次に
、モーター9を高速な回転数で駆動して、羽根5の周速
を15m/sにて羽根5を回転する。このようにすると
、結合剤11とスラリー液13との混合液が羽根5によ
って高速な攪拌作用を受け、さらにはバッフル3に当っ
て乱流状態になり、よくかきまぜられる。 高速な攪拌作用によって、結合剤11はスラリー液中全
体に艮〈拡散し、微粉炭の表面の全体に良〈付着する。 微粉炭に付着した灰分は高速な攪拌エネルギーを受けて
微粉炭から離れてゆく。 この高速攪拌作用は約10分間続けられる。第2図に示
した曲@15は高速な攪拌作用を攪拌槽l内の混合液に
長時間与え続けた場合に得られる造粒炭の平均粒径な示
すものである。この曲線15で明らかの如く、高速な攪
拌作用の下では、微粉炭が集合しに〈〈て、造粒炭の平
均粒径て、13朋程度(ポイント17)にまでしか大径
化せず、その大径化速度も遅くなる。この状態ではふる
いで造粒炭を回収しようとしてもふるい目から通過して
ゆく微粉炭の量が多量に発生して、回収率が95チ(第
3図のポイント19)と低下するとともにモーター9の
動力に関して不経済となる。そこで、高速な攪拌作用は
攪拌開始後10分間までとする。 この約10分間◆こ微粉炭は結合剤を介して04m1程
度にまで造粒されて大径化する。この間は、高速な攪拌
作用により勢よく攪拌槽l内の混召液が攪拌されるので
、短時間のうちに結合剤11は微粉炭の各粒子の全面に
充分に付着する。このように全表面が充分に結合剤11
によりコーテングされた微粉炭には、結合剤11との親
和性が低い灰分が付着することがなく、微粉炭同士だけ
が結合し合う。 高速な攪拌作用を約lO分間混合液に与えた後には、モ
ーター9の回転数を低速な回転数にして、羽根5の周速
を9 m / sにする。このようにすると、攪拌槽l
内のス2り一液13と結合剤11との混合液に低速な攪
拌作用を与えることができる。このようにして、混合液
に与える攪拌エネルギーを小さくすると、大きな攪拌エ
ネルギーによって微粉炭の結合物、即ち造粒炭が破壊さ
れたり初期結合状態の促進が妨害されたりする現象が少
くなる。 よって、第2図に示す如く、約10分間は曲線15に沿
って造粒炭の平均粒径が緩やかに大径となるが、10分
間を過ぎた後には、曲線21で示す如く、造粒炭の平均
粒径が曲線15の場合よりも急速に大径化し、ポイン)
 19の時点(45分後)と同時期にはポイン)23で
示す如く311Iを超えるほどになる。造粒炭の平均粒
径が311はどになると、第3図に示したポイン)25
の如く、石炭回収率が100チ近くに達し、ふるいの目
を通過してゆく微粉炭の量がほとんどなくなる。 しかも、攪拌初期において、微粉炭の粒子の全面に充分
に結合剤11をコーテングして、コーテングされていな
い部分がほとんどない状態にすることができるので、微
粉炭が結合してゆく時に、結合間すき間は結合剤11に
より充満されている状態となる。このために、結合間す
き間に水分や灰分が侵入する余地がなくなり、造粒炭に
含まれる灰分は無水炭ベースで39チと極めて低い値を
示す。 ちなみに、攪拌初期から低速な攪拌作用をスラリー液1
3と結合剤11との混合液に加え続けた場合には、第2
図に示す曲線nの如く、45分後には、ポイン)29で
造粒炭の平均粒径が3朋はどに大径化するので、石炭の
回収率は第3図のポイン)28の如く100%近い値を
示す。しかし、攪拌作用が低速であるから微粉炭の粒子
の全面に結合剤11が充分に付着しない。このため、微
粉炭間の結合すき間に結合剤11が充満されずに、水分
や灰分が結合すき間に侵入した状態になりやすい。よっ
て、造粒炭中の水分や灰分が増大し、灰分生育率につい
ては無水炭ペースで51%と高い値を示す。 本実施例で採用した微粉炭(原炭)は、無水炭ベースで
灰分が含まれている率が84チであるので、ス2り一液
13と結合剤1】との混合液へ初期に高速な攪拌作用を
与え、続いて低速な攪拌作用を与えた1合には、脱灰率
が54%になる。そして、初期から低速攪拌作用を与え
続けた場合Iこは脱灰率が39俤にまでしか達しないの
で、本実施例では脱灰率が向上する。 このようにして、本実施例では、石炭の回収率と脱灰率
とを同時に向−Hすることができる利点がある。 なお、本実施例において、高低速の攪拌作用を可変速形
のモーター9の回転速度を切り替えることに選択してい
るが、モーター9を定速形にし、この定速形のモーター
とシャフト6とを変速機を介して連結し、変速機によっ
て羽イ艮5の回転数を高速と低速とをこ選択するように
しても、高低速の攪拌作用を選択することができる。 本発明の他の実施例を、第5図に基づいて以下に説明す
る。 攪拌槽31に対して攪拌槽おは低い位置に据付けられて
いる。いずれの攪拌槽31.33の内側にもバッフルあ
が複数枚固定されている。 攪拌槽31内には攪拌羽根37が配置される。この羽根
37にはシャフト39が連結される。シャフト39には
高速回転を生ずるようにセントした定速形のモーター4
1の回転軸が連結される。モーター41は攪拌槽31へ
は周辺の他の部材に固定される。同様にして、攪拌槽お
内には攪拌羽根0が配置され、この羽根43はシャフト
45を介してモーター47へ連結される。このモーター
47は低速回転を生ずるようにセットした定速形のモー
ターである。 攪拌槽31と攪拌槽おとはとい49でつながれている。 また、攪拌槽おとふるい51との間にはとい郭でつなが
れている。ふるい51はタンク55に取り付けられてい
る。タンク55の下部暑こは排水管57がつながれてい
る。 このような実施例では、先の実施例と同じスラリー液1
3と結合剤11とが攪拌槽31内へ連続的に注入される
。スラリー液13と結合剤11とは、モーター41の回
転力で高速に回転する羽根化により高速攪拌作用を受け
る。これにより、微粉炭の粒子の全面に充分に結合剤1
1が付着する。充分に結合剤11が付着した微粉炭は、
スラリー液と結合剤11との混合液とともにとい49を
通って攪拌槽33内に入れられる。この攪拌槽お内で、
モーター47の回転力で回転される羽根431こより混
合液が低速な攪拌作用を受ける。よって、攪拌槽お内で
急速に造粒炭の平均粒径が大径化してゆく。しかも、す
でに微粉炭は攪拌槽31内で高速攪拌作用を受けて結合
剤11により充分にコーテングされているから微粉炭の
結合すき間に水分や灰分が入らない状態で造粒炭が作ら
れる。よって、造粒炭は大径化により回収率が高くなる
状態と、脱灰率の高い状態とを備える。攪拌槽お内の造
粒炭は混合液とともにとい日からふるい51の上に流し
落される。このために、造粒炭はふるい51の上にたま
り、灰分を含ん12・ だ混合液はタンク5内に流し落される。灰分な含んだ混
合液は排水管57からタンク5外へ排水される。よって
、高い脱灰率の造粒炭が高い回収率で取り出せる。 この実施例では、高速攪拌用と低速攪拌用とのモーター
41.47とを使用するので、モーター回転速度を切り
替えるわずられしさがない上に、高速攪拌作用と低速攪
拌作用とをとい49でつながれた別々の攪拌槽31,3
3内で実行するので連続的に造粒炭を作る処理が行え、
処理効率が良い。また、この実施例の場合には、高速攪
拌作用を充分に受けないまま混合液が低速攪拌作用を受
ける状態を起しやすい。この状態は、一般的にはショー
トパスと云われている。このショートパスを起すと、微
粉炭が結合剤11で充分にコーテングされない状態とな
って、若干脱灰率が低くなる。よって、このショートパ
スな防ぐ必要がある。このショートパスを防ぐ必要のあ
る場合には、両攪拌槽31.33の間に、両攪拌槽31
,33の中間の高さで別の攪拌槽を配置し、攪拌槽31
と別の攪拌槽とをといでつ3 なぎ、この別の攪拌槽と攪拌槽おとをといでつなぐ。さ
らに、前述の別の攪拌槽内には高速回転を起すモーター
により回転する攪拌羽根を入れておく。この場合、攪拌
槽31で混合液に高速な攪拌作用を与え、次に攪拌槽3
1内の混合液をといによって両攪拌檜31,33の中間
に置いた攪拌槽内に入れて、ここでも高速な攪拌作用を
混合液に与え、その後に中間に置いた攪拌槽から混合液
を攪拌槽お内にといによって流し入れて、ここで低速な
攪拌作用を混合液に与える。このような方法によれば、
混合液が充分な高速攪拌作用を受けずに攪拌種部へ流入
する確率が低下し、微粉炭に結合剤を充分に付着させる
ことができ、脱灰率な向上できる。 また、充分に大径化していない造粒炭がふるい51に流
出しやすい場合には、攪拌種部とふるい51との間に別
の攪拌槽を攪拌槽およりも低い位置に据付け、この別の
攪拌槽と攪拌槽おとをといでつなぎ、この別め攪拌槽と
ふるい51との間をといでつなぎ、この別の攪拌槽内に
低速回転を起すモーターで回転される攪拌羽根を入れる
。この場合、攪拌槽31で高速な攪拌作用を受けた混合
液は、次に攪拌槽おで低速な攪拌作用を受け、その後に
別の攪拌槽へといで流し入れる。この別の攪拌槽で、混
合液は低速な攪拌作用を受ける。その後iこ、混合液は
といでふるい51上に流し落される。このような方法に
よれば、混合液が充分な低速攪拌作用を受けずにふるい
上へ流し落される確率が減少し、造粒炭が充分に大径化
してふるい上に取り出せる。 また、充分な高速攪拌作用と充分な低速攪拌作用を確実
に混合液へ与えるためには、次に説明する方法を採用で
きる。 即ち、4槽の各攪拌槽を直列に連通しておき、第1攪拌
檜内で高速な攪拌作用を与えた混合液を第2の攪拌槽内
で再度高速な攪拌作用を与え、この第2の攪拌槽内で高
速攪拌作用を与えた混合液に第3の攪拌槽内で低速な攪
拌作用を与え、次にその混合液暑こ第4の攪拌槽内で再
度低速な攪拌作用を与え、その後にふるい上に第4の攪
拌槽から混合液を流し落す。この方法暑こよれば、混合
液が充分に高速攪拌を受けずに低速な攪拌を受ける確率
と、混合液が充分な低速攪拌を受けずにふるい上に流し
落される確率とが同時に減少して、大径で高脱灰率の造
粒炭が得られる。 いずれの実施例においても、攪拌羽根の回転数や高速攪
拌作用を混合液に与える時間と、低速攪拌作用を混合液
に与える時間とは、希望する脱灰率や造粒粒径に応じて
適当に決定されるものである。 攪拌羽根の周速と造粒炭の平均粒径と脱灰率との関係を
本発明者等が求めた結果をグラフで示すと、第4図のと
おりとなる。 即・ち、攪拌羽根の周速が2.5 m 7’ s以上1
orn/S以下の範囲では脱灰率(第4図に示した実線
曲り・が30チ〜40%で、造粒炭の平均粒径(第4図
に示した点線曲線)は2酊以上である。 そして、平均粒径2富冨以上の造粒炭を、分級効率の関
係から実用上一般的に使用される0、 5 u+あらさ
を有するふるいで回収すると、回収率が99チ以上とな
り極めて高い回収率を示す。゛まだ、攪拌羽根の周速が
2.5m/’s未満であると、造粒炭が6 作られないか、あるい1.を作られたとしても造粒炭の
平均粒径が大径せずさらには脱灰も進行しない。 特に、多槽の攪拌槽な直列に備えて連続的に造粒炭を産
出する例にあっては、攪拌羽根の周速が2゜5 m /
 Sであると、攪拌エネルギーが弱いために造粒炭が沈
降して次の檜へあるいはふるい上へ流出してゆかなくな
り、大径な造粒炭の産出が行えなくなる。よって、回収
しゃすぐ造粒炭を大径化するための低速な攪拌作用とは
、攪拌羽根の周速が2.5 m / s以上であって1
0 m / S以下であることが望ましく、さらには安
全率を見込んで35m/s以上であって9 m / s
以下とすることが好ましい。 また、第4図のグラフから明らかな如く、脱灰率は攪拌
羽根の周速が速くなるにつれて高まる傾向を有し、周速
が12.57n/s、造粒炭の平均粒径約15II11
で顕著な屈曲部が見受けられ、この部分から周速が高ま
るにつれてなだらかになり周速が2.5 m / s 
〜30 m / 8の間に脱灰率が60チと最高値に達
し、それ以上の高率にはならない。 7 よって、高速な攪拌作用時における攪拌羽根の周速は脱
灰率が飛躍的に向上する12.5m/s以上とすること
が望ましい。また、攪拌羽根の周速が12、5 m/ 
s未満では脱灰率が急減するので、高速な攪拌作用時に
おける攪拌羽根の周速は、下限を12.5 m / s
にし、攪拌エネルギーの消費に対する造粒炭の大径限度
から見て上限を30 m / 8とすることが経済的に
好ましい。特に、高脱灰率を望む場合には、攪拌羽根の
周速を、高速な攪拌作用の時点に(25m / s 〜
30 m / s )セットすることが好ましく、この
周速25m/s〜30m / gの範囲では、造粒炭の
平均粒径はl 111以上にはならない。よって、混合
液を、造粒炭の平均粒径が1111以上にならない状態
に維持される速さで攪拌することを高速な攪拌作用とし
て混合液に与え、次に低速な攪拌作用を混合液に与える
ことが脱灰率の向上と回収率の向上とにおいて、極めて
良い結果が得られる。また、低速な攪拌作用は、造粒炭
の平均粒径が3n以上となるようにセットすることによ
り、回収率は、粗さが0.5 t*のふるいを使用した
際にほぼ100%に達して、極めて高い回収率を示す。 〔発明の効果〕 以上の如く、本発明では、微粉炭と水とのスラリー液と
結合剤との混合液に高速な攪拌作用を与えて結合剤を微
粉炭に充分に付着させ、その後に低速な攪拌作用を混合
液に与えて、造粒炭を大径化するとともに灰分含有率の
低い状態とするので、脱灰率の高い造粒炭を高い率で回
収できるという効果が得られる。 4、図面の簡単な説明 第1図は本発明の第1の実施例であって、石炭の造粒装
置の断面図である。第2図は本発明を説明するグラフで
あって、攪拌時間(横軸)と造粒炭の平均粒径(縦軸)
との関係を示す。第3図は本発明を説明するグラフ図で
あって、造粒炭の平均粒径(横軸)と石炭回収率(縦軸
)との関係を示す。第4図は本発明を説明するグラフ図
であって、攪拌羽根の周速(横軸) と脱灰率(左縦軸
)および造粒炭の平均粒径(右縦軸)との関係な示す。 第5図は本発明の第2の実施例による石炭の造粒装置の
断面図である。 1、、31.33・・・・・・攪拌槽、5,37.43
・・・・・・攪拌羽根、9.41.47・・・・・・モ
ーター、11・・・・・・結合剤、13・・・・・・水
と微粉炭とのスラリー液、49.53・・・・・・とい
、51・・・・・・ふるい 0
Fig. 1 is an autopsy cross-sectional view of the stirring device used in one embodiment of the present invention, Fig. 2 is a performance curve diagram showing the relationship between stirring time and particle size of granulated material at each stirring rotation speed, and Fig. 3 2 is a diagram showing the relationship between the recovery rates of coal treated with each performance curve in FIG. 2, and FIG. 4 is an autopsy cross-sectional view of a stirring equipment according to another embodiment of the present invention. 1... Stirring tank, 2... Stirrer, 3...
Baffle, 4...pulverized coal, water pulp, 5...
... Binder, 6 ... Particle size one-hour curve when rotating at low speed, 7 ... Calibration diameter one-hour curve when simultaneously stirring at high speed, 8
... Particle size one-hour curve during combined stirring rotation at high and low speeds, 9 ... Pelletization end point during low interstitial stirring rotation, 1
0...End point of granulation during high-speed stirring rotation, 11...
...Pelletization end point during high speed and low speed combined stirring rotation, 12
...... Granule recovery rate point during low oil stirring rotation, 13.
...Granulated material recovery rate point during combined mixing at high and low speeds,
14... Granule collection point during bird oil stirring rotation, 15,
16... Stirring device agent Patent attorney Susuki 1) Kochi Toshi 1 Figure 4 Continued from page 1 of Figure 4 Inventor Katsumi Muroi 502 Kandatecho, Tsuchiura City, Hitachi, Ltd. Mechanical Research Laboratory 0 Applicant: Hitachi, Ltd., No. 1, Marunouchi-5-chome, Chiyoda-ku, Tokyo Written amendment (from XA) Case description 1982 Patent Application No. 185345 Name of the bow invention Coal deashing method Name of the person making the amendment 1!1 (5101 Stock Co., Ltd. 11th
Representative name of Tachi Seisakusho 3 1) Masaru
Contents of the amendment by Shigeyo Osamu As shown in the appendix, the title of the invention in the amended specification is a method for granulating and deashing coal, which is below the scope of the claims, and the high-speed stirring action is based on the stirring ash method. DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for granulating and deashing coal. [Prior art] When burning a mixed fuel made by mixing heavy oil and coal in a boiler, in order to achieve a high combustion rate, it has traditionally been necessary to remove the ash and sulfur content from the coal before mixing the coal with the heavy oil. was considered. Conventionally, oil-in-water granulation is known as a method for removing ash from coal. The conventional oil-in-water granulation method is a method in which a mixed liquid prepared by adding a small amount of heavy oil to a slurry liquid of pulverized coal and water is stirred. According to this method, while the mixed liquid is being stirred, heavy oil that has good affinity for coal adheres to the pulverized coal, and the pulverized coals are combined with each other using the heavy oil as a binder to form granulated coal. In addition, ash, which has a weak affinity with heavy oil, floats in the mixed liquid in a state separated from the pulverized coal without being significantly bonded. Here, when the mixed liquid is passed through a sieve, the granulated coal having a large diameter remains on the sieve, and the mixed liquid and ash pass through the sieve and are discharged. Therefore, granulated coal with a low ash content is collected on the sieve. In such an oil-in-water granulation method, pulverized coal is made into large-diameter granulated coal that can be recovered at a high rate by sieving. However, in the conventional oil-in-water granulation method,
In order to improve the coal recovery rate, the mixed liquid was merely given a slow stirring action that tends to cause the diameter of the granulated coal to increase. For this reason, the pulverized coals bond together before the binder is sufficiently attached to the pulverized coals. Therefore, it is difficult to fill the bonding spaces between the pulverized coal with a binder and prevent water and ash from forming between the pulverized coals. Therefore, the granulated coal produced by the combination of pulverized coal contains a large amount of water and ash. [Object of the Invention] The object of the present invention is to recover the pulverized coal in the slurry liquid as granulated coal at a high rate, and at the same time to improve the deashing rate. [Summary of the Invention] The basic constituent elements of the present invention are a granulation method in which a mixed solution of a slurry of pulverized coal and water and a binder added is stirred;
A method of producing coal characterized by applying a high-speed stirring action to the mixed liquid to produce small-diameter granulated coal, and then applying a low-speed stirring action to the mixed liquid to enlarge the small-diameter granulated coal. This is a granulation deashing method, which prevents pulverized coal from becoming large-diameter granulated coal through high-speed stirring action, sufficiently attaches a binder to pulverized coal, and removes pulverized coal with a high ash content. away from the
Next, using a slow stirring action, the bonding state of the pulverized coal, which is filled with a binder to prevent moisture and ash from entering between the bonds, is rapidly promoted, and the particle size of the granulated coal is rapidly increased. As a result, large-diameter granulated coal that is easy to recover can be obtained with a high deashing rate. [Embodiment of the Invention] In FIG. 1, a plurality of baffles 3 are fixed to the inner surface of a stirring tank 1. A stirring blade 5 is placed in the stirring tank 1, and this blade 5 is fixed to a shaft 7. The shaft 7 extends upward and is connected to the rotating shaft of a variable speed electric motor 9. The motor 9 may be installed in the stirring tank l, or it may be installed in a separate part from the stirring tank l. A slurry liquid 13 with a concentration of 28% made by mixing pulverized coal (200 mesh powder - 80%) with water is placed in the stirring tank 1. Next, a binder 11 in the form of nibbles containing an amount of heavy oil with a coal-to-coal ratio of 30 inches is placed in the stirring tank 1. Next, the motor 9 is driven at a high rotation speed to rotate the blade 5 at a circumferential speed of 15 m/s. In this way, the mixed liquid of the binder 11 and the slurry liquid 13 is subjected to a high-speed stirring action by the blades 5, and further hits the baffle 3 to form a turbulent flow state and is well stirred. Due to the high-speed stirring action, the binder 11 is diffused throughout the slurry liquid and adheres well to the entire surface of the pulverized coal. The ash attached to the pulverized coal is separated from the pulverized coal by the high-speed stirring energy. This high speed stirring action continues for approximately 10 minutes. The song @15 shown in FIG. 2 shows the average particle size of the granulated coal obtained when a high-speed stirring action is continued to be applied to the mixed liquid in the stirring tank l for a long time. As is clear from this curve 15, under high-speed stirring action, the pulverized coal aggregates and the average particle size of the granulated coal increases to only about 13 mm (point 17). , the speed of increasing the diameter also becomes slower. In this state, even if you try to collect granulated coal with a sieve, a large amount of pulverized coal will pass through the sieve openings, and the recovery rate will drop to 95 inches (point 19 in Figure 3). It becomes uneconomical in terms of power. Therefore, the high-speed stirring action is limited to 10 minutes after the start of stirring. During this period of about 10 minutes, the pulverized coal is granulated to about 0.4 ml in diameter through a binder, thereby increasing its diameter. During this time, the mixed liquid in the stirring tank 1 is vigorously stirred by the high-speed stirring action, so that the binder 11 is sufficiently attached to the entire surface of each particle of pulverized coal within a short time. In this way, the entire surface is sufficiently coated with binder 11.
Ash that has low affinity with the binder 11 does not adhere to the pulverized coal coated with the pulverized coal, and only the pulverized coals bond with each other. After applying a high-speed stirring action to the mixed liquid for about 10 minutes, the rotational speed of the motor 9 is reduced to a low rotational speed, and the circumferential speed of the blade 5 is set to 9 m/s. In this way, the stirring tank l
A slow stirring action can be applied to the mixed liquid of the liquid 13 and the binder 11 inside. In this way, by reducing the stirring energy applied to the mixed liquid, the phenomena in which the bond of pulverized coal, that is, the granulated coal is destroyed or the promotion of the initial bonding state is disturbed due to large stirring energy, are reduced. Therefore, as shown in FIG. 2, the average particle size of the granulated coal gradually increases along the curve 15 for about 10 minutes, but after 10 minutes, the granulated coal increases as shown by the curve 21. The average particle size of the charcoal increases more rapidly than in the case of curve 15 (point)
At the same time as point 19 (45 minutes later), the temperature exceeds 311I as shown by point 23. When the average particle size of granulated coal reaches 311, the point shown in Figure 3)25
As shown, the coal recovery rate reaches nearly 100 cm, and the amount of pulverized coal passing through the sieve becomes almost zero. Moreover, in the early stage of stirring, the entire surface of the pulverized coal particles can be sufficiently coated with the binder 11 so that there is almost no uncoated part, so when the pulverized coal is combined, the bonding agent 11 The gap is now filled with the binder 11. For this reason, there is no room for moisture or ash to enter into the gaps between the bonds, and the ash content in the granulated coal is as low as 39% based on anhydrous coal. By the way, from the initial stage of stirring, slow stirring action is applied to slurry liquid 1.
If it continues to be added to the mixture of 3 and binder 11, the second
As shown in the curve n shown in the figure, after 45 minutes, the average particle diameter of the granulated coal becomes 3 mm larger at point) 29, so the coal recovery rate becomes as shown at point) 28 in Figure 3. It shows a value close to 100%. However, since the stirring action is slow, the binder 11 does not sufficiently adhere to the entire surface of the pulverized coal particles. Therefore, the bonding gaps between the pulverized coals are not filled with the binder 11, and moisture and ash tend to enter the bonding gaps. Therefore, the moisture and ash content in the granulated coal increases, and the ash growth rate shows a high value of 51% based on anhydrous coal. The pulverized coal (raw coal) used in this example has an ash content of 84% based on anhydrous coal, so it is initially added to a mixed solution of In one case where a high-speed stirring action is applied followed by a low-speed stirring action, the deashing rate is 54%. If the low-speed stirring action is continued from the beginning, the deashing rate will only reach 39 degrees, so the deashing rate is improved in this example. In this way, this embodiment has the advantage of being able to improve the coal recovery rate and the deashing rate at the same time. In this embodiment, the high-low speed stirring action is selected by switching the rotational speed of the variable speed motor 9, but the motor 9 is of a constant speed type, and the constant speed motor and shaft 6 are connected to each other. By connecting the two through a transmission and selecting the rotation speed of the wing bar 5 between high and low speeds by the transmission, it is possible to select a high or low speed stirring action. Another embodiment of the invention will be described below with reference to FIG. The stirring tank 31 is installed at a lower position than the stirring tank 31. A plurality of baffles are fixed inside each stirring tank 31, 33. A stirring blade 37 is arranged inside the stirring tank 31 . A shaft 39 is connected to the blade 37. A constant speed motor 4 is mounted on the shaft 39 to generate high speed rotation.
One rotating shaft is connected. The motor 41 is fixed to other members around the stirring tank 31. Similarly, a stirring blade 0 is arranged inside the stirring tank, and this blade 43 is connected to a motor 47 via a shaft 45. This motor 47 is a constant speed motor set to rotate at a low speed. The stirring tank 31 and the stirring tank 31 are connected to each other by a shaft 49. Further, the stirring tank and the sieve 51 are connected by a grate. The sieve 51 is attached to the tank 55. A drain pipe 57 is connected to the lower part of the tank 55. In such an embodiment, the same slurry liquid 1 as in the previous embodiment is used.
3 and the binder 11 are continuously injected into the stirring tank 31. The slurry liquid 13 and the binder 11 are subjected to a high-speed stirring action by blades that rotate at high speed by the rotational force of the motor 41. This ensures that the binder 1 is applied to the entire surface of the pulverized coal particles.
1 is attached. The pulverized coal to which the binder 11 has sufficiently adhered is
The mixed liquid of the slurry liquid and the binder 11 is introduced into the stirring tank 33 through the gutter 49. Inside this stirring tank,
The mixed liquid is subjected to a slow stirring action by the blade 431 rotated by the rotational force of the motor 47. Therefore, the average particle size of the granulated coal rapidly increases in the stirring tank. Moreover, since the pulverized coal has already been sufficiently coated with the binder 11 by the high-speed stirring action in the stirring tank 31, granulated coal is produced without moisture or ash entering into the bonding gaps of the pulverized coal. Therefore, granulated coal has a state in which the recovery rate is high due to the increase in diameter and a state in which the deashing rate is high. The granulated coal in the stirring tank is poured down onto the sieve 51 together with the mixed liquid. For this reason, the granulated coal accumulates on the sieve 51, and the ash-containing mixed liquid is poured into the tank 5. The mixed liquid containing ash is drained out of the tank 5 through a drain pipe 57. Therefore, granulated coal with a high deashing rate can be extracted with a high recovery rate. In this example, since the motors 41 and 47 are used for high-speed stirring and low-speed stirring, there is no need to worry about switching the motor rotation speed, and the motors 49 and 49 have both high-speed stirring action and low-speed stirring action. Separate stirring tanks 31, 3 connected
Since it is executed within 3 hours, it is possible to continuously create granulated coal.
Good processing efficiency. Further, in the case of this embodiment, the mixed liquid is likely to be subjected to a low-speed stirring action without being sufficiently subjected to a high-speed stirring action. This state is generally referred to as a short path. If this short pass occurs, the pulverized coal will not be sufficiently coated with the binder 11, resulting in a slightly lower deashing rate. Therefore, it is necessary to prevent this short pass. If it is necessary to prevent this short path, between both stirring tanks 31 and 33,
, 33, and another stirring tank is placed at the middle height of the stirring tank 31.
and another stirring tank, and then connect this other stirring tank and the bottom of the stirring tank with a wire. Furthermore, a stirring blade rotated by a motor that rotates at high speed is placed in the above-mentioned another stirring tank. In this case, a high-speed stirring action is applied to the mixed liquid in the stirring tank 31, and then the stirring tank 3
The mixed liquid in 1 is put into a stirring tank placed between the two stirring cypresses 31 and 33 using a hoop, and a high-speed stirring action is applied to the mixed liquid here as well, and then the mixed liquid is poured from the stirring tank placed in the middle. The mixed solution is poured into a stirring tank using a sieve, where a slow stirring action is applied to the mixed solution. According to this method,
The probability that the mixed liquid flows into the stirring seed part without being subjected to a sufficient high-speed stirring action is reduced, the binder can be sufficiently attached to the pulverized coal, and the deashing rate can be improved. In addition, if granulated coal that is not sufficiently large in diameter tends to flow into the sieve 51, another stirring tank may be installed between the stirring seed part and the sieve 51 at a lower position than the stirring tank. The agitating tank and the agitating tank 51 are connected with a comb, this separate agitating tank and the sieve 51 are connected with a comb, and a stirring blade rotated by a motor that rotates at a low speed is placed in this separate agitating tank. In this case, the mixed liquid that has been subjected to a high-speed stirring action in the stirring tank 31 is then subjected to a slow stirring action in the stirring tank, and then is poured into another stirring tank. In this separate stirring tank, the mixed liquid is subjected to a slow stirring action. Thereafter, the mixed liquid is drained onto a sieve 51. According to such a method, the probability that the liquid mixture is poured onto the sieve without being subjected to sufficient low-speed stirring action is reduced, and the granulated coal becomes sufficiently large in diameter and can be taken out onto the sieve. Further, in order to reliably provide a sufficient high-speed stirring action and a sufficient low-speed stirring action to the mixed liquid, the following method can be adopted. That is, the four stirring tanks are connected in series, and the mixed liquid that has been stirred at high speed in the first stirring tank is again stirred at high speed in the second stirring tank. A mixed solution subjected to a high-speed stirring action in a stirring tank is given a slow stirring action in a third stirring tank, and then a slow stirring action is given again to the mixed solution in a fourth stirring tank, The mixture is then poured from the fourth stirring tank onto a sieve. The heat of this method simultaneously reduces the probability that the mixture will not be subjected to sufficient high-speed agitation and instead will be subjected to low-speed agitation, and the probability that the mixed liquid will not be subjected to sufficient low-speed agitation and be poured onto the sieve. As a result, granulated coal with a large diameter and high deashing rate can be obtained. In any of the examples, the rotational speed of the stirring blade, the time for applying high-speed stirring action to the mixed liquid, and the time for applying low-speed stirring action to the mixed liquid are appropriate depending on the desired deashing rate and granule size. This is determined by the following. The relationship between the circumferential speed of the stirring blade, the average particle diameter of the granulated coal, and the deashing rate obtained by the present inventors is shown in a graph as shown in FIG. 4. That is, the circumferential speed of the stirring blade is 2.5 m 7' s or more1
In the range below orn/S, the deashing rate (solid line curve shown in Figure 4) is 30 to 40%, and the average particle size of granulated coal (dotted line curve shown in Figure 4) is 2 or more. When granulated coal with an average particle size of 2 tom or more is collected using a sieve with a roughness of 0.5 U+, which is commonly used in practice due to classification efficiency, the recovery rate is 99 or more, which is extremely high. It shows a high recovery rate. If the circumferential speed of the stirring blade is less than 2.5 m/'s, granulated coal will not be produced, or even if it is produced, the granulated coal will not be produced. The average particle size is not large and furthermore, deashing does not proceed.In particular, in cases where granulated coal is produced continuously in preparation for multiple stirring tanks in series, the circumferential speed of the stirring blade is 2.゜5 m /
If it is S, the stirring energy is weak, so the granulated coal will settle and will not flow out to the next cypress or onto the sieve, making it impossible to produce large-diameter granulated coal. Therefore, a slow stirring action for increasing the diameter of granulated coal that cannot be recovered means that the peripheral speed of the stirring blade is 2.5 m/s or more and 1
It is desirable that the speed is 0 m/s or less, and moreover, considering the safety factor, it should be 35 m/s or more and 9 m/s.
The following is preferable. Furthermore, as is clear from the graph in Figure 4, the deashing rate tends to increase as the peripheral speed of the stirring blade increases; when the peripheral speed is 12.57 n/s, the average particle size of the granulated coal is approximately 15
A noticeable bend can be seen at this point, and as the circumferential speed increases from this part, it becomes gentle and the circumferential speed reaches 2.5 m/s.
The demineralization rate reaches a maximum value of 60 cm between ~30 m/8 and does not reach a higher rate. 7. Therefore, it is desirable that the circumferential speed of the stirring blade during high-speed stirring is 12.5 m/s or more, which dramatically improves the deashing rate. In addition, the circumferential speed of the stirring blade is 12.5 m/
Since the deashing rate decreases rapidly below 12.5 m/s, the lower limit of the circumferential speed of the stirring blade during high-speed stirring action is 12.5 m/s.
It is economically preferable to set the upper limit to 30 m/8 in view of the large diameter limit of the granulated coal with respect to the consumption of stirring energy. In particular, when a high deashing rate is desired, the circumferential speed of the stirring blades should be set at a high speed of stirring (25 m/s ~
30 m/s), and within this circumferential speed range of 25 m/s to 30 m/g, the average particle size of the granulated coal does not exceed l111. Therefore, the mixed liquid is stirred at a speed that maintains the average particle size of the granulated coal not to exceed 1111 as a high-speed stirring action, and then a slow stirring action is applied to the mixed liquid. Very good results can be obtained in terms of improving the deashing rate and improving the recovery rate. In addition, by setting the slow stirring action so that the average particle size of the granulated coal is 3n or more, the recovery rate can be almost 100% when using a sieve with a roughness of 0.5 t*. reached, indicating an extremely high recovery rate. [Effects of the Invention] As described above, in the present invention, a high-speed stirring action is applied to a mixed liquid of a slurry of pulverized coal and water and a binder to sufficiently adhere the binder to the pulverized coal, and then a low-speed Since a stirring action is imparted to the mixed liquid to increase the diameter of the granulated coal and to reduce the ash content, it is possible to obtain the effect that granulated coal with a high deashing rate can be recovered at a high rate. 4. Brief Description of the Drawings FIG. 1 shows a first embodiment of the present invention, and is a sectional view of a coal granulating apparatus. Figure 2 is a graph explaining the present invention, in which stirring time (horizontal axis) and average particle diameter of granulated coal (vertical axis)
Indicates the relationship between FIG. 3 is a graph explaining the present invention, showing the relationship between the average particle diameter of granulated coal (horizontal axis) and coal recovery rate (vertical axis). Figure 4 is a graph explaining the present invention, showing the relationship between the peripheral speed of the stirring blade (horizontal axis), the deashing rate (left vertical axis), and the average particle diameter of granulated coal (right vertical axis). show. FIG. 5 is a sectional view of a coal granulator according to a second embodiment of the present invention. 1,,31.33... Stirring tank, 5,37.43
... Stirring blade, 9.41.47 ... Motor, 11 ... Binder, 13 ... Slurry liquid of water and pulverized coal, 49. 53...Sieve 0, 51...Sieve 0

Claims (1)

【特許請求の範囲】 1 石炭粒子と水とのバルブに疎水性の結合剤を加えて
攪拌作用を加える造粒方法において、先に高速回転暑こ
よる攪拌作用を加え、次憂こ低速回転による攪拌作用を
加えることを特徴とした石炭の脱灰方法。 2 高速回転による攪拌作用と低速回転による攪拌作用
とを同一攪拌処理槽内で攪拌機の回転数を変えて行うこ
とを特徴とする特許請求の範囲の第1項に記載の石炭の
脱灰方法。 3 高速回転による攪拌作用と低速回転による攪拌作用
とを連接した各攪拌処理槽内で別々に行うことを特徴と
する特許請求の範囲の@1項に記載の石炭の脱灰方法。
[Claims] 1. In a granulation method in which a hydrophobic binder is added to a valve between coal particles and water and a stirring action is applied, the stirring action is first applied by high-speed rotation, and then the stirring action is applied by low-speed rotation. A coal deashing method characterized by adding stirring action. 2. The coal deashing method according to claim 1, wherein the stirring action by high-speed rotation and the stirring action by low-speed rotation are performed in the same stirring treatment tank by changing the rotational speed of the stirrer. 3. The coal deashing method according to claim @1, characterized in that the stirring action by high-speed rotation and the stirring action by low-speed rotation are performed separately in each connected stirring treatment tank.
JP18534581A 1981-11-20 1981-11-20 Method for deashing coal Granted JPS5887195A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18534581A JPS5887195A (en) 1981-11-20 1981-11-20 Method for deashing coal
CA000410440A CA1180893A (en) 1981-11-20 1982-08-30 Method for agglomeration of coal particles and simultaneous ash removal therefrom
AU87862/82A AU538713B2 (en) 1981-11-20 1982-08-31 Agglomeration of coal particles and simultaneous ash removal therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18534581A JPS5887195A (en) 1981-11-20 1981-11-20 Method for deashing coal

Publications (2)

Publication Number Publication Date
JPS5887195A true JPS5887195A (en) 1983-05-24
JPH0144756B2 JPH0144756B2 (en) 1989-09-29

Family

ID=16169159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18534581A Granted JPS5887195A (en) 1981-11-20 1981-11-20 Method for deashing coal

Country Status (3)

Country Link
JP (1) JPS5887195A (en)
AU (1) AU538713B2 (en)
CA (1) CA1180893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824821B1 (en) * 2000-07-21 2004-11-30 Zachary Gillman Process for preparing compacted pigment granules, process for preparing encapsulated pigment granules, and process for dyeing landscaping and/or construction materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111390A (en) * 1980-12-27 1982-07-10 Sekitan Gijutsu Kenkyusho Production of deashed coal containing oil
JPS57126890A (en) * 1981-01-30 1982-08-06 Electric Power Dev Co Ltd Method for granulating coal in water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111390A (en) * 1980-12-27 1982-07-10 Sekitan Gijutsu Kenkyusho Production of deashed coal containing oil
JPS57126890A (en) * 1981-01-30 1982-08-06 Electric Power Dev Co Ltd Method for granulating coal in water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824821B1 (en) * 2000-07-21 2004-11-30 Zachary Gillman Process for preparing compacted pigment granules, process for preparing encapsulated pigment granules, and process for dyeing landscaping and/or construction materials
US8318246B2 (en) 2000-07-21 2012-11-27 Zachary Gillman Process for preparing compacted pigment granules, process for preparing encapsulated pigment granules, and process for dyeing landscaping and/or construction materials
US8945672B2 (en) 2000-07-21 2015-02-03 Interstar Materials Inc. Process for preparing compacted pigment granules, process for preparing encapsulated pigment granules, and process for dyeing landscaping and/or construction materials

Also Published As

Publication number Publication date
JPH0144756B2 (en) 1989-09-29
AU538713B2 (en) 1984-08-23
CA1180893A (en) 1985-01-15
AU8786282A (en) 1983-08-04

Similar Documents

Publication Publication Date Title
JPH0415021B2 (en)
US3665066A (en) Beneficiation of coals
JP2000167432A (en) Dredged sediment disposal method
US4346010A (en) Process for recovering fine coal particles from slurry of finely divided coal
US3230282A (en) Process and apparatus for separating materials
CA1138353A (en) Recovery of coal from coal handling operations
JP2020011863A (en) Method of producing modified fly ash
US4477353A (en) Method of reclaiming water and coal from coal treatment underflow by two-stage separation of solids
JPS6044085A (en) Concentrating method of sludge
JPS5887195A (en) Method for deashing coal
US4268417A (en) Method of making activated carbon
JP7177677B2 (en) DREDGED SOIL TREATMENT METHOD AND DREDGED SOIL TREATMENT DEVICE
US4089776A (en) Process for the separation of agglomerated carbonaceous particles from associated inorganic materials
CN114133122B (en) Method for reducing sludge viscosity through sludge pretreatment
JP3177756B2 (en) Processing equipment for suspensions containing metal hydroxides
WO2000002441A1 (en) Improved method for separating liquid manure into a solid and a filtrate
US4492638A (en) Method for agglomerating coal particles in pulp water
JPS63182009A (en) Solid and liquid separator of raw water such as sludge
JPS5817615Y2 (en) Suspension granulation separation concentration equipment
JPH0138435B2 (en)
CN205613560U (en) Hierarchical thickness separating centrifuge of double helix frequency conversion
JPH0369600B2 (en)
SU1125050A1 (en) Method of dewatering coal hydraulic mixture
JPH06262183A (en) Treatment of muddy water treatment device
JP3368977B2 (en) Solid-liquid separation device