JPS5886872A - Variable-voltage variable-frequency power source - Google Patents

Variable-voltage variable-frequency power source

Info

Publication number
JPS5886872A
JPS5886872A JP56184681A JP18468181A JPS5886872A JP S5886872 A JPS5886872 A JP S5886872A JP 56184681 A JP56184681 A JP 56184681A JP 18468181 A JP18468181 A JP 18468181A JP S5886872 A JPS5886872 A JP S5886872A
Authority
JP
Japan
Prior art keywords
signal
speed command
command signal
overcurrent
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56184681A
Other languages
Japanese (ja)
Inventor
Kuniaki Mukai
向井 邦昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56184681A priority Critical patent/JPS5886872A/en
Publication of JPS5886872A publication Critical patent/JPS5886872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Abstract

PURPOSE:To prevent an electric motor from being burnt by an overcurrent at low speed without any reduction in torque of the motor at low speed, by varying an overcurrent setting signal in accordance with a speed command signal. CONSTITUTION:A function generator 15 into which a speed command signal from a speed setting device is fed is connected to the input side of an overcurrent setting device 7. The function generator 15 receives the speed command signal and dilivers an overcurrent setting signal regulated in consideration of allowable current-time characteristics in accordance with the number of revolutions of an electric motor 5 and so that a current demanded by an ordinary load will sufficiently be supplied. A comparator 8 and an integrator 9 perform a comparison as to the magnetudes between the overcurrent setting signal set by the overcurrent setting device 7 and a motor current feedback signal, and integrate the difference therebetween.

Description

【発明の詳細な説明】 1)発明の技術分野 本発明は可変電圧可変周波数電源装置に係り、特に交流
電動機を可変速駆動することを主目的と■ した場合に効果的な過電流検出回路を具備する可変電圧
可変周波数電源装置に関する。
[Detailed Description of the Invention] 1) Technical Field of the Invention The present invention relates to a variable voltage variable frequency power supply device, and particularly relates to an effective overcurrent detection circuit when the main purpose is to drive an AC motor at variable speed. The present invention relates to a variable voltage variable frequency power supply device.

2)−1第1の従来技術 従来の可変電圧可変周波数電源装置の一例を第1図のブ
ロック図に示す。同図中1は交流電源を整流する整流器
、2は整流器1の出力である直流電圧を平滑する平滑コ
ンデンサ、3は直流電圧を交流変換するインバータ、5
はイ/ノく一夕3の出力に接続される電動機、4はイン
ノく−ク3の出力電流を検出する電流検出器、6は電流
検出器4の出力を直流変換する整流器、7は電動機5に
対する過電流の基準値を設定する過電流設定器、8は整
流器6の出力と過電流設定器7の出力とを央き合せる比
較器、9は比較器8の出力を積分して過電流信号OLを
出力する積分器、lOは速度指令信号の速度設定器、1
1は速度指令信号に応じた同波数の信号を発生する電圧
周波数変換回路、Uは電圧周波数変換回路11の出力信
号をパルス列に変換するリングカウンタ、13はリング
カウンタUの出力信号を速度指令信号に基いてパルス幅
変調された信号に変換するパルス幅変調回路、14はパ
ルス幅変調信号に基いてインバータ3の各素子を駆動す
ると共に過電流信号OLKよりインバータ3に与える信
号を阻止される駆動増幅器である。
2)-1 First Prior Art An example of a conventional variable voltage variable frequency power supply device is shown in the block diagram of FIG. In the figure, 1 is a rectifier that rectifies the AC power supply, 2 is a smoothing capacitor that smoothes the DC voltage that is the output of the rectifier 1, 3 is an inverter that converts the DC voltage to AC, and 5
4 is a current detector that detects the output current of 3, 6 is a rectifier that converts the output of current detector 4 to DC, 7 is a motor 8 is a comparator that centers the output of rectifier 6 and the output of overcurrent setter 7, and 9 integrates the output of comparator 8 to determine the overcurrent. An integrator that outputs a signal OL, IO is a speed setter for a speed command signal, 1
1 is a voltage frequency conversion circuit that generates a signal with the same wave number according to the speed command signal, U is a ring counter that converts the output signal of the voltage frequency conversion circuit 11 into a pulse train, and 13 is a speed command signal that converts the output signal of the ring counter U. A pulse width modulation circuit 14 converts the signal into a pulse width modulated signal based on the pulse width modulation signal, and 14 is a drive circuit that drives each element of the inverter 3 based on the pulse width modulation signal and prevents a signal from being applied to the inverter 3 based on the overcurrent signal OLK. It's an amplifier.

かかる構成に於いて、図示しない電源手段から入力され
た交流電源は整流器1により整流され直流電圧に変換さ
れ、平滑コンデンサ2により平滑される。インバータ3
には平滑された直流電圧が供給されるが、ここで直流電
圧は可変周波数可変電圧の交fILK変換された上で電
動機5に供給される。
In this configuration, AC power input from a power supply means (not shown) is rectified by a rectifier 1 and converted into a DC voltage, which is then smoothed by a smoothing capacitor 2. Inverter 3
A smoothed DC voltage is supplied to the motor 5, and the DC voltage is supplied to the electric motor 5 after being subjected to AC fILK conversion of a variable frequency variable voltage.

一方、蓮度設定器10からの速度指令信号は電圧周波数
変換回路11に接続され、ここで速度指令信号はその値
に比例した同波数のパルス列に変換さ′れリングカウン
タ12に入力される。リングカウンタ校は入カバルスを
負荷相数に応じた相数(3相電動機なら6相)のパルス
列に変換し、このパルス列を速度指令信号と共にパルス
幅変調回路13に入力する。パルス幅変調回路13に入
力されたパル゛ス列は速度指令信号に比例したパルス幅
のパルス列に変調され、インバータ3を構成する各スイ
ッチング要素の信号源となる。パルス幅変調回路13の
出力はインバータ3を構成する各スイッチング要素の駆
動増巾i!)14を経てインバータ3に接続される。
On the other hand, the speed command signal from the lotus setting device 10 is connected to a voltage frequency conversion circuit 11, where the speed command signal is converted into a pulse train of the same wave number proportional to the value and inputted to a ring counter 12. The ring counter converts the input pulse into a pulse train with the number of phases corresponding to the number of load phases (six phases in the case of a three-phase motor), and inputs this pulse train to the pulse width modulation circuit 13 together with the speed command signal. The pulse train input to the pulse width modulation circuit 13 is modulated into a pulse train with a pulse width proportional to the speed command signal, and serves as a signal source for each switching element constituting the inverter 3. The output of the pulse width modulation circuit 13 is the drive width i! of each switching element constituting the inverter 3. ) 14 to the inverter 3.

また、電流検出器4の出力は整流器6により整流され比
較器8に入力される。比較器8のも5一方の入力端子に
は過電流設定器7の出力である過電流基準が接続されて
おり、得られた差分は積分器9により積分される。その
結果、差分の累積値が一定の値に達すると過電流信号、
OLが発生して駆動増幅器14の出力を阻止する。
Further, the output of the current detector 4 is rectified by a rectifier 6 and input to a comparator 8. An overcurrent reference, which is the output of the overcurrent setter 7, is connected to one input terminal of the comparator 8, and the obtained difference is integrated by an integrator 9. As a result, when the cumulative value of the difference reaches a certain value, an overcurrent signal is generated.
OL is generated and blocks the output of the drive amplifier 14.

以上述べた如く構成される従来の可変電圧可変周波数電
源装置は、速度設定器10からの速度指令信号により速
度指令信号に応じた周波数のパルスを電圧周波数変換回
路11により発生し、このパルスをリングカウンタUで
インバータ3を構成する各スイッチング要素のそれぞれ
の信号源として多相の信号に分配し、パルス幅変調回路
Bで速度指令信号に応じたパルス幅のパルスに変調しり
上で、こ7tを駆動増幅器14で絶縁増幅してインバー
タ3の各素子を駆動する。その結果、速度指令信号に応
じた周波数と電圧の電力が負荷である電動様5に供給さ
れ、電動機5は可変速制御されることとなる。
The conventional variable voltage variable frequency power supply device configured as described above uses a speed command signal from a speed setter 10 to generate a pulse with a frequency corresponding to the speed command signal by a voltage frequency conversion circuit 11, and converts this pulse into a ring. The counter U distributes the signals into multi-phase signals as respective signal sources for each switching element constituting the inverter 3, and the pulse width modulation circuit B modulates the pulses with a pulse width according to the speed command signal. The drive amplifier 14 performs isolation amplification to drive each element of the inverter 3. As a result, electric power with a frequency and voltage according to the speed command signal is supplied to the electric motor 5, which is a load, and the electric motor 5 is controlled at variable speed.

一方、インバータ3から電動機5に供給される電流は電
流検出器4で検出され整流器6で直流変換された上で比
較器8に入力され、ここで過電流設定器7の出力と比較
される。その結果得られた差分は積分器9で積分され、
積分器9の出力が一定しペルに達すると駆動増幅器14
からインバータ3に至る出力を阻止すると共に過電流信
号OLとして外部へ出力する。その結果、電動機5の保
護が行なわれると共にその事を外部から知ることが出来
る。しかも、この場合、電動機5の電流の過電流設定信
号に対する差が大きければ大きいほど過電流信号OLが
早く出るため、熱動形の過電流継電器と似た特性が得ら
れることとなる。
On the other hand, the current supplied from the inverter 3 to the motor 5 is detected by a current detector 4, converted to DC by a rectifier 6, and then input to a comparator 8, where it is compared with the output of an overcurrent setting device 7. The resulting difference is integrated by an integrator 9,
When the output of the integrator 9 becomes constant and reaches pel, the drive amplifier 14
It prevents the output from reaching the inverter 3 and outputs it to the outside as an overcurrent signal OL. As a result, the electric motor 5 is protected and this can be known from the outside. Furthermore, in this case, the greater the difference between the current of the motor 5 and the overcurrent setting signal, the earlier the overcurrent signal OL appears, so that characteristics similar to those of a thermal overcurrent relay can be obtained.

2)−2第1の従来技術の欠点 しかしながら、電動機5を可変速駆動する場合、電動機
5を低速で回転させる場合と高速で回転させる場合とで
は電動機5の回転による冷却効果が異なるので低速時の
電動機許容電流は高速時よりも小さくしなければならな
い。ところが、第1図に示した従来の可変電圧可変周波
数電源装置では、過電流設定信号が速度指令信号に無関
係に一定で、電動機5の定格電流を基準として与えられ
ているため、低速時に電動機5の保護ができないという
欠点があった。
2)-2 Disadvantage of the first conventional technology However, when the electric motor 5 is driven at variable speed, the cooling effect due to the rotation of the electric motor 5 is different depending on whether the electric motor 5 is rotated at low speed or high speed. The allowable motor current for the motor must be smaller than that at high speed. However, in the conventional variable voltage variable frequency power supply device shown in FIG. 1, the overcurrent setting signal is constant regardless of the speed command signal and is given based on the rated current of the motor 5. The disadvantage was that it could not protect the

3)第2の従来技術およびその欠点 これに対して、従来技術の他の例として、電流制御のマ
イナーループをもつ可変電圧可変周波数電源装置が知ら
れているが、これは速度指令信号に応じて電流制御アン
プの電流基準入力のlツタ値を変えることにより低回転
時の電流制限値を低く抑える方法を採るものであるが、
この場合は低回転時のトルクも抑えられるため起動トル
ク不足を生ずるおそれがあった。
3) Second prior art and its drawbacks On the other hand, as another example of the prior art, a variable voltage variable frequency power supply device with a minor loop of current control is known, but this This method employs a method of keeping the current limit value at low rotations low by changing the l peak value of the current reference input of the current control amplifier.
In this case, since the torque at low rotations is also suppressed, there is a risk of insufficient starting torque.

4)発明の目的 従って、本発明の目的は上記従来技術の欠点をなくし、
電動機の低速時のトルクを減少させることなく低速時の
過電流による焼損を防止して、効果的に負荷の保護を行
うことを可能とした可変電圧可変周波数電源装置を提供
するにある。
4) Purpose of the Invention Therefore, the purpose of the present invention is to eliminate the drawbacks of the prior art mentioned above,
To provide a variable voltage variable frequency power supply device capable of effectively protecting a load by preventing burnout due to overcurrent at low speeds without reducing the torque of a motor at low speeds.

5)発明の構成 上記目的を達成するために、本発明に於いては可変電圧
可変周波数電源装置を直流を可変同波数・可変電圧の交
流に変換して負荷に供給するインバータと、負荷電流を
検出する手段と、速度指令信号に応じた制御信号でイン
バータを駆動する駆動回路と、速度指令信号に対して予
め定められた関数関係を有する基準信号を発生する手段
と、基準信号と負荷電流の差分を演算する演算手段と、
演算手段からの差分信号を積分する積分手段と、積分手
段の出力に基いてインバータを停止させる手段とから構
成した。
5) Structure of the Invention In order to achieve the above object, the present invention comprises a variable voltage variable frequency power supply device including an inverter that converts direct current into alternating current with variable frequency and variable voltage and supplies it to a load, and a load current a drive circuit for driving the inverter with a control signal corresponding to the speed command signal; a means for generating a reference signal having a predetermined functional relationship with respect to the speed command signal; calculation means for calculating the difference;
It consists of an integrating means for integrating the difference signal from the calculating means, and a means for stopping the inverter based on the output of the integrating means.

6)発明の実施例 以下、図面に従って本発明の詳細な説明する。6) Examples of the invention Hereinafter, the present invention will be described in detail with reference to the drawings.

〈構成〉 第2図は本発明の一実施例に係る可変電圧可変周波数電
源装置のブロック図で、本実施例が第1図に示す従来例
と異なる点は、過電流設定器7の入力として速度設定器
10からの速度指令信号を入力とする関数発生器腸を接
続したことである。この関数発生善玉は速度指令信号を
入力して、電動機5の回転数による許容電流一時間特性
を考慮し、しかも通常の負荷の要求する電流を充分に供
給するように調整された過電流設定器号を出力するもの
である。
<Configuration> FIG. 2 is a block diagram of a variable voltage variable frequency power supply device according to an embodiment of the present invention. The difference between this embodiment and the conventional example shown in FIG. This is because a function generator which inputs the speed command signal from the speed setting device 10 is connected. This function generator is an overcurrent setting device that inputs the speed command signal, takes into account the allowable current hourly characteristics depending on the rotation speed of the motor 5, and is adjusted to supply enough current required by the normal load. This outputs the number.

第3図は第2図に示した関数発生器15と過電流設定器
7と比較器8及び積分器9の詳細な回路の一例を示す回
路構成図で、速度指令VRは抵抗151を介して演算増
幅器155の負入力端子に接続されているが、この負入
力端子は別に抵抗152を介して負電源に接続されてい
る。一方、演算増幅器155の出力端子とその負入力端
子の間には抵抗153、定電圧ダイオード154から成
る並列回路が接続されている。演算増幅器155の正入
力端子は接地されている。なお、演算増幅器155の出
力端子は過電流基準設楚用の可変抵抗7′の一端に接続
され、可変抵抗7′の他端は接地されている。
FIG. 3 is a circuit configuration diagram showing an example of a detailed circuit of the function generator 15, overcurrent setter 7, comparator 8, and integrator 9 shown in FIG. It is connected to a negative input terminal of an operational amplifier 155, but this negative input terminal is separately connected to a negative power supply via a resistor 152. On the other hand, a parallel circuit consisting of a resistor 153 and a constant voltage diode 154 is connected between the output terminal of the operational amplifier 155 and its negative input terminal. The positive input terminal of operational amplifier 155 is grounded. The output terminal of the operational amplifier 155 is connected to one end of a variable resistor 7' for setting an overcurrent reference, and the other end of the variable resistor 7' is grounded.

そして、可変抵抗7′の中間端子は抵抗器悼を介して演
算増幅器例の負入力端子に接続されてい慧。
The intermediate terminal of the variable resistor 7' is connected to the negative input terminal of the operational amplifier via a resistor.

この負入力端子には、別に抵抗器81が接続されており
、この抵抗器81の他端は接地されている。一方、電動
機5の電流のフィードバック信号IFは抵抗器部を介し
て演算増幅器例の正入力端子に接続されるが、この正入
力端子には別に抵抗器制が接続されており、この抵抗器
鋺の他端は接地される。演算増幅器例の負入力端子と出
力端子との間には抵抗器91とコンデンサ92との直列
回路及び薙電圧ダイオード郭が並列に接続されている。
A resistor 81 is separately connected to this negative input terminal, and the other end of this resistor 81 is grounded. On the other hand, the feedback signal IF of the current of the motor 5 is connected to the positive input terminal of the operational amplifier via the resistor section, but a resistor system is separately connected to this positive input terminal, and this resistor is connected to the positive input terminal. The other end of is grounded. A series circuit of a resistor 91 and a capacitor 92 and a voltage diode circuit are connected in parallel between the negative input terminal and the output terminal of the example operational amplifier.

なお、演算増幅器この出力は過電流検出信号OLとなる
Note that the output of this operational amplifier becomes the overcurrent detection signal OL.

つまり、抵抗器151 、152 、154、定電圧ダ
イオード153、演算増幅器155によって関数発生器
15が構成され、抵抗器81 、82 、83 、84
によって比較器8が、抵抗器91、コンデンサ92、定
電圧ダイオード郭、演算増幅器例によって積分器9がそ
れぞれ構成されているものである。
In other words, the function generator 15 is configured by the resistors 151 , 152 , 154 , the constant voltage diode 153 , and the operational amplifier 155 , and the resistors 81 , 82 , 83 , 84
The comparator 8 is constructed by the resistor 91, the capacitor 92, the constant voltage diode circuit, and the integrator 9 by the example of the operational amplifier.

〈作用〉 かかる構成に於いて、次にその動作を第4図(a)。<Effect> In this configuration, the operation is shown in FIG. 4(a).

(b) 、 (c)の特性図に従って説明する。ちなみ
に、第4図((転)は関数発生器:15の入力である速
度指令信号VBと出力信号v1の関係を示す特性図、第
4図ら)は過電流検出時の電流値対時間の関係を示す特
性図、第4図(e)は速度指令信号VBと過電流検出時
間TOLの関係を示す特性図である。
This will be explained according to the characteristic diagrams (b) and (c). By the way, Fig. 4 ((r) is a characteristic diagram showing the relationship between the speed command signal VB, which is the input of the function generator 15, and the output signal v1, and Fig. 4 et al.) shows the relationship between the current value and time at the time of overcurrent detection. FIG. 4(e) is a characteristic diagram showing the relationship between the speed command signal VB and the overcurrent detection time TOL.

演算増幅器1550入力は速度指令信号VB (負極性
)と負の一定電圧−Vであるため、抵抗151゜152
 、154ノ抵抗値ヲソレぞ1Rtst 、 R處、 
Rmとすると、演算増幅器155の出力信号■1はRI
B4 、vRRtsa ” に−””R’TiT   −Ii” )  ”(1
)となるか′ら、第4図(a)に示すように速度指令信
号vRが101のとき出力信号V!は正の一定電圧とな
り、速度指令信号VRが負側に増すにっれて出力信号V
1.が増え、出力信号Vxが定電圧ダイオード153に
よりクランプされる電圧に迫するとそれ以上は速度指令
信号VBが増しても出力信号v1は増えない、この演算
増幅器155の出力信号V!、つまり関数発生器15の
出力が過電流設定器70入力電圧となるから、過電流設
定器7の出力は演算増幅器155の出力信号VI K比
例する。
Since the operational amplifier 1550 input is the speed command signal VB (negative polarity) and a constant negative voltage -V, the resistance 151°152
, the resistance value of 154 is 1Rtst, R,
Rm, the output signal ■1 of the operational amplifier 155 is RI
B4, vRRtsa ” to -””R'TiT-Ii”) ”(1
), as shown in FIG. 4(a), when the speed command signal vR is 101, the output signal V! becomes a constant positive voltage, and as the speed command signal VR increases to the negative side, the output signal V
1. increases, and when the output signal Vx approaches the voltage clamped by the constant voltage diode 153, the output signal v1 does not increase even if the speed command signal VB increases beyond that point, the output signal V! of the operational amplifier 155! That is, since the output of the function generator 15 becomes the input voltage of the overcurrent setting device 70, the output of the overcurrent setting device 7 is proportional to the output signal VIK of the operational amplifier 155.

一方、比較器8と積分器9は過電流設定器7による過電
流設定信号と電動機電流フィードバック信号IFとの大
小を比較し、ぞの差分な積分するはたらきをするが、こ
こで、過電流設定信号をInとし、更に説明を簡単にす
るために抵抗器社とU。
On the other hand, the comparator 8 and the integrator 9 function to compare the magnitude of the overcurrent setting signal from the overcurrent setting device 7 and the motor current feedback signal IF and integrate the difference between them. The signal is In, and to simplify the explanation, Resistor Co. and U.

羽と羽の抵抗値がそれぞれ等しいとする。この場合、過
電流設定信号Iiiの方が電動機電流フィードバック信
号Iyより大きい間は演算増幅器94の出力は負となり
、定電゛圧ダイオード郭の順方向ドルツブ電圧、約−1
v以下の電圧にクランプされる。一方、電動積電+31
フィードバック信号IFの方が過電流設定信号Illよ
り大きくなると演算増幅器−の出力は正になりコンデン
サ92が抵抗器91を通して比較器8の抵抗値で決まる
等価入力抵抗  。
Assume that the resistance values of the wings are equal. In this case, while the overcurrent setting signal Iii is larger than the motor current feedback signal Iy, the output of the operational amplifier 94 becomes negative, and the forward drub voltage of the constant voltage diode circuit is approximately -1.
It is clamped to a voltage below v. On the other hand, electric stacking +31
When the feedback signal IF becomes larger than the overcurrent setting signal Ill, the output of the operational amplifier becomes positive, and the capacitor 92 passes through the resistor 91 to reach an equivalent input resistance determined by the resistance value of the comparator 8.

とコンデンサ4の容量とで決まる時定数で充電される。It is charged with a time constant determined by the capacitance of the capacitor 4 and the capacitor 4.

この充電による電圧上昇の速さは電動機電flyイード
パック信号IFと過電流設定信号IRとの電圧差に比例
する。演算増幅器94の出力が正の一定電圧になったと
き、過電流検出信号OLは信号1有1と判断され、過電
流検出信号OLが検出されることとなる。この場合、過
電流検出信号OLが検出されるまでの時間と電動機5の
電流の関係は第4図中)に示すように反比例の関係とな
る。このことは、従来の過電流検出回路9でも同様であ
る。本発明のポイントは過電流設定信号を速度積  ゛
令信号により変えることであり、過電流設定信号Inは
速度指令信号VBに対して第4図(Jl)の出力信号V
tと同じ関係にあるから、速度指令信号Vmが低い値の
ときは同じ電動機電流に対して演算増幅器飼の入力差電
圧が大きくなるから、演算増幅器%の出力電圧の上昇速
度が速くなり過電流検出信号oLy極出するまでの時間
が速くなる。すなわち、同じ電動機電流の場合、過電流
検出信号OLの検出時間TOLと速度指令との関係はと
なる。但し、これは速度指令信号VRと過電流設定信号
IRとが比例している区間のみで成立する。また、K、
Xl、Kgは定数である。
The speed of voltage rise due to this charging is proportional to the voltage difference between the motor electric fly pack signal IF and the overcurrent setting signal IR. When the output of the operational amplifier 94 becomes a constant positive voltage, the overcurrent detection signal OL is determined to be a signal 1 or 1, and the overcurrent detection signal OL is detected. In this case, the relationship between the time until the overcurrent detection signal OL is detected and the current of the motor 5 is inversely proportional as shown in FIG. This also applies to the conventional overcurrent detection circuit 9. The key point of the present invention is to change the overcurrent setting signal by the speed product command signal, and the overcurrent setting signal In is changed from the output signal V in FIG. 4 (Jl) with respect to the speed command signal VB.
Since the relationship is the same as that of t, when the speed command signal Vm is a low value, the input differential voltage of the operational amplifier increases for the same motor current, so the rising speed of the output voltage of the operational amplifier becomes faster and overcurrent occurs. The time it takes for the detection signal oLy to reach its peak becomes faster. That is, in the case of the same motor current, the relationship between the detection time TOL of the overcurrent detection signal OL and the speed command is as follows. However, this is true only in the section where the speed command signal VR and the overcurrent setting signal IR are proportional. Also, K.
Xl and Kg are constants.

〈効果〉 従って、電動機5の速度に対する過電流検出時間TOL
の関係は第4図(C)に示すような特性となり、電動機
5の回転速度が低いほど過電流検出時間TOLが短かく
なり、従って低回転時における電動機の過負荷を防止す
ることができる。
<Effect> Therefore, the overcurrent detection time TOL with respect to the speed of the motor 5
The relationship is as shown in FIG. 4(C), and the lower the rotational speed of the electric motor 5, the shorter the overcurrent detection time TOL becomes, thus making it possible to prevent overloading of the electric motor at low rotational speeds.

7)発明の変形例 なお、第3図の構成では関数発生器15の特性として1
個の折点な持つ折れ線特性の場合を例示したが、電動機
特性に応じて任意の関数特性を持つ様にしてもよいこと
は勿論である。また、第2図の実施例では、電動機5の
電流検出を交流側で行う場合を例示したが、これを直流
側で行ないピーク値で検出することもできる。
7) Modification of the invention In the configuration shown in FIG. 3, the characteristic of the function generator 15 is 1.
Although the case of a polygonal line characteristic having individual breakpoints has been exemplified, it is of course possible to have an arbitrary functional characteristic depending on the motor characteristics. Further, in the embodiment shown in FIG. 2, a case has been illustrated in which the current of the motor 5 is detected on the AC side, but it is also possible to perform this on the DC side and detect the peak value.

8)発明の効果 以上述べた如く、本発明によれば電子式過電流保護回路
の過電流設定信号を速度指令信号に応じて変えることに
よって、電動機の低速運転時に電動機の回転数に対応し
た許容電流対時間特性の許容範囲内で過電流検出を行う
ことを可能とし、結果として電動機の低回転時9冷却効
果減退からく・る許容電流の低下に合わせて過電流検出
時間を速め、しかも短時間の電流制限値は変えないこと
により低回転時の起動トルクを減じることなく低回転時
の過電流による電動機焼損を防止することができる新規
の可変電圧可変周波数電源装置を得ることが出来るもの
である。
8) Effects of the Invention As described above, according to the present invention, by changing the overcurrent setting signal of the electronic overcurrent protection circuit in accordance with the speed command signal, the tolerance corresponding to the rotational speed of the motor can be adjusted during low-speed operation of the motor. It is possible to perform overcurrent detection within the allowable range of current vs. time characteristics, and as a result, the overcurrent detection time is accelerated and shortened in accordance with the decrease in allowable current due to the decrease in cooling effect at low rotation speeds of the motor. By not changing the time current limit value, it is possible to obtain a new variable voltage variable frequency power supply device that can prevent motor burnout due to overcurrent at low rotation speeds without reducing starting torque at low rotation speeds. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可変電圧可変周波数電源装置のブロック
図、第2図は本発明の一実施例に係る可変電圧可変周波
数電源装置のブロック図、第3図は第2図の一部の構成
を詳細に示す回路構成図、第4図(a) 、 (b) 
、 (c)は第2図、第3図の構成の動作を説明する特
性図である。 1・・・整流器、3・・・インバータ、5・・・電動機
、4・・・電流検出器、10・・・速度設定器、14・
・・駆動増幅器、7・・・過電流設定器、8・・・比較
器、9・・・積分器、15・・・関数発生器。 出願人代理人  猪  股    清 1F、1  図 ′#h20 市3図 市4図
FIG. 1 is a block diagram of a conventional variable voltage variable frequency power supply device, FIG. 2 is a block diagram of a variable voltage variable frequency power supply device according to an embodiment of the present invention, and FIG. 3 is a partial configuration of FIG. 2. Circuit configuration diagram showing details, Figure 4 (a), (b)
, (c) is a characteristic diagram illustrating the operation of the configurations shown in FIGS. 2 and 3. DESCRIPTION OF SYMBOLS 1... Rectifier, 3... Inverter, 5... Electric motor, 4... Current detector, 10... Speed setting device, 14...
... Drive amplifier, 7... Overcurrent setter, 8... Comparator, 9... Integrator, 15... Function generator. Applicant's agent Kiyoshi Inomata 1F, 1 Figure '#h20 City 3 Figure City 4

Claims (1)

【特許請求の範囲】 1、直流を可変同波数、可変電圧の交流に弯換して負荷
に供給するインバータと、負荷電流を検出する手段と、
速度指令信号に応じた制御信号でインバータを駆動する
駆動回路と、速度指令信号に対して予め定められた関数
関係を有する基準信号、を発生する手段と、基準信号と
負荷電流の差分な演算する演算手段と、演算手段からの
差分信号を積分する積分手段と、積分手段の出力に基い
てインバータを停止させる手段とから成ることを特徴と
する可変電圧可変周波数電源装置。 2 基準信号は速度指令信号が低速を指令する時に小さ
い値、高速を指令する時に大きな値となる傾向を有する
関数関係に調定されることを特徴とする特許請求の範囲
第1項に記載の可変電圧可変周波数電源装置。 3、基準信号は速度指令信号が一定の値以下の時に略々
速度指令信号に比例し、速度指令信号が一定の値より大
の時に略々一定の信号となる如く調定されることを特徴
とする特許請求の範囲第2項に記載の可変電圧可変周波
数電源装置。
[Claims] 1. An inverter that converts direct current into alternating current with a variable frequency and variable voltage and supplies the converted alternating current to a load, and means for detecting load current;
A drive circuit that drives an inverter with a control signal corresponding to a speed command signal, a means for generating a reference signal having a predetermined functional relationship with respect to the speed command signal, and a means for generating a difference between the reference signal and a load current. 1. A variable voltage variable frequency power supply device comprising a calculation means, an integration means for integrating a difference signal from the calculation means, and a means for stopping an inverter based on the output of the integration means. 2. The reference signal is adjusted to a functional relationship in which the speed command signal tends to have a small value when commanding low speed and a large value when commanding high speed. Variable voltage variable frequency power supply. 3. The reference signal is adjusted so that when the speed command signal is below a certain value, it is approximately proportional to the speed command signal, and when the speed command signal is greater than a certain value, it is a substantially constant signal. A variable voltage variable frequency power supply device according to claim 2.
JP56184681A 1981-11-18 1981-11-18 Variable-voltage variable-frequency power source Pending JPS5886872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184681A JPS5886872A (en) 1981-11-18 1981-11-18 Variable-voltage variable-frequency power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184681A JPS5886872A (en) 1981-11-18 1981-11-18 Variable-voltage variable-frequency power source

Publications (1)

Publication Number Publication Date
JPS5886872A true JPS5886872A (en) 1983-05-24

Family

ID=16157500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184681A Pending JPS5886872A (en) 1981-11-18 1981-11-18 Variable-voltage variable-frequency power source

Country Status (1)

Country Link
JP (1) JPS5886872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237096A (en) * 1985-08-05 1987-02-18 Fuji Electric Co Ltd Protective device for overcurrent of inverter driving motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237096A (en) * 1985-08-05 1987-02-18 Fuji Electric Co Ltd Protective device for overcurrent of inverter driving motor

Similar Documents

Publication Publication Date Title
US4607205A (en) Method and system for reconnecting inverter to rotating motors
US5705904A (en) Frequency converter device which adaptively responds to a power failure
US4734634A (en) Method and system for reconnecting inverter to rotating motors
EP0010979B1 (en) Ac electric motor driving circuit having overload protection circuitry
EP0401057B1 (en) Variable-speed driving system
JPS5840918B2 (en) Electric motor operation control device
US4366427A (en) Protective method and apparatus for a controlled current inverter and motor control system
US5576606A (en) Asynchronous motor power supply control system
US3859579A (en) Protection circuit for power converter systems
US4134048A (en) Control arrangementt for a wheel slip system
JPS5886872A (en) Variable-voltage variable-frequency power source
JP2549582B2 (en) Crane regenerative braking control circuit
JPS58107083A (en) Driving regenerative converting power supply device
JPH0324155B2 (en)
JP3524626B2 (en) Static power converter
JPS605786A (en) Inverter for driving motor
JPS63114527A (en) Inverter generator
JPH0511264Y2 (en)
JPS63302732A (en) Controller for ac/dc converter
JP2531137B2 (en) Motor drive system speed controller
KR930007714B1 (en) Speed control apparatus for isduction motor
KR830001531B1 (en) AC motor driving control device
JPH0566181A (en) Abnormal-state discriminating apparatus of resolver
JPH0442913B2 (en)
JPH02299421A (en) Overload detector of power conversion device