JPS5886613A - Power controller - Google Patents

Power controller

Info

Publication number
JPS5886613A
JPS5886613A JP18365281A JP18365281A JPS5886613A JP S5886613 A JPS5886613 A JP S5886613A JP 18365281 A JP18365281 A JP 18365281A JP 18365281 A JP18365281 A JP 18365281A JP S5886613 A JPS5886613 A JP S5886613A
Authority
JP
Japan
Prior art keywords
load
switch
power
power supply
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18365281A
Other languages
Japanese (ja)
Inventor
Masaharu Nishikawa
正治 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP18365281A priority Critical patent/JPS5886613A/en
Publication of JPS5886613A publication Critical patent/JPS5886613A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/257Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To control supplied electric power easily and simply without noise and voltage variation by connecting rectifying elements which differ in direction in series to loads divided to nearly equal electric capacities and then connected in parallel, and providing a switch between said loads. CONSTITUTION:Between input terminals 2-1 and 2-2 connected to a commercial power source 1, the series circuit of a rectifying element 4-1 and load 5-1, and the series circuit of a rectifying element 4-2 and load 5-1 are connected in parallel through a switch 3-1. Further, the connection point between the rectifying element 4-1 and load 5-1 and the connection point 6-2 between the rectifying element 4-2 and load 5-2 are connected together through a switch 3-2. Those rectifying elements 4-1 and 4-2 are connected in the opposite rectifying directions to the commercial power source 1, and the loads 5-1 and 5-2 are nearly equalized in electric capacity.

Description

【発明の詳細な説明】 ・本発明は交流電源によって駆動される角術への供給電
力を制御する電力制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION - The present invention relates to a power control device that controls power supplied to a kakujutsu powered by an AC power source.

例えば複写機に用いられる熱足着装置のように、商用電
源によって駆動され比較的大電流を消費する装置におい
て、その消費電力管供給し得る電力の最大値より小さな
値に制限したり、また頻繁にON −OFFを繰返しf
Cりすると次のような障害を生ずることが知られている
。すなわち、消費電力管許容される最大消費電力よりも
小さな値に制限する場合には、一般に位相制御装置が用
いられるが、どのように位相制御装置音用いると著しい
電気ノイズが発生し、これ全防止するためKは複維で高
価なノイズ防止回路が必要となる。また、供給電力をO
N −OFFする場合には電源電圧が変動し、特に螢光
灯で代表される照明装置にチラッキ1生じさせ、不快な
印象を与える。これ全防止するためには、ON −OF
Fの間に中間的な電力供給状態を経由させればよいが、
このような中間的な電力供給管上述した位相制御装置ケ
用いず簡単かつ容易に行なえる装置は従来知られていな
い。
For example, in equipment that is driven by commercial power and consumes a relatively large amount of current, such as the thermal footing device used in a copying machine, the power consumption pipe may be limited to a value smaller than the maximum value that can be supplied, or frequently Repeat ON - OFF f
It is known that the following problems occur when In other words, a phase control device is generally used to limit the power consumption to a value smaller than the maximum allowable power consumption, but how can the phase control device generate significant electrical noise? Therefore, K is made of multiple fibers and requires an expensive noise prevention circuit. Also, reduce the power supply to O
In the case of N-OFF, the power supply voltage fluctuates, causing flicker 1 particularly in lighting devices such as fluorescent lamps, giving an unpleasant impression. To completely prevent this, ON -OF
It is sufficient to pass through an intermediate power supply state during F, but
Conventionally, there is no known device that can simply and easily operate such an intermediate power supply pipe without using the above-mentioned phase control device.

本発明社上述した点に鑑みてなされたものであり、供給
電力管電気ノイズや電源電圧の変動1殆んど発生するこ
と表〈簡単かつ容易に制御を得るよう適切に構成し九電
力制御装置を提供することt′目″的とする。
This invention was made in view of the above-mentioned points, and the power supply pipe electric noise and power supply voltage fluctuation 1. Most of the occurrences of power supply pipe electric noise and power supply voltage fluctuations. The objective is to provide the following.

本発明は、交流電源によって駆動さnる負荷への供給電
力管制御する電力制御装置において、前記負荷1−11
ソ尋しい電気容量に分割して各負荷に直列に整流素子を
接続し、これら負荷と整流集子との直列回路を前記交流
電源に対して並列に接続し、各負荷に交流の全波電流を
供給する島/の状態と各負荷に交流の半波電流全交互に
供給する第一の状態とを選択的に占める制御手段ケ設け
たことを特徴とするものでおる。
The present invention provides a power control device for controlling a supply power pipe to a load driven by an AC power supply.
A rectifying element is connected in series to each load, and a series circuit of these loads and a rectifying collector is connected in parallel to the AC power supply, and a full wave current of AC is applied to each load. The present invention is characterized in that a control means is provided for selectively occupying the first state in which the AC half-wave current is alternately supplied to each load and the first state in which the AC half-wave current is alternately supplied to each load.

以下図面全参照して本発#4t−詐細に説明する。The present invention #4t will be explained in detail below with reference to all the drawings.

謝/IIは本発明の電力制御装置の基本的構欣會示す回
路図である。商用電源/Km絖される入力端子λ−7お
よびコーコ間に、スイッチ3−/を経て、整流素子クー
/および負荷j−/の直列回路と整流菓子ダーコおよび
負荷j−2の直列回路とを並列に接続すると共に、整流
素子クーlと負荷j−7との接続点6−1表、整流集子
≠−2と負荷!−コとの接続点6−2との間をスイッチ
3−一を経て接続する。整流集子グー/およびダーコは
商用電源/に対しその整流方向が互いに逆方向となるよ
うに接続し、負荷!−/および!−λはその電気容量を
はソ等しくする。
2 is a circuit diagram showing the basic structure of the power control device of the present invention. A series circuit of rectifying element Ku/ and load j-/ and a series circuit of rectifier Darko and load j-2 are connected between input terminal λ-7 connected to commercial power supply/Km and Koko via switch 3-/. Connect in parallel and connection point 6-1 between rectifier element Cool 1 and load j-7, rectifier collector ≠-2 and load! - is connected to the connection point 6-2 via the switch 3-1. The rectifier collector Goo/ and Darko are connected to the commercial power supply/ so that their rectifying directions are opposite to each other, and the load! -/and! -λ makes its capacitance equal to so.

第7図に示す電力制御装置の動作′に第λ図五〜Eに示
す波形図全参照して説明する。商用電源/は第λ図ムに
示す交流電流を供給する。今、スイッチJ−,2(第2
図E参照) i OFFにした状態で、スイッチ3−/
(第2図り参照)1rONにすると、電流の極性が整流
素子4(−/に対して順方向であるときには、負荷j−
/に扛整流素子弘−/を通して11方向にmコ図Bに示
すように電流が流nるが、負荷!−2に対しては整流素
子クー一が遮断方向の接続となるため1iRJ図0に示
すようにiI流は流れない。電流の極輝が逆転すると、
負荷j−7に直列の整流素子参−lは遮断状態となるた
め負荷!−/に#i電流は流れないが、負荷!−2には
整流素子事−Jl経由する電流12が流れる。したがっ
て各負荷z−、i、z−一に対して交流の半波が交互に
流れ、最大の電力供給に対して半分の電力が供給される
から、スイッチ、i −i 2ON −0FFしても差
程電源電圧が変動しないと共に、電源lからは正負はソ
等しい量の電流が流れるから波形歪【生じることもない
The operation of the power control device shown in FIG. 7 will be explained with reference to all the waveform diagrams shown in FIGS. 5-E. The commercial power source / supplies an alternating current as shown in Figure λ. Now, switch J-, 2 (second
(See Figure E) i When turned off, switch 3-/
(Refer to the second diagram) When it is set to 1rON, when the polarity of the current is in the forward direction with respect to the rectifying element 4 (-/), the load j-
Current flows in 11 directions as shown in Figure B through the rectifying element Hiroshi//, but the load! For -2, the rectifying element cooler is connected in the blocking direction, so the iI current does not flow as shown in Figure 0 of 1iRJ. When the polar brightness of the current is reversed,
Since the rectifying element (see-l) connected in series with the load j-7 is in a cut-off state, the load! -/ #i current does not flow into /, but load! A current 12 flows through the rectifier -2 through the rectifier -Jl. Therefore, half waves of alternating current flow alternately to each load z-, i, z-1, and half the power is supplied to the maximum power supply, so even if the switch i -i 2ON -0FF Since the power supply voltage does not fluctuate, and the positive and negative currents flow from the power supply l, equal amounts of current flow, so waveform distortion does not occur.

次にスイッチj−/’1ON4cした状態でスイッチJ
−J’lONにすると、電流の極性が!!−tk累子ゲ
ーlに対して順方向となる半ブイクルの間は整流素子参
−l會通して負荷j−/、j−一に対して11.i、’
方向に電流が流れ、電流の極性がこむと逆極性となる半
ナイクルの間は整流素子弘−コ會経由して負荷z−i、
z−コに1゜′、12方向に電流が流れる。し九がって
負@r−i、j−コには交流の全波が何らの規制もなく
流れるから全電力が供給される。またこの場合、電力は
中電力供給から全電力供給に切換わるから電源電圧変動
も殆んど生じない。
Next, with switch j-/'1ON4c, switch J
-When set to J'lON, the polarity of the current changes! ! During the half cycle in the forward direction with respect to the -tk reciprocal game l, the rectifier element reference-l is connected to load j-/, j-1 with respect to 11. i,'
When the current flows in the direction, the polarity of the current becomes reversed. During the half cycle, the load z-i,
A current flows in 12 directions at 1°' in z-co. Therefore, the full power of the alternating current flows through the negative @r-i and j-co without any restriction, so that all the power is supplied to the negative @r-i and j-co. Further, in this case, since the power is switched from medium power supply to full power supply, there is almost no power supply voltage fluctuation.

以上の1明から明らかなように、第1図に示す電力制御
装置においては、スイッチi−iが0M状態でスイッチ
3−コVrom −OFFすることにより負荷j−/、
!−2への全電力供給と半電力供”給との制御が行なえ
、またスイ゛ツチ3−一がOFFの状態でスイッチJ−
/QON−OFFすることにより中電力供給と零電力供
給との制御全行なうことができる。
As is clear from the above description, in the power control device shown in FIG.
! -2 can be controlled between full power supply and half power supply, and when switch 3-1 is OFF, switch J-2 can be controlled.
/QON-OFF allows full control of medium power supply and zero power supply.

島3図扛本発明の電力制御装置の他の例の構成を示す回
路図である。本例でFi第1図に示した電力制御装置の
スイッチ3−iおよび3−一を半導体回路およびリレー
によって構成したものであり、@/図に示す符号と同一
符号は同一素子を−表わす。
FIG. 3 is a circuit diagram showing the configuration of another example of the power control device of the present invention. In this example, the switches 3-i and 3-1 of the power control device shown in FIG.

リレー7社人力嬌子t−コに加えられる信号によって作
動し、その役割は第1図のスイッチ3−一と同じである
。771,1図のスイッチJ−/に対応するものとして
、トライアラフタとそのトリが一回路を形成する抵抗i
o、itおよびフォトカプラーtJk接続する。抵抗/
jijフォトカプラー/コの発光ダイオードの電流制限
抵抗であり、この発光ダイオードは入力端子1−/に加
えられる信号によって作動する。本例において入力−子
1−/に加えられる信号がOFF状態のときに祉フォト
カプラーlコの発光ダイオードは発光しないからフォト
カプラーノコの受光菓子(この場合はCdSセル)の抵
抗が大きく、シたがって抵抗//IltはlJさな電圧
しか発生しないためトライアラ22株導通しない。この
状態は第1図においてスイッチJ−/がOVyの場合に
骸当する。入力端、子t−tK信号が加わるとフォトカ
プラーノコの発光ダイオードが発光してその受光素子の
抵抗が小さくなる。これにより抵抗l/に大きな電圧が
発生し、トライアック・りは導通状態となる。この状態
はwJ1図においてスイッチJ−/がONの秋塾にし当
する。
It is activated by a signal applied to relay 7, and its role is the same as switch 3-1 in FIG. 771, As a switch corresponding to the switch J-/ in Fig.
Connect o, it and photocoupler tJk. resistance/
This is a current limiting resistor for the light emitting diode of the jij photocoupler/co, and this light emitting diode is activated by a signal applied to the input terminal 1-/. In this example, when the signal applied to the input terminal 1-/ is in the OFF state, the light emitting diode of the welfare photocoupler l does not emit light, so the resistance of the photocoupler saw's light-receiving device (in this case, the CdS cell) is large, and the system Therefore, the resistor //Ilt generates only a small voltage of 1J, so the trialer 22 does not conduct. This state corresponds to the case where switch J-/ is OVy in FIG. When a t-tK signal is applied to the input terminal, the light-emitting diode of the photocoupler saw emits light, and the resistance of its light-receiving element decreases. This generates a large voltage across the resistor l/, and the triac l becomes conductive. This state corresponds to the autumn cram school where switch J-/ is ON in diagram wJ1.

したがって、入力端子1−/、I−一に所要の信号を印
加することによって第7図のスイッチ3−1、!−1f
開閉したのと同じ動作1行なわせることができる。
Therefore, by applying the required signal to the input terminals 1-/, I-1, the switches 3-1, ! of FIG. -1f
The same action as opening and closing can be performed.

lK!図は本発明の電力制御、装置の史1c他の例の構
成を示す回路図である。本例ではコ個の負荷!−/、j
−コに対して直列にトライアック/ター/ 、 /4I
−一を接続し、各トライアックlグーl。
lK! The figure is a circuit diagram showing the configuration of another example of power control and device history 1c of the present invention. In this example, ko loads! −/, j
-Triac/tar/ , /4I in series with -
- Connect one to each triac.

l#−2のトリガー回路を抵抗/j−/、/j−2、抵
抗/4− / 、 #−2、ダイオード/7− / 、
 /7−2およびフォトカプラー/I −/ 、 /r
−21直列に接続して構成すると共に、ダイオード/7
−/、/7−Jに並列にフォトカプラー/I−J、/ざ
一≠を接続してフォトカプラー/I −/〜/I−μに
加えられる制御信号によってトラ1アツクl≠−l、/
≠−コtON −OFFスイッチ素子および整流素子と
して作用させるようにしたものでおる。
l#-2 trigger circuit is resistor/j-/, /j-2, resistor/4-/, #-2, diode/7-/,
/7-2 and photocoupler /I-/, /r
-21 are connected in series, and the diode/7
-/, /7-J are connected in parallel with photocouplers /I-J, /ZA1≠, and a control signal applied to photocouplers /I-/~/I-μ allows the truck 1 to be turned on, l≠-l, /
≠ - tON - OFF It is designed to function as a switching element and a rectifying element.

なお、ダイオード/7−/、/7−2は電源lに対して
互いに逆方向に接続する。
Note that the diodes /7-/ and /7-2 are connected in opposite directions to the power supply l.

入力端子lターlはトライアック/II−/、/ダーコ
’i ON −OFFさせる信号を加える端子で、紺1
図におけるスイッチ!−/、、vAJ図における入力端
子If−/と対応し、この端子への信号がOFFレベル
にある時はフォトカプラーtt −/ 、 it −コ
の発光ダイオードは発光しないから、CdSセルの抵抗
値は大きく、し九がって、抵抗/6− / 。
The input terminal l is a terminal that adds a signal to turn ON and OFF the triac /II-/, /Darko'i.
Switch in the diagram! -/, , corresponds to the input terminal If-/ in the vAJ diagram, and when the signal to this terminal is at the OFF level, the light-emitting diodes of the photocouplers tt-/ and it- do not emit light, so the resistance value of the CdS cell is is large, and the resistance is /6-/.

lt−コに流れる電流は小さく、トライアックl≠−/
、/≠−コのゲートに蝶小さな電圧しが印加されないか
ら、トライアックl弘−1Ilダーコ社OFF状態にあ
る。入力端子lターフにON信号が入ると7オトカプラ
ー/I −/ 、 /r−コの発光ダイオードが光って
CdSセルの電気抵抗か低下するからトライアック/4
I−:/ 、 /4t−λにトリガー信号が入り導通状
態になる。
The current flowing through the lt-co is small, and the triac l≠-/
, /≠- Since a small voltage is not applied to the gate of the triac, it is in the OFF state. When an ON signal is input to the input terminal l turf, the light emitting diodes of the 7-oto couplers /I-/, /r-co light up and the electrical resistance of the CdS cell decreases, so the triac/4
A trigger signal is applied to I-:/, /4t-λ, and the circuit becomes conductive.

入力端子lター吋fj+it−/、t−一に交流全波を
印加するか半波全印加するか音制御する信号の入力端子
で、第7図におけるスイッチ3−.2、第3図における
入力端子l−2と対応し、この端子への信号でトライア
ック、l−/ 、/l−一の整流作用會遺択的に不作動
にすることができる。すなわち、入力端子/P−一への
入力信号がOFF 状態にあるときれ、フォトカプラー
/I −j 、 /I −弘のOd8セルの抵抗値が高
く、シたがってダイオード/7− / 、 /7−コに
順方向電圧が印加されたときのみトライアック/タ−/
 、 /$−一が導通状態となる。ダイオード/7−/
、17−2祉電源lに対して接続方向が逆向きに接続さ
nているから、電源の半サイクルが負荷j−/に流れる
詩法の半サイクルは、負荷j−、?管通して流れる。し
九がって電源lからは全波の電流が流れるが各負荷よ一
/、J−2には半波の電流が流、れることになる、。
It is an input terminal for a signal that controls sound whether to apply an AC full wave or a half wave to the input terminals fj+it-/, t-1, and is connected to the switches 3-. 2. Corresponds to the input terminal l-2 in FIG. 3, and a signal to this terminal can optionally disable the rectifying action of the triac, l-/, /l-1. That is, when the input signal to the input terminal /P-1 is in the OFF state, the resistance value of the Od8 cell of the photocoupler /I-j, /I-hiro is high, and therefore the diodes /7- /, / TRIAC/T/ only when forward voltage is applied to 7-
, /$-1 becomes conductive. Diode /7-/
, 17-2 Since the connection direction is reverse to the power supply l, the half cycle of the poem in which a half cycle of the power supply flows to the load j-, is the load j-, ? Flows through a pipe. Therefore, a full-wave current flows from the power source 1, but a half-wave current flows through each load 1/2 and J-2.

また、入力端子lター2にON信号が加わるとフォトカ
プラー/r −J 、 /I−参のOd8セルの抵抗値
が低くなるから、ダイオード/7− / 、 /7−コ
はショートされた状態となり、トリガー信号は交流の全
波に対して発生し、トライアック/II−/。
Also, when an ON signal is applied to the input terminal 2, the resistance value of the Od8 cell of the photocoupler /r-J, /I- decreases, so the diodes /7- / and /7- are in a shorted state. , and the trigger signal is generated for the full wave of alternating current, TRIAC /II-/.

l参−λは遅@OH状態となる。1 reference-λ becomes a slow @OH state.

次に、上述した負荷s−i、z−x會複写機の熱定着装
置等に用いられるヒーターとした場合について説明する
Next, a case where the heater is used in a heat fixing device of the above-mentioned load s-i, z-x copying machine will be explained.

1RjvAはヒーターの発熱量全制御する制御信号発生
回路の一例の構IIi、を示す線図である。本例ではサ
ーミスタλ/、抵抗−2λ、コ3およびコ参てブリッジ
回路を構成し、このブリッジ回路の出力全温度検知信号
および基準電圧信号としてオペアンプコjに印加する。
1RjvA is a diagram showing a configuration IIi of an example of a control signal generation circuit that completely controls the amount of heat generated by the heater. In this example, a thermistor λ/, a resistor -2λ, 3 and 3 form a bridge circuit, and the output of this bridge circuit is applied as a total temperature detection signal and a reference voltage signal to an operational amplifier j.

サーミスター/の検知温度が低い場合には、サーミスタ
J/の抵抗値が大きいから抵抗ココとサーミスタコlと
の接続点には商い電圧が発生し、オペアンプコj U 
ONのめカケ発生する。
When the temperature detected by the thermistor / is low, the resistance value of thermistor J/ is large, so a voltage is generated at the connection point between the resistor here and thermistor l, and the operational amplifier circuit j U
Chips occur when the unit is turned on.

したがって、lR1図、97図または第参図において、
スイッチ3−7、入力端子1−/またはlター/に常時
ON信号を供給しておいて、t’j図のオペアンプコ!
の出力でスイッチ3−2(14/図参照) t−ONに
するか入力端子l−コ、/ター2(第3図、@参図参照
)にオペアンプコjの出力を印加すれシ負荷(ヒーター
)、r−i、s−一には全電力が供給される。ヒータ一
温度が上昇して、サーミスタコlの抵抗が下るとオペア
ンブコjibOF]r状態となつで一スイツチ3−コが
OFFとなるか、を九は入力端子l−コ、/ターコに加
わる信号がOFFとなるから負荷j−/、J−一には、
各半波の電流が流れて供給電力はるに減少する。供給電
力の低下によってヒータ一温度が下ればサーミスターノ
がこれを検知して再ひ負荷に対して全電力を供給する様
に制御信号が発生するからヒーターは所定の温度に維持
される。
Therefore, in Figure 1R1, Figure 97, or Figure Reference,
A constant ON signal is supplied to switch 3-7 and input terminal 1-/or lter/, and the operational amplifier shown in t'j diagram is connected.
At the output of switch 3-2 (see figure 14), turn on the switch 3-2 (see figure 14) or apply the output of operational amplifier j to input terminal l-co, /ter2 (see figure 3, @see figure). Full power is supplied to heaters), r-i, and s-1. When the temperature of the heater rises and the resistance of the thermistor l falls, the operational amplifier jibOF]r state occurs, and the switch 3 turns off, or the signal applied to the input terminal l and turret turns off. Since it is OFF, the load j-/, J-1 is
Each half-wave current flows and the supplied power is much reduced. If the temperature of the heater drops due to a decrease in the supplied power, the thermistor knob detects this and generates a control signal to supply full power to the load again, thus maintaining the heater at a predetermined temperature.

、、1plA図は些−ターの発熱量を制御する制御信号
発生回路の他の例の構成管示す線図である。本例ではサ
ーミスタによると一′ターの検知温度レベルに対応して
ヒーターへの通電を、全電力供給、中電力供給、電力供
給OFFの三つの状態をとり得る様にしたものである。
, 1plA is a diagram showing the configuration of another example of a control signal generating circuit for controlling the amount of heat generated by a motor. In this example, according to the thermistor, the heater can be energized in three states: full power supply, medium power supply, and power supply OFF, depending on the temperature level detected by the heater.

サーミスタコl、抵抗ココ〜コ参およびオペアンプコj
から成る回路はw+j図と同じ構成で接続され、その作
用も同じである。本例では新しく抵抗λt、コアおよび
オペアンプ−t′に附加し、このオペアンブコlの出力
により第1図のスイッチ!−/f制御したり、この出力
00図、l!参図の入力端子r−t、iターlに加えて
トライアラフタ、トライアックl≠−/、#−J【制御
する。抵抗26.27Bオペアンプコlに基準電圧を印
加するもので、サーミスタコ/と抵抗2コとの接続点の
電圧との比較音オペアンプ−lにて行って制御信号を発
生させる。オペアンプ2jは第一の温度設定レベルでO
N −OFFする様に抵抗−3,コ参の値會定め、オペ
アンプコlはこれより高い第二の温度設定レベルでON
 −OFF信号管発生する様に抵抗コt、コアの値を定
める。そしてオペアンブコ!の出力によって第7図のス
イッチ3−λを作動させるか、その出力會第3図、第μ
図の入力幅1子t−コ、lターコに加える様に接続し7
、オペアンプatの出力によって9/図のスイッチJ−
/′に作動させるか、その出力1tBJ図、第弘図の入
力端子1−/ 、/ターlに加える様に接続する。この
ようにすればサーミスターlの検知温度が低゛い時には
、スイッチJ−/、J−2は共にONであり、入力端子
r−i、r−x、1t−i。
Thermistor 1, resistor here~ko, and operational amplifier
The circuit consisting of is connected in the same configuration as in the w+j diagram, and its operation is also the same. In this example, a new resistor λt, a core, and an operational amplifier t' are added, and the output of this operational amplifier l causes the switch shown in FIG. -/f control, this output 00 figure, l! In addition to the input terminals r-t and i-tar l shown in the figure, the tri-arafter, triac l≠-/, #-J [controls. A reference voltage is applied to the resistor 26, 27B operational amplifier 1, and a comparison sound with the voltage at the connection point between the thermistor tacho/ and the resistor 2 is performed by the operational amplifier 1 to generate a control signal. Operational amplifier 2j is O at the first temperature setting level.
Set the value of resistor -3 and resistor so that it turns off, and turn on the operational amplifier at the second temperature setting level higher than this.
-Determine the values of the resistor t and core so that the OFF signal tube is generated. And Ope Ambuco! The output of the switch 3-λ in FIG.
Connect the input width as shown in the figure, adding it to 1 child t-co and l turco.
, the output of the operational amplifier at causes the switch J- in Figure 9/
/', or connect the output 1tBJ to the input terminals 1-/ and /tar in Figures 1 and 2. In this way, when the temperature detected by the thermistor l is low, the switches J-/ and J-2 are both ON, and the input terminals r-i, r-x, and 1t-i are turned on.

/ターコに4ON信号が加わり負荷!−/ 、j−2に
は全電力が印加される。サーミスタλ/の杉ユ知温度が
高くなって絽−の温度設定レベルに達するとオペアンプ
、2jがOFFになり、スイッチJ−コがOF′tST
oるいは入力端子l−λ+ /P−一に加わる信号がO
FFとなって負荷j−/ 、j−λには各半波の電流が
流れることになる。更にサーミスタ、2/の検知温度が
上昇して第二のmis足レベルに達するとオペアンプλ
lが作動してスイッチ3−/がOFF 、!−々るか、
あるいは入力端子J’−/。
/ 4ON signal is added to Turco and it is loaded! -/, full power is applied to j-2. When the temperature of the thermistor λ/ becomes high and reaches the temperature setting level of 甽, the operational amplifier 2j turns OFF and the switch J becomes OFF'tST.
Or, the signal applied to the input terminal l-λ+/P-1 is O
It becomes an FF, and each half-wave current flows through the loads j-/ and j-λ. Furthermore, when the temperature detected by the thermistor 2/ rises and reaches the second mis level, the operational amplifier λ
l is activated and switch 3-/ is OFF,! -Ruka,
Or input terminal J'-/.

/ターlに印加される信号がOFFとなって角荷j−7
.!−一への通電が停止する。サーミスタU/の検知温
度が高温から低温−変化する場合は上記説明と逆の順序
で負荷への通電量が各検知温度に対応して増大する。
/The signal applied to the terminal turns off and the square load j-7
.. ! - Power to one stops. When the temperature detected by the thermistor U/ changes from a high temperature to a low temperature, the amount of current applied to the load increases in accordance with each detected temperature in the reverse order of the above explanation.

以上の説明では温度検知素子としてサーミスタを用いた
例を示したがこれを熱電対の様な別の温度検知素子にす
ることも可能で、それに対応した信号発生回路を用いれ
ばよい。また、フォトカプラー等を別の構成のものとす
ることも可能であり、こnらの変更に基く回路fj!は
嶋業者にとって容易に実施できるものである。
In the above description, an example is shown in which a thermistor is used as the temperature sensing element, but it is also possible to use another temperature sensing element such as a thermocouple, and a corresponding signal generation circuit may be used. It is also possible to use a photocoupler or the like with a different configuration, and the circuit fj! based on these changes can be used! is something that can be easily implemented by island contractors.

なお、第3図、第6図に示す制御回路で第7図。In addition, FIG. 7 shows the control circuit shown in FIGS. 3 and 6.

第3図+lR4’図の電力制御装置を駆動し喪場合には
所定の温度全検知した時に中電力が制御されるから発熱
体のオーバーシュートが防止され、安定度の高い温度制
御を行うことができる。
When the power control device shown in Figure 3 + lR4' is driven and the specified temperature is fully detected, the medium power is controlled, so overshoot of the heating element is prevented and highly stable temperature control can be performed. can.

以上述べたように本発明によれば、電源電圧の変動や電
気的な障害を及はす電気ノイズの発生管殆んど伴わずに
1容異に負荷への供給電力°を制御することができる。
As described above, according to the present invention, it is possible to control the power supplied to the load differently without causing fluctuations in the power supply voltage or generation of electrical noise that causes electrical disturbances. can.

また、負荷を発熱体とし、この発熱体のプ温度を検知し
て核発熱体への電力供給管制御する場合には温度検知軍
子の応答遅れドよる発熱体のオーバーシュートラも有効
に防止することができる。
In addition, when the load is a heating element and the temperature of this heating element is detected to control the power supply pipe to the nuclear heating element, overshoot of the heating element due to delay in response of the temperature detection element can be effectively prevented. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電力制御装置の基本構成を示す回路図
、w4コ図ム〜には1117図に示す装置の動作t−t
、明するための信号波形図、第3図は本発明の電力制御
装置の他の例の構成を示す回路上、第1図は゛同じく更
に他の例の構成を示す回路図、15図はf!1図、第3
図または第参図において負荷【ヒーターと°した場合に
適用されるmlm−信号発生回路の一例の構成を示す線
図、w、6図は同じく他の例の構成を示す線図である。 /・・商用電源、・−コーハコ−2・・・入力幅、子、
J−/。 3−.2・・・スイッチ、ダーl、参−2・・・整tl
t累子、z−/、!−一・・・負荷、4−/、4−2・
・・接紗麿、7・・・リレー、r−t、t−コ・・・入
力端子、り・・・トライアック、10. //、 /3
・・・抵抗、/争・・・フォトカブラ、/#−/、/4
t7コ・・・トライアック、/!−/、、′/j−2゜
/4−/、#−、?・・・抵抗、/7−/、/?−2・
・・ダイオード、/I −; /゛〜/l−弘・・・フ
ォトカプラ、/ター/、/ター2・・・入力端子、コト
・・サーミスタ、−一〜2II、コロ。 コア・・・抵抗、コ!、21・・・オペアンプ。
FIG. 1 is a circuit diagram showing the basic configuration of the power control device of the present invention, and the operation of the device shown in FIG.
, FIG. 3 is a circuit diagram showing the configuration of another example of the power control device of the present invention, FIG. 1 is a circuit diagram showing the configuration of still another example, and FIG. ! Figure 1, 3rd
Figure 6 is a diagram showing the configuration of an example of the mlm-signal generating circuit applied when the load is connected to a heater, and Figure 6 is a diagram showing the configuration of another example. /...Commercial power supply, -Kohako-2...Input width, child,
J-/. 3-. 2...Switch, darl, reference-2...set tl
t Yuko, z-/,! -1...Load, 4-/, 4-2.
...Connector, 7...Relay, rt, t-co...input terminal, ri...triac, 10. //, /3
...Resistance, /Conflict...Photocabra, /#-/, /4
t7co...triac,/! −/,,′/j−2゜/4−/,#−,? ...Resistance, /7-/, /? -2・
...Diode, /I-; /゛~/l-Hiroshi...Photocoupler, /ter/, /ter2...Input terminal, Coto...Thermistor, -1~2II, Coro. Core...resistance, Ko! , 21... operational amplifier.

Claims (1)

【特許請求の範囲】 1、交流電源によって、駆動される負荷への供給電力を
制御する電力制御装置において、前記負荷をはy等しい
電気容量に分割して各負荷に直列に整流素子を接続し、
これら負荷と整流素子との直列回路を前記交流電源に対
して並列に接続し、各負荷に交流の全波電流を供給する
゛謝/の状態と各負荷に交流の半波電流全交互に供給す
る第一の状態と1−選択的に占める制御手段金膜けたこ
とを特徴とする電力制御装置。′ 2、前記負iiiを発熱体とすると共に、この発熱体の
温!j全検知する手段を設け、との温筈検知手段の検知
出力に基いて前記制御手段が第lの状態および第一の状
態管選択するよう構成したことを特徴とする特許請求の
範囲第1項記載の電力制御装置。
[Claims] 1. In a power control device that controls power supplied to a load driven by an AC power source, the load is divided into y equal electric capacities and a rectifier is connected in series to each load. ,
A series circuit of these loads and a rectifying element is connected in parallel to the AC power supply, and AC full-wave current is supplied to each load, and AC half-wave current is alternately supplied to each load. 1. A power control device characterized in that the control means selectively occupies a first state in which: ' 2. Let the negative iii be a heating element, and the temperature of this heating element! Claim 1, characterized in that means for detecting all conditions are provided, and the control means is configured to select the lth state and the first state tube based on the detection output of the temperature detection means. The power control device described in Section 1.
JP18365281A 1981-11-18 1981-11-18 Power controller Pending JPS5886613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18365281A JPS5886613A (en) 1981-11-18 1981-11-18 Power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18365281A JPS5886613A (en) 1981-11-18 1981-11-18 Power controller

Publications (1)

Publication Number Publication Date
JPS5886613A true JPS5886613A (en) 1983-05-24

Family

ID=16139543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18365281A Pending JPS5886613A (en) 1981-11-18 1981-11-18 Power controller

Country Status (1)

Country Link
JP (1) JPS5886613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459592A (en) * 1992-04-24 1995-10-17 Sharp Kabushiki Kaisha Projection display system including a collimating tapered waveguide or lens with the normal to optical axis angle increasing toward the lens center

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459592A (en) * 1992-04-24 1995-10-17 Sharp Kabushiki Kaisha Projection display system including a collimating tapered waveguide or lens with the normal to optical axis angle increasing toward the lens center

Similar Documents

Publication Publication Date Title
US3372328A (en) Scr temperature control circuit
JPS60518A (en) Device for responding dropped voltage at nonlinear section of diode
US3196255A (en) Electrical proportional control system
JPS5886613A (en) Power controller
US3675046A (en) Control circuit
AU707310B2 (en) Switch with controlled rise and fall characteristics
RU2121183C1 (en) Electronic commutator
US4177795A (en) Triggering device responsive to energy flow and controlled solar heating system incorporating the device
US3648074A (en) On-off controller with solid-state differential circuit
US4339649A (en) Apparatus and method for R-C time constant circuit
JPH0530729A (en) Switching circuit for rectifying circuit
US20230100378A1 (en) Switching control circuits and method of actuating a switch having reduced conducted emi
JPH026084B2 (en)
JP2003059623A (en) Current control method, and current control device for practicing current control method
EP0093214A1 (en) Power supply circuitry in 2-wire thermostats
JP2696113B2 (en) Supply current limiting device for heating furnace
KR900009188Y1 (en) Voltage equivalent circuit for magnetic induction heating cooker
SU1737424A2 (en) Device for temperature regulation
JPH0258860B2 (en)
SU926632A2 (en) Device for regulating temperature
JP3119350B2 (en) Disconnection alarm
JP2000150111A (en) Heater control device
JPS63225487A (en) Electric heater
JPS59175581A (en) Power controller
JPS6344279B2 (en)