JPS588530B2 - Manufacturing method of electrode material for vacuum switch - Google Patents
Manufacturing method of electrode material for vacuum switchInfo
- Publication number
- JPS588530B2 JPS588530B2 JP2664878A JP2664878A JPS588530B2 JP S588530 B2 JPS588530 B2 JP S588530B2 JP 2664878 A JP2664878 A JP 2664878A JP 2664878 A JP2664878 A JP 2664878A JP S588530 B2 JPS588530 B2 JP S588530B2
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- electrode material
- manufacturing
- powder
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
【発明の詳細な説明】
本発明は真空しゃ断器や真空接触器などの真空開閉器用
電極材の製造方法に係り、特に安定した接触抵抗としゃ
断性を有する炭化タングステンー銀−コバルト(WC−
Ag−Co)系電極材の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing electrode materials for vacuum switches such as vacuum breakers and vacuum contactors, and particularly relates to a method of manufacturing electrode materials for vacuum switches such as vacuum breakers and vacuum contactors, and in particular, tungsten carbide-silver-cobalt (WC-) having stable contact resistance and breaking properties.
The present invention relates to a method for manufacturing a Ag-Co) based electrode material.
真空開閉器用電極材(以下電極材と称する。Electrode material for vacuum switches (hereinafter referred to as electrode material).
)としては、さい断電流値が低いことから炭化タングス
テン−銀−(WC−Ag)系のものが多く用いられてい
る。), tungsten carbide-silver-(WC-Ag) type materials are often used because of their low cutting current values.
本発明者は、WC−Ag系にCOを所定量添加すること
により安定した接触抵抗としゃ断性を得られることを見
出した。The present inventors have discovered that stable contact resistance and interrupting properties can be obtained by adding a predetermined amount of CO to the WC-Ag system.
さてWC−Ag−Co系材料におけるCoの添加方法と
しては一般に粉末による方法が知られている。Now, as a method for adding Co to WC-Ag-Co based materials, a method using powder is generally known.
すなわちWC粉末に所定量のコバルト粉末及び所定量の
Ag粉末を加え混合したものを成形し、その後焼結する
方法である。That is, this is a method in which a predetermined amount of cobalt powder and a predetermined amount of Ag powder are added and mixed to WC powder, the mixture is molded, and then sintered.
しかしながらこの方法によると、WC粉末とコバルト粉
末とを均一に分散させることが難かしく、その結果得ら
れた焼結体は電極材としては必ずしも安定した特性を有
するものであなかった。However, according to this method, it is difficult to uniformly disperse the WC powder and the cobalt powder, and the resulting sintered body does not necessarily have stable characteristics as an electrode material.
本発明者はこの点を改良すべく研究を重ねた結果、WC
Ag−Co系材料におけるCo添加は、WCの焼結性を
高めることに主として働き、このことが電極材としての
接触抵抗の安定性、しゃ断性および低サージ性に影響を
及ぼすことを見出した。As a result of repeated research to improve this point, the inventor found that the WC
It has been found that the addition of Co in Ag-Co-based materials mainly works to improve the sinterability of WC, and this affects the stability of contact resistance, blocking performance, and low surge performance as an electrode material.
本発明はこの知見に基づき、WCとコバルトを均一に分
散させることにより、電極材としての特性を改善するこ
とを目的とする。Based on this knowledge, the present invention aims to improve the characteristics as an electrode material by uniformly dispersing WC and cobalt.
まだWC−Coの基体骨組(スケルトン)を強固にして
Ag添加の効果を安定させることにより電極材としての
特性を改善することを目的とする。The purpose is to improve the characteristics as an electrode material by strengthening the base skeleton of WC-Co and stabilizing the effect of adding Ag.
すなわち本発明に係る製造方法は、WC−Ag−Co系
真空開閉器用電極材を製造するにあたり、WC粉末にC
oを被覆する工程を具備することによりWCとCoを均
一に分散させることを特徴とする。That is, in the manufacturing method according to the present invention, when manufacturing a WC-Ag-Co vacuum switch electrode material, carbon is added to the WC powder.
It is characterized in that WC and Co are uniformly dispersed by including a step of coating o.
WCKCoを被覆する方法としては、化学メッキによる
方法が確実でありかつ実用的である。As a method for coating WCKCo, chemical plating is reliable and practical.
本発明方法と従来行なわれていた方法で、WC−35%
、Ag−3.9%Coでなる成分の電極材を製造しその
特性を比較した。By the method of the present invention and the conventional method, WC-35%
, Ag-3.9% Co were manufactured and their properties were compared.
この結果を表に示す。The results are shown in the table.
なお表中の特性は、下記条件での開閉試験およびしゃ断
斌験の結果で表わした。The characteristics in the table are expressed by the results of the opening/closing test and the breaking test under the following conditions.
電圧:1.5KV、電流:5KA
電極寸法:直径25.4mm、真空度:l05torr
表より明らかなように本発明方法によるものはさい断電
流値が低く、接触抵抗は低く安定しておりまた、しゃ断
限界は高く電極材として極めて優扛ていることがわかる
。Voltage: 1.5KV, current: 5KA Electrode dimensions: diameter 25.4mm, degree of vacuum: 105torr
As is clear from the table, the material obtained by the method of the present invention has a low breaking current value, a low and stable contact resistance, and a high breaking limit, making it extremely suitable as an electrode material.
特に試料番号4のものは、特に接触抵抗が安定しており
、他の特性も優れている。In particular, sample number 4 has particularly stable contact resistance and is excellent in other properties as well.
なお、表に示した以外にWC粉末にCoを蒸着して被覆
する方法、およびWC粉末にCoを気相メッキにより被
覆する方法をも比較のために試みたが前者の場合は、C
oの融点が高いことから蒸着が困難であり被覆が殆ど出
来ず、かつ後者の場合は被覆するのに長時間を要し所定
量のCoの被覆が困難であった。In addition, in addition to the methods shown in the table, we also tried a method of coating WC powder with Co by vapor deposition, and a method of coating WC powder with Co by vapor phase plating, but in the case of the former, C
Due to the high melting point of Co, vapor deposition is difficult and almost no coating is possible, and in the latter case, it takes a long time to coat and it is difficult to coat a predetermined amount of Co.
発明者の研究によればWCへのCoの被覆は化学メッキ
による方法が所定量のCoの被覆を確実にかつ短時間で
均一に行なうことができる。According to the inventor's research, the chemical plating method for coating WC with Co can reliably and uniformly coat a predetermined amount of Co in a short time.
なかでもコバルトを硝酸と共に硝酸コバルト水溶液とし
てWCに添加し、アルカリ溶液で中和しながらWC上に
コバルトを析出させる方法が電極材としての特性を改善
する。Among these, a method in which cobalt is added to WC together with nitric acid as a cobalt nitrate aqueous solution and cobalt is precipitated on WC while being neutralized with an alkaline solution improves the properties as an electrode material.
実施例1
平均粒度約2ミクロンの炭化タングステン粉末に塩化コ
バルト水溶液を加え、低淵乾燥を行った。Example 1 A cobalt chloride aqueous solution was added to tungsten carbide powder having an average particle size of about 2 microns, and drying was performed in a low depth.
これを石英容器中で101torrに脱気し,これを約
450℃に加熱しながら、高純度水素を流し炭化タング
ステンーコバルトの複合粉末を得た。This was degassed to 101 torr in a quartz container, and while being heated to about 450° C., high purity hydrogen was passed through it to obtain a tungsten carbide-cobalt composite powder.
これに硝酸銀、アンモニア水、水酸化ナトリウム(各1
モル/lの濃度の水溶液)を加え,いわゆる銀鏡反応に
て、炭化タングステンーコバルトー銀の複合粉末とし、
これを1.5ton/cm2の成形圧で成形、1200
℃で水素中で焼結した後3ton/cm2以上で再加圧
し、さらに1200℃、104torrの真空純化処理
を行い、電極を得た。Add silver nitrate, aqueous ammonia, and sodium hydroxide (1 each
Aqueous solution with a concentration of mol/l) is added to form a tungsten carbide-cobalt silver composite powder by a so-called silver mirror reaction.
This was molded at a molding pressure of 1.5 ton/cm2, 1200
After sintering in hydrogen at 0.degree. C., the material was pressurized again at 3 ton/cm.sup.2 or more, and further vacuum purification was performed at 1200.degree. C. and 104 torr to obtain an electrode.
こうして得られた電極は電極特性が優れたものであった
。The electrode thus obtained had excellent electrode properties.
実施例2
平均粒度約2ミクロンの炭化タングステン粉末に硝酸コ
バルトの水溶液とアンモニア水、水酸化ナトリウム水溶
液を加え、炭化タングステンーコバルトの複合粉末とし
、これを2ton/cmの成形圧で成形し,1200℃
水素中で焼結し、1100℃水素中で銀を溶浸し、12
00℃104torrの真空純化処理を行い電極を得た
。Example 2 An aqueous solution of cobalt nitrate, aqueous ammonia, and an aqueous sodium hydroxide solution were added to tungsten carbide powder with an average particle size of about 2 microns to form a tungsten carbide-cobalt composite powder, which was molded at a molding pressure of 2 ton/cm. ℃
Sintered in hydrogen, infiltrated with silver in hydrogen at 1100°C, 12
A vacuum purification treatment was performed at 00° C. and 104 torr to obtain an electrode.
(試料番号4相当)こうして得られた電極は、特に接触
抵抗が安定しており、極めて好ましいものであった。(Corresponding to sample number 4) The thus obtained electrode had particularly stable contact resistance and was extremely desirable.
本発明方法による電極材の特性向上は次のように考えら
れる。The improvement in the properties of the electrode material by the method of the present invention can be considered as follows.
気中開閉器の電極材は、気中開閉により空気その他のイ
オンを媒体としてアークが生成され、周囲の種々の条件
によりアークの動きが定まるのに対し、真空開閉器の電
極では、アークの動きはほとんど電極表面の均一性に依
存する。With the electrode material of air switches, an arc is generated using air and other ions as a medium when switching in air, and the movement of the arc is determined by various surrounding conditions, whereas with the electrode of a vacuum switch, the movement of the arc is determined by various surrounding conditions depends mostly on the uniformity of the electrode surface.
したがって本発明方法によりWC−Coの均一なスケル
トンを形成することにより、Agは均一に分散し、その
結果として、電極の表面電位が均一となり、アークが自
由に動きまわりアークを広い電極面で受けるため電極特
性が改善されると考えられる。Therefore, by forming a uniform skeleton of WC-Co by the method of the present invention, Ag is uniformly dispersed, and as a result, the surface potential of the electrode becomes uniform, allowing the arc to move freely and receive the arc over a wide electrode surface. Therefore, it is thought that the electrode characteristics are improved.
このことにより接触抵抗が安定し同寸法では、しゃ断容
量の増加を図ることができまた電極の小型化も容易であ
る。This stabilizes the contact resistance, and with the same dimensions, the breaking capacity can be increased, and the electrode can be easily miniaturized.
Claims (1)
材を製造するにあたり、炭化タングステン粉末にコバル
トを被覆する工程を具備することを特徴とする真空開閉
器用電極材の製造方法。 2炭化タングステン粉末に化学メッキによりコバルトを
被覆することを特徴とする特許請求の範囲第1項に記載
の製造方法。 3コバルトを硝酸と共に硝酸コバルト水溶液として、添
加しアルカリ溶液で中和しながら炭化タングステン粉末
上にコバルトを析出させることを特徴とする特許請求の
範囲第2項に記載の製造方法。[Scope of Claims] 1. A method for producing an electrode material for a vacuum switch, which comprises the step of coating tungsten carbide powder with cobalt in producing a tungsten carbide-silver-cobalt based electrode material for a vacuum switch. The manufacturing method according to claim 1, characterized in that tungsten dicarbide powder is coated with cobalt by chemical plating. 3. The manufacturing method according to claim 2, wherein cobalt is added as an aqueous solution of cobalt nitrate together with nitric acid, and cobalt is precipitated on the tungsten carbide powder while being neutralized with an alkaline solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2664878A JPS588530B2 (en) | 1978-03-10 | 1978-03-10 | Manufacturing method of electrode material for vacuum switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2664878A JPS588530B2 (en) | 1978-03-10 | 1978-03-10 | Manufacturing method of electrode material for vacuum switch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54120872A JPS54120872A (en) | 1979-09-19 |
JPS588530B2 true JPS588530B2 (en) | 1983-02-16 |
Family
ID=12199252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2664878A Expired JPS588530B2 (en) | 1978-03-10 | 1978-03-10 | Manufacturing method of electrode material for vacuum switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS588530B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2399824A (en) * | 2002-09-21 | 2004-09-29 | Univ Birmingham | Metal coated metallurgical particles |
CN110026551B (en) * | 2019-05-31 | 2021-02-19 | 湖南工业大学 | Method for preparing cobalt-coated tungsten carbide powder by freezing |
-
1978
- 1978-03-10 JP JP2664878A patent/JPS588530B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS54120872A (en) | 1979-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109926054B (en) | Preparation method of high-dispersion NiCo alloy-graphene nano composite catalyst | |
CN110436922B (en) | Nickel-tungsten oxide target material and preparation method thereof | |
JP2877860B2 (en) | Method of preparing electrical contact material and method of manufacturing contact element containing the material | |
CN106086495B (en) | Cupric oxide doped siller tin oxide composite and preparation method thereof | |
JPH0733596B2 (en) | Anode catalyst material used as anode catalyst in electrolytic cell and anode for electrolytic cell | |
US3645894A (en) | Free-flowing plasma spray powder | |
JP3361194B2 (en) | Cobalt / cobalt oxide powder, method for its production and its use | |
US4315905A (en) | Process for producing an electronically conductive oxidizer material | |
JPS588530B2 (en) | Manufacturing method of electrode material for vacuum switch | |
CN105761956A (en) | Contact material, vacuum arc-extinguishing chamber contact and manufacturing method thereof | |
JP4521849B2 (en) | Niobium powder for capacitor, sintered body using the niobium powder, and capacitor using the sintered body | |
JP5019761B2 (en) | Fuel cell electrode catalyst and method for producing the same | |
US3207600A (en) | Method of manufacturing electrodes for fuel cells | |
JPH0434622B2 (en) | ||
US4800139A (en) | Method of producing hydrogen electrode and use thereof in fuel cells | |
JP3623320B2 (en) | Nickel electrode active material and nickel electrode using the nickel electrode active material | |
Dražić et al. | Investigation of active carbon for fuel-cell electrodes | |
US3232752A (en) | Method of producing sintered tantalum anode bodies for electrolytic capacitors | |
US3269867A (en) | Fuel cell | |
US3796607A (en) | Process for making electrode having an internal electrodeposited metal matrix | |
JP2021005548A5 (en) | ||
JP5020433B2 (en) | Niobium powder for capacitor, sintered body and capacitor using the sintered body | |
JPH0689723A (en) | Fuel electrde fabrication method for fuel cell with solid electrolyte | |
JPS6216511B2 (en) | ||
JPH0577610B2 (en) |