JPS5885242A - Dotted ion source - Google Patents

Dotted ion source

Info

Publication number
JPS5885242A
JPS5885242A JP18113681A JP18113681A JPS5885242A JP S5885242 A JPS5885242 A JP S5885242A JP 18113681 A JP18113681 A JP 18113681A JP 18113681 A JP18113681 A JP 18113681A JP S5885242 A JPS5885242 A JP S5885242A
Authority
JP
Japan
Prior art keywords
tip
needle
ion beam
curvature
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18113681A
Other languages
Japanese (ja)
Inventor
Masaaki Futamoto
二本 正昭
Ushio Kawabe
川辺 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18113681A priority Critical patent/JPS5885242A/en
Publication of JPS5885242A publication Critical patent/JPS5885242A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To radiate an ion beam of high intensity in the axial direction by rounding a pin-shaped tip electrode for ionization and providing on its top, a minute projection with specific top radius of curvature and height. CONSTITUTION:A dotted ion source used in an ion microanalyzer or the like is formed so that decompressed gas can be supplied to a pin-shaped tip electrode 1 in which positive high voltage is applied to an opposed electrode 2 and the gas can be ionized by the actuation of the high elelctric field that exists in the vicinity of the electrode surface. In this case, a minute projection with the height h and top radius of curvature r that satisfy 5Angstrom <h<2mum and R/100<=r< R/2 is provided on top of the pin-shaped chip electrode 1 with the top average radius of curvature R. As a result, an ion beam radiation angle can be restricted to a narrow area and the intensity of beam radiation current can be increased and then an ion beam of high intensity exceeding several times as high as the ion beam can be obtained.

Description

【発明の詳細な説明】 本発明は、イオンマイクロアナライザーなどのイオンビ
ーム応用機器に有用な点状イオン源に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a point ion source useful in ion beam application equipment such as ion microanalyzers.

高輝度の細いイオンビームを放射するイオン源として、
電界イオンイヒ現象を利用した点状イオン源が知られて
いる。これは、第1図例示すように対向電極に対して正
の高電圧を印加した針状チップ電極に10−”forr
程度に減圧したガスを供給し、針状チップ電極の表面近
傍に存在する高電界の作用でこのガスをイオン化するも
のでめる。針状チップ先端は一般に先端曲率半径凡の球
表面に近く、高電界はこの球表面近傍ではほば一様であ
る。このため供給ガスは球状表面で一様にイオン化され
るので、針状チップから一般に1〜2rad程度の広い
開き角の範囲に放射される。ところが、イオンマイクロ
アナライザーなどのイオンビーム応用機器におiて実際
に利用されるのは微細な絞シ穴を通ったQ、1rad以
下の狭い範囲に放射されるイオンビームでメジ、針状チ
ップから放射されたイオンのうち90%以上は無駄にな
っている。
As an ion source that emits a narrow, high-intensity ion beam,
A point ion source that utilizes the electric field ionization phenomenon is known. As shown in FIG.
This method involves supplying gas at a moderately reduced pressure and ionizing this gas by the action of a high electric field that exists near the surface of the needle-shaped tip electrode. The tip of the needle tip is generally close to a spherical surface with a radius of curvature of the tip, and the high electric field is almost uniform near the spherical surface. For this reason, the supply gas is uniformly ionized on the spherical surface, and is therefore emitted from the needle tip over a wide aperture angle range, generally about 1 to 2 rad. However, what is actually used in ion beam application equipment such as ion microanalyzers is an ion beam that passes through a fine aperture hole and is emitted in a narrow range of less than 1 rad from a needle-like tip. More than 90% of the emitted ions are wasted.

この利用されないイオンビームは、電極近傍の壁に衝突
することになるが、この際有害な2次電子を発生させた
シするのでイオン源を安定に動作させるのに障害になっ
ている。実用的な点状イオン源としては、針状チップの
軸方向に狭め開き角でイオンを放射するのが望ましい。
This unused ion beam collides with the wall near the electrode, but at this time it generates harmful secondary electrons, which is an obstacle to stable operation of the ion source. As a practical point ion source, it is desirable to emit ions at a narrow opening angle in the axial direction of the needle tip.

本発明はこの点に鑑みてなされたもので、針状チップの
軸方向に有効に高輝度のイオンビームを放射する点状イ
オン源を提供することをその目的とする。以下、本発明
の詳細な説明する。
The present invention has been made in view of this point, and an object of the present invention is to provide a point-like ion source that effectively emits a high-intensity ion beam in the axial direction of a needle-like tip. The present invention will be explained in detail below.

本発明て取扱っている点状イオン源は電界イオン化現象
を利用している。電界イオン化は針状チップ表面付近で
、電界が大きい領域で優先的に起こる。したがって、針
状チップの軸方向に強いイオンビームを放射させるため
には針状チップの頂点付近で優先的に電界が大きくなる
ように工夫することが会費である。針状チップ表面近傍
の電界は針状チップ表面の幾何学的形状によって決まシ
The point ion source used in the present invention utilizes the electric field ionization phenomenon. Field ionization occurs preferentially in areas where the electric field is large near the surface of the needle tip. Therefore, in order to emit a strong ion beam in the axial direction of the needle tip, it is necessary to devise ways to increase the electric field preferentially near the apex of the needle tip. The electric field near the needle tip surface is determined by the geometry of the needle tip surface.

曲率半径の小さい突出した部分の近傍はど電界は大きく
なる。したがって、一様な先端曲率を持つ針状チップの
頂部に微小な突起を設ければ、イオン化はこの突起の部
分で優先的に起こるので、針状チップの軸方向に有効に
イオンビームが放射されることになる。第2図は、従来
の針状チックと本発明による針状チップを比較して示し
たものであり、(a)が従来の針状チップ、Φ)が本発
明の針状チップである。微小突起の先端曲率半径(つと
、針状チップの平均曲率中径(R)の望ましい関係は、
である*’<R/100ては微小突起を作ることも困難
となル、まえ物理的に不安定でイオンの衝突やガスとの
反応によって消滅し易く実用的でない。一方、r>R/
2では微小突起によって電界が集中する効果が少ない。
The electric field becomes large near the protruding portion with a small radius of curvature. Therefore, if a minute protrusion is provided at the top of a needle-like tip with a uniform tip curvature, ionization will occur preferentially at this protrusion, and the ion beam will be emitted effectively in the axial direction of the needle-like tip. That will happen. FIG. 2 shows a comparison between a conventional needle-like tip and a needle-like tip according to the present invention, where (a) is the conventional needle-like tip and Φ) is the needle-like tip according to the present invention. The desirable relationship between the tip curvature radius (R) of the microprotrusion and the average radius of curvature (R) of the needle tip is as follows:
If *'<R/100, it is difficult to create microprotrusions, and it is also physically unstable and easily destroyed by ion collisions or reactions with gas, making it impractical. On the other hand, r>R/
In case 2, the effect of electric field concentration due to the microprotrusions is small.

微小突起の高さhは5λくhく2μm の軛曲がxtt、h。h(5Å以下では突起が消滅し易
<、h>2μmでは突起の強度が不足するため強電界中
で破断したシする。
The height h of the microprotrusion is 5λ×h and the yoke of 2 μm is xtt, h. If h is less than 5 Å, the protrusions tend to disappear; if h is less than 2 μm, the protrusions do not have enough strength and are broken in a strong electric field.

このような微小突起の形成方法は檀々あるが。There are many methods for forming such microprotrusions.

例えば針状テップを加熱し丸状態で高電圧を印加して針
状チップの特定な結晶面がmb上ってくる現象(ビルド
アップ現象)を利用する方法、蒸着やスパンターなどで
材料を付着させて突起を形成する方法あるいは針状チッ
プ材料に微細な析出物を含む材料を用いて電解研摩等で
針状に加工する際の母材と析出物の研摩速度の差を利用
して析出物を針状チップ表面で突起として露出させる方
法。
For example, a method that utilizes the phenomenon (build-up phenomenon) in which a specific crystal plane of the needle-shaped tip rises by MB by heating the needle-shaped tip and applying a high voltage while it is in a round state, or attaching the material by vapor deposition, spunter, etc. The precipitates can be removed by using the difference in polishing speed between the base material and the precipitates when processing the needle-like tip material into a needle shape by electrolytic polishing, etc., using a material containing fine precipitates. A method of exposing it as a protrusion on the surface of a needle-like chip.

さらには母材と析出物の電界蒸発強度の差を利用して針
状チップを電界蒸発させることによって析出物を突起と
して露出させる方法等を用いれば良い。これらの方法で
作製した微小突起は、一般的KFi滑らかなR表面状を
呈することは少ないが、一般的なイオンビーム応用装置
では十分に使うことができる。滑らかな球表面状の突起
がとくに望ましい場合は、針状チップの高温アニールや
電界蒸発法を利用して突起形状を修正することもできる
Furthermore, a method may be used in which the precipitate is exposed as a protrusion by electric field evaporation of the needle tip by utilizing the difference in field evaporation intensity between the base material and the precipitate. Although the microprotrusions produced by these methods rarely exhibit the typical KFi smooth R surface shape, they can be used satisfactorily in general ion beam application equipment. If a smooth spherical protrusion is particularly desired, the shape of the protrusion can be modified using high-temperature annealing of a needle tip or field evaporation.

本発明による微小突起を設けた針状チップでは上に述べ
たようにイオンビームの放射方向が狭い開き角に限定で
きる効果の他に、イオンビームの輝度が瑠刀nするとい
う実用上の大きな効果がある。
The acicular tip provided with microprotrusions according to the present invention not only has the effect of limiting the radiation direction of the ion beam to a narrow opening angle as described above, but also has the great practical effect of increasing the brightness of the ion beam. There is.

電界イオン化現象を利用したイオン源においては、イオ
ン化するガスの供給は針状チップ外部の雰囲気から針状
チップに衝突してくる他に、針状チップの軸の表面に吸
着したガスが軸に沿って針状チップの先端に向けて拡散
することによって先端まで到達することによってもなさ
れる。針状チップおよびガスの温度がガスの液化温度に
近い領域では後者の効果が顕著になってくる。微小突起
S、を設けた針状チップでは、針状テッープに吸着し、
拡散によって先端部まで拡散したガスはほとんど微小突
起部でイオン化されることになシ、イオンビームの輝度
が向上することになる。微小突起を設けた針状チップで
は、従来の針状チップに比べて数倍以上も高輝度のイオ
ンビームを得ることができる。
In an ion source that uses electric field ionization, the gas to be ionized is supplied not only by colliding with the needle tip from the atmosphere outside the needle tip, but also by gas adsorbed on the surface of the shaft of the needle tip along the axis. It can also be achieved by diffusing toward the tip of the needle tip to reach the tip. The latter effect becomes noticeable in a region where the temperature of the needle tip and the gas is close to the liquefaction temperature of the gas. In the case of a needle-like tip provided with microprotrusions S, it is adsorbed to the needle-like tape,
Most of the gas that has diffused to the tip is ionized at the minute protrusions, which improves the brightness of the ion beam. A needle-like tip provided with microprotrusions can produce an ion beam with several times higher brightness than a conventional needle-like tip.

以上述べてきたように、微小突起を設けた針状チップを
用いた点状イオン源ではイオンビームの放射角が狭くで
きる七同時に輝度も向上するという実用的に大きな効果
がある。
As described above, a point ion source using a needle-like tip provided with minute protrusions has the great practical effect of narrowing the radiation angle of the ion beam and improving the brightness at the same time.

以下1本発明を実施例に従って説明する。The present invention will be explained below according to examples.

実施例1 <100>方位の先端曲率半径約1000人のW針状チ
ップを10′〜10’″″’l’o r rの酸素雰囲
気中で1400〜2000C’の温度に加熱しながら、
高電圧を印加してW針状テップ先端の(100)面をビ
ルドアップさせて微小突起を形成させた。微小突起の形
状を高分解能の走f型電子顕微鏡で観察したところ、先
端曲率半径約200人、高さ500人であった。
Example 1 A W needle-like tip with a tip curvature radius of about 1000 in the <100> direction was heated to a temperature of 1400 to 2000 C' in an oxygen atmosphere of 10' to 10'''''l'o r r.
A high voltage was applied to build up the (100) plane of the tip of the W needle-like tip to form a microprotrusion. When the shape of the microprotrusion was observed using a high-resolution f-type scanning electron microscope, it was found that the tip radius of curvature was approximately 200 mm and the height was 500 mm.

この微小突起を形成したW針状チップを点状イオン源に
使用し、第1図に示すイオンビーム光学系に搭載して、
W針状チップを20Kまで冷却し。
This W needle-shaped tip with microprotrusions formed thereon is used as a point ion source and mounted on the ion beam optical system shown in Fig. 1.
Cool the W needle tip to 20K.

同温匿まで冷却した水素ガスを供給して水素イオンビー
ムを発生させた。水素イオンビームの放射角は、微小突
起を設けない場合に比べて十分の一程度に縮小した。水
素イオンビームの放射電流密度も50%はど増加するの
をNun、た。
A hydrogen ion beam was generated by supplying hydrogen gas cooled to the same temperature. The radiation angle of the hydrogen ion beam was reduced to about one-tenth of that without the microprotrusions. The radiation current density of the hydrogen ion beam also increased by 50%.

冥1ffA例2 (111>方位の先端曲率半径的2000 人のIr針
状f”)プk 10−krorrノ真空中テ1500〜
18oOCに加熱しながら高電圧を印加して、ビルドア
ップi象を用いてIr針状チップ表面に微小突起を形成
した。突起の先端曲率半径は約500人、高さは20人
であった。
Mei1ffA Example 2 (111> azimuth radius of tip curvature 2000 people Ir needle f'') 10-krorr in vacuum Te 1500~
A high voltage was applied while heating to 18oC, and microprotrusions were formed on the surface of the Ir needle-like chip using a build-up i-type. The tip radius of curvature of the protrusion was approximately 500, and the height was 20.

この針状チップを窒素および酸素ガスイオン源として使
用したところ、いずれもイオンビーム放射角が数分の一
以下になシ、イオンビーム放射電流密度が100%以上
も向上した。
When this needle-like tip was used as a nitrogen and oxygen gas ion source, the ion beam radiation angle was reduced to less than a fraction of a fraction of that in both cases, and the ion beam radiation current density was improved by more than 100%.

実施例3 <100>方位の先端曲率半径1000A程度の六硼化
物M Bs s  (M = C” tB’ #B” 
eL” rc” rP ’Nd、8m、Eu)針状チッ
プを電界高発法によってその先端を一様な球表面状に成
形した後、10−’TOrrO真空中で1700〜21
00Cのa度で加熱して表面の金属元素Mを優先的に蒸
発させて、針状チップ表面にBに富んだ島状の突起を形
成させた。この島状の突起は先端曲率半径rが50(r
(800A、Mさhが5<j)<20OAで6った。
Example 3 Hexaboride M Bs s (M = C"tB'#B" with a tip curvature radius of about 1000 A in the <100> direction
eL"rc"rP'Nd, 8m, Eu) After forming the tip of the needle-like tip into a uniform spherical surface by the high electric field method, it was heated to 1700 to 21cm in a 10-'TOrrO vacuum.
The metal element M on the surface was preferentially evaporated by heating at a degree of 00C to form B-rich island protrusions on the surface of the needle tip. This island-like protrusion has a tip curvature radius r of 50 (r
(800A, Mh is 5<j)<20OA and it is 6.

この島状の突起の位置を電界イオン顕微鏡で確認した後
、この突起がイオンビーム光学系の軸上にくるように、
第1図に示す装置に搭載した。
After confirming the position of this island-like protrusion using a field ion microscope, adjust the position so that this protrusion is on the axis of the ion beam optical system.
It was installed in the device shown in Figure 1.

Ne tAr *に’ガスを該針状チップを用いてイオ
ン化したところ、イオンビームの放射角縮小。
When NetAr* gas was ionized using the needle tip, the radiation angle of the ion beam was reduced.

イオンビーム放射電流密度の向上において顕著な効果が
認められ丸。
A remarkable effect was observed in improving the ion beam radiation current density.

実施例4 熱処理を行なったFe−Mo−C合金を針状チップ材料
として用いた。この試料中には微細なM o、 C粒が
含まれていることを電子顕微鏡法によって確認した。試
料を電wI研摩で針状に加工する過程でFe−MO−C
合金母相とMOIC粒子の研摩速度の差を利用して、針
状チップ表面にMO,C粒子を突出させた。つづいて、
電界蒸発法によってMO*C粒子を均一な先端曲率半径
を持つように加工してM o t Cの微小突起を形成
させた。針状テップ先端Kjl出したMO,C突起の大
きさは、先端曲率半径500A、高さ30人であった。
Example 4 A heat-treated Fe-Mo-C alloy was used as the needle-shaped chip material. It was confirmed by electron microscopy that this sample contained fine Mo and C grains. In the process of processing the sample into a needle shape by electric wI polishing, Fe-MO-C
By utilizing the difference in polishing speed between the alloy matrix and the MOIC particles, MO and C particles were made to protrude from the surface of the needle-like tip. Continuing,
MO*C particles were processed to have a uniform radius of curvature at the tip by field evaporation to form microprotrusions of Mo t C. The size of the MO, C protrusion with the needle-like tip Kjl was 500 A in radius of curvature and 30 in height.

この針状チップの平均先端曲率半径は2000Aでめっ
た。
The average tip curvature radius of this needle tip was 2000A.

この針状チップを、 Nt  、Xe 、l(eガスイ
オン発生用の点状イオン源として使用したところ。
This needle-shaped tip was used as a point ion source for generating Nt, Xe, and l(e gas ions.

イオンビーム放射角の縮小、イオンビーム放射電流密度
の向上において顕著な望ましい効果が認められた。
Significant desirable effects were observed in reducing the ion beam radiation angle and improving the ion beam radiation current density.

実施例5 <0001>方位の先端曲率半径1600人のBe針状
チップを電界蒸発法で球表面状に成形した後、針状チッ
プの軸方向直上からRet−蒸着し、(00011面上
にBeの微小量を埋積させた。He埋積の過程は電界イ
オン顕微鏡もしくは電界電子放射顕微鏡法で観察した。
Example 5 A Be needle tip with a tip curvature radius of 1600 in the <0001> direction was formed into a spherical surface by field evaporation, and then Ret-evaporation was performed from just above the needle tip in the axial direction (Be on the 00011 plane). The process of He burial was observed using a field ion microscope or a field electron emission microscope.

Reの埋積が多すざたシ、目的の結晶面に埋積しなかっ
た場合は、再び電界蒸発法で埋積したRCを除去して目
的の埋積が得られるまでBe蒸着を繰夛返した。この手
法によって、先端曲率半径約1600人のRe針状チッ
プの頂部に、I[径300人、高さ200人程鹿のle
eを蒸着した。この針状チップを高温で加熱して、ss
し九Heを下地となじませると同時に、弐面拡散によっ
て先端曲率半径150人、高さ100人の微小突起とな
るように成形した。
If too much Re is deposited and it is not deposited on the desired crystal plane, the buried RC is removed again by field evaporation and Be evaporation is repeated until the desired deposit is obtained. Ta. By this method, a deer le of about 300 mm in diameter and 200 mm in height was placed on the top of the Re needle tip with a tip radius of about 1600 mm
e was deposited. Heating this needle tip at high temperature, ss
At the same time, the ShikuHe was blended with the base, and at the same time, it was formed into a microprotrusion with a radius of curvature of 150 mm at the tip and a height of 100 mm by diffusion on the second surface.

この針状チップを、CH,、BH魯、Ret4.PHI
This needle tip was transferred to CH, BH Lu, Ret4. PHI
.

PCt・e H鵞+ A ’ガスをイオン化するのに用
いたところ、イオンビームの放射角に微小突起を設けな
い場合の数分の一以下、放射電流密度FiSO〜100
%程度向上することを確認した。
When PCt・e H+A' gas was used to ionize, the emission angle of the ion beam was less than a fraction of that when no microprotrusions were provided, and the emission current density was FiSO~100.
% improvement was confirmed.

なお、上記実施例ではH,e針状チップの上にBeを蒸
着する場合について述べたが、針状チツプ材料と蒸着す
る材料が異なっても同様な効果が得られることはもちろ
んでるる。例えばBe針状チップの上にI r 、Pt
 +Rh +W 、Mo +T i ICなどを蒸着し
ても良い。
In the above embodiment, a case was described in which Be was vapor-deposited on the H, E needle-like tip, but it goes without saying that the same effect can be obtained even if the material of the needle-like chip and the material to be vapor-deposited are different. For example, I r , Pt on a Be needle tip
+Rh +W, Mo +T i IC, etc. may be deposited.

以上の実施例で述べたように、針状チップ先端部に微小
突起を設けることによシ点状イオン源のイオンビーム放
射角が狭い領域に限定されると四時にイオンと一ムの放
射電流密度が向上する。さらにこの形状を待つ針状チッ
プは上記実施例で述べたように簡単に製造することがで
きる。故に。
As described in the above embodiments, by providing a microprotrusion at the tip of the needle tip, if the ion beam radiation angle of the point ion source is limited to a narrow area, the radiation current will be equal to 4 times the ion and 1 time. Density is improved. Furthermore, the needle-shaped tip having this shape can be easily manufactured as described in the above embodiment. Therefore.

本発明はイオンビーム応用機器の性能を向上させるうえ
で実用上有用なものである。
The present invention is practically useful for improving the performance of ion beam application equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電界イオン化現象を利用した点状イオン源を
示す図、第2図(a)は従来の針状チップ先端を、Φ)
は本発明による針状チップ先端の形状を示す図である。 1・・・針状チップ電極、2・・・対向電極、3・・・
ガスリークパルプ、4・・・ガスボンベ、5・・・イオ
ンビームレンズ、6・・・イオンビーム。 第  1  回 liZ (d) (b)
Figure 1 shows a point ion source that utilizes electric field ionization, and Figure 2 (a) shows the tip of a conventional needle-like tip.
FIG. 2 is a diagram showing the shape of the tip of a needle-like tip according to the present invention. 1... Needle-shaped tip electrode, 2... Counter electrode, 3...
Gas leak pulp, 4... Gas cylinder, 5... Ion beam lens, 6... Ion beam. 1st liZ (d) (b)

Claims (1)

【特許請求の範囲】 電界イオン化現象によってガスをイオン化する方式の点
状イオン源において、イオン化のための先端平均曲率半
径凡の針状チップ電極の先端に。 5人くhく2μm なる縄さり、先端自軍半径rを持つ微小突起を設けたこ
とを特徴とする点状イオン源。
[Claims] In a point ion source that ionizes gas by electric field ionization, at the tip of a needle-like tip electrode for ionization whose tip has an average radius of curvature of approximately. A point ion source characterized by having a rope of 5 x 2 μm and a minute protrusion with a radius r at the tip.
JP18113681A 1981-11-13 1981-11-13 Dotted ion source Pending JPS5885242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18113681A JPS5885242A (en) 1981-11-13 1981-11-13 Dotted ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18113681A JPS5885242A (en) 1981-11-13 1981-11-13 Dotted ion source

Publications (1)

Publication Number Publication Date
JPS5885242A true JPS5885242A (en) 1983-05-21

Family

ID=16095506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18113681A Pending JPS5885242A (en) 1981-11-13 1981-11-13 Dotted ion source

Country Status (1)

Country Link
JP (1) JPS5885242A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060270A1 (en) 2007-12-14 2009-06-25 Hitachi High-Technologies Corp. Gas Field Ionization Ion Source, Scanning Charge Particle Microscope, Optical Axis Adjustment Method, and Sample Viewing Method
WO2009147894A1 (en) * 2008-06-05 2009-12-10 株式会社日立ハイテクノロジーズ Ion beam device
JP2011238480A (en) * 2010-05-11 2011-11-24 Mie Univ Emitter of field ionization type gas ion source and focused ion beam device and method of manufacturing emitter of field ionization type gas ion source
US8115184B2 (en) 2008-01-07 2012-02-14 Hitachi High-Technologies Corporation Gas field ion source, charged particle microscope, and apparatus
US8263943B2 (en) 2009-01-15 2012-09-11 Hitachi High-Technologies Corporation Ion beam device
DE112010002774T5 (en) 2009-06-30 2012-10-18 Hitachi High-Technologies Corporation ION MICROSCOPE
DE112011100476T5 (en) 2010-02-08 2012-12-27 Hitachi High-Technologies Corporation Charged Particle Microscope and Ion Microscope
DE112010004286T5 (en) 2009-11-06 2013-01-10 Hitachi High-Technologies Corporation charged particle
EP2546862A1 (en) * 2011-05-16 2013-01-16 38th Research Institute, China Electronics Technology Group Corporation Particle source and apparatus using particle source
EP2575158A1 (en) * 2011-06-22 2013-04-03 38th Research Institute, China Electronics Technology Group Corporation Particle source and manufacturing method therefor
DE112011102643T5 (en) 2010-08-06 2013-06-06 Hitachi High-Technologies Corporation Gas field ion source and method of using the same, ion beam device and emitter tip, and methods of making same
US8809801B2 (en) 2009-10-14 2014-08-19 Hitachi High-Technologies Corporation Gas field ionization ion source and ion beam device
US9111716B2 (en) 2012-04-27 2015-08-18 Hitachi High-Technologies Corporation Charged particle microscope
US9640360B2 (en) 2011-10-12 2017-05-02 Hitachi High-Technologies Corporation Ion source and ion beam device using same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060270A1 (en) 2007-12-14 2009-06-25 Hitachi High-Technologies Corp. Gas Field Ionization Ion Source, Scanning Charge Particle Microscope, Optical Axis Adjustment Method, and Sample Viewing Method
US8115184B2 (en) 2008-01-07 2012-02-14 Hitachi High-Technologies Corporation Gas field ion source, charged particle microscope, and apparatus
US8530865B2 (en) 2008-01-07 2013-09-10 Hitachi High-Technologies Corporation Gas field ion source, charged particle microscope, and apparatus
JP5097823B2 (en) * 2008-06-05 2012-12-12 株式会社日立ハイテクノロジーズ Ion beam equipment
US8779380B2 (en) 2008-06-05 2014-07-15 Hitachi High-Technologies Corporation Ion beam device
WO2009147894A1 (en) * 2008-06-05 2009-12-10 株式会社日立ハイテクノロジーズ Ion beam device
US9508521B2 (en) 2008-06-05 2016-11-29 Hitachi High-Technologies Corporation Ion beam device
US8263943B2 (en) 2009-01-15 2012-09-11 Hitachi High-Technologies Corporation Ion beam device
DE112010000799T5 (en) 2009-01-15 2012-11-08 Hitachi High-Technologies Corporation Ion beam apparatus
US8563944B2 (en) 2009-01-15 2013-10-22 Hitachi High-Technologies Corporation Ion beam device
US8455841B2 (en) 2009-06-30 2013-06-04 Hitachi High-Technologies Corporation Ion microscope
DE112010002774T5 (en) 2009-06-30 2012-10-18 Hitachi High-Technologies Corporation ION MICROSCOPE
DE112010002774B4 (en) 2009-06-30 2019-12-05 Hitachi High-Technologies Corporation ION MICROSCOPE
US9196453B2 (en) 2009-10-14 2015-11-24 Hitachi High-Technologies Corporation Gas field ionization ion source and ion beam device
US8809801B2 (en) 2009-10-14 2014-08-19 Hitachi High-Technologies Corporation Gas field ionization ion source and ion beam device
DE112010004286T5 (en) 2009-11-06 2013-01-10 Hitachi High-Technologies Corporation charged particle
DE112011100476T5 (en) 2010-02-08 2012-12-27 Hitachi High-Technologies Corporation Charged Particle Microscope and Ion Microscope
JP2011238480A (en) * 2010-05-11 2011-11-24 Mie Univ Emitter of field ionization type gas ion source and focused ion beam device and method of manufacturing emitter of field ionization type gas ion source
DE112011102643T5 (en) 2010-08-06 2013-06-06 Hitachi High-Technologies Corporation Gas field ion source and method of using the same, ion beam device and emitter tip, and methods of making same
US8847173B2 (en) 2010-08-06 2014-09-30 Hitachi High-Technologies Corporation Gas field ion source and method for using same, ion beam device, and emitter tip and method for manufacturing same
DE112011102643B4 (en) 2010-08-06 2023-05-17 Hitachi High-Tech Corporation Gas field ion source, ion beam device and emitter tip and method of manufacturing the same
JP2013528915A (en) * 2011-05-16 2013-07-11 中國電子科技集團公司第三十八研究所 Particle source and device using the particle source
EP2546862B1 (en) * 2011-05-16 2016-04-27 38th Research Institute, China Electronics Technology Group Corporation Particle source and apparatus using particle source
US20130020496A1 (en) * 2011-05-16 2013-01-24 38th RESEARCH INSTITUTE, CHINA ELECTRONICS TECHNOLOGY FROUP CORPORATION Particle sources and apparatuses using the same
EP2546862A1 (en) * 2011-05-16 2013-01-16 38th Research Institute, China Electronics Technology Group Corporation Particle source and apparatus using particle source
JP2013535089A (en) * 2011-06-22 2013-09-09 サーティエイス リサーチ インスティチュート、チャイナ エレクトロニクス テクノロジー グループ コーポレイション Particle source and manufacturing method thereof
EP2575158B1 (en) * 2011-06-22 2015-04-22 38th Research Institute, China Electronics Technology Group Corporation Method for manufacturing a particle source
US9017562B2 (en) 2011-06-22 2015-04-28 38Th Research Institute, China Electronics Technology Group Corporation Particle sources and methods for manufacturing the same
EP2575158A1 (en) * 2011-06-22 2013-04-03 38th Research Institute, China Electronics Technology Group Corporation Particle source and manufacturing method therefor
US9640360B2 (en) 2011-10-12 2017-05-02 Hitachi High-Technologies Corporation Ion source and ion beam device using same
US9111716B2 (en) 2012-04-27 2015-08-18 Hitachi High-Technologies Corporation Charged particle microscope

Similar Documents

Publication Publication Date Title
JPS5885242A (en) Dotted ion source
US5536193A (en) Method of making wide band gap field emitter
US5258685A (en) Field emission electron source employing a diamond coating
US5089742A (en) Electron beam source formed with biologically derived tubule materials
JP5636053B2 (en) Gas field ion source, method of using the same, and ion beam apparatus
US5763880A (en) Cathode, electron beam emission apparatus using the same, and method of manufacturing the cathode
Cox et al. Field-emission sites on unpolished stainless steel
JPS585496B2 (en) A method for reproducibly manufacturing stable thermal field emission cathodes
US4994711A (en) High brightness solid electrolyte ion source
JP2002523860A (en) Cathode structure having getter material and diamond film and method of manufacturing the same
JPS6345740A (en) Ion beam device
JPS6251134A (en) Field ionization type gas ion source
US5739528A (en) Fast atom beam source
Mousa Field electron emission studies on zinc oxide coated tungsten microemitters
Delong et al. A 1: 1 electron stepper
JP3064214B2 (en) Fast atom beam source
JP2743399B2 (en) Focused ion beam equipment
US20050141670A1 (en) X-ray generating device
JP2752626B2 (en) Field ionization gas ionization method and its ion source
JPS6054735B2 (en) field emission cathode
JPH0214426B2 (en)
JP2001516128A (en) Cathode made of getter material
JPS63288017A (en) Formation of fine pattern
JP2544405B2 (en) Method for forming transparent sapphire thin film
JPS63200435A (en) Ion beam generator