JPS5885044A - Overload control device for air conditioner - Google Patents

Overload control device for air conditioner

Info

Publication number
JPS5885044A
JPS5885044A JP56183538A JP18353881A JPS5885044A JP S5885044 A JPS5885044 A JP S5885044A JP 56183538 A JP56183538 A JP 56183538A JP 18353881 A JP18353881 A JP 18353881A JP S5885044 A JPS5885044 A JP S5885044A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor fan
overload
pressure switch
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56183538A
Other languages
Japanese (ja)
Inventor
Arikichi Morishige
森重 在吉
Takashi Deguchi
隆 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56183538A priority Critical patent/JPS5885044A/en
Publication of JPS5885044A publication Critical patent/JPS5885044A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring

Abstract

PURPOSE:To make a bypass circuit for controlling the overload unnecessary and simplify the construction of a refrigerating cycle by a method wherein the overload control upon room heating operation and room heating touch defrosting operation is effected by the control of starting and stopping of an outdoor fan. CONSTITUTION:Upon the room heating operation, the flow of a refrigerant medium is recirculated through a compressor 21, a four-way valve 12, a first indoor heat exchanger 26, a two-way valve 28 for dehumidifying, the second heat exchanger 25, a pressure reducer 24 and an outdoor heat exchanger 23 sequentially. In this case, the outputs of respective transistor invertors (INV) 8-10 are H, L, L, respectively normally wheh the condition of a pressure switch 3 is as shown by the diagram, therefore, an outdoor fan motor 14 is rotated. Next, when it is turned into the overload condition, the contact piece 3a of the pressure switch 3 is switched to the side of a high-pressure contact 3c and said motor 14 is stopped. On the other hand, upon the room heating mode dehumidifying operation, the refrigerant medium flows as shown by the broken line arrow sign and the outputs of respective INV 8-10 are L, H, L, respectively, therefore, the fan motor 14 is controlled by a procedure in reverse to the above-described procedure.

Description

【発明の詳細な説明】 本発明は、冷房、暖房、除湿の各機能を有する空気調和
機の過負荷制御装置に関するもので、暖房過負荷時に室
外ファンを停止せしめ、暖房気味除湿過負荷時には室外
ファンを運転させることによシ、冷凍サイクルを簡単に
して過負荷制御が行えるようにすることを目的の一つと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an overload control device for an air conditioner having cooling, heating, and dehumidification functions, which stops an outdoor fan when heating is overloaded, and shuts down an outdoor fan when heating or dehumidification is overloaded. One of the purposes is to simplify the refrigeration cycle and enable overload control by operating the fan.

一般に冷房、暖房、除湿の各機能を有する空気調和機の
過負荷制御は、冷凍サイクル中の高圧側に設けられた圧
力スイッチにより検知され、冷凍サイクル中のバイパス
弁を開閉して高圧側を低圧側へ短絡して流し、圧力バラ
ンスをとるようにしている0これは、特に暖房運転時と
除湿運転時に室外ファンを停止せしめ、空気調和機から
吹出す冷風を若干高めにす灸モード(以下暖房気味除湿
と称する)は、何らかに過負荷制御を施さなければなら
ず、従来は主にバイパス弁を有するパイパス回路が冷凍
サイクル中に設けられていた。
Overload control for air conditioners, which generally have cooling, heating, and dehumidification functions, is detected by a pressure switch installed on the high-pressure side during the refrigeration cycle, and the bypass valve in the refrigeration cycle is opened and closed to change the high-pressure side to low pressure. This is a moxibustion mode (hereinafter referred to as heating) that stops the outdoor fan and makes the cold air blown from the air conditioner a little higher, especially during heating and dehumidifying operation. (referred to as "slight dehumidification") requires some kind of overload control, and conventionally a bypass circuit mainly having a bypass valve has been provided in the refrigeration cycle.

以下、従来の過負荷制御回路について添付図面の第1図
〜第3図により説明する。
Hereinafter, a conventional overload control circuit will be explained with reference to FIGS. 1 to 3 of the accompanying drawings.

第1図において、1は直流低電圧回路で、空気調和機の
制御をするための後述する各種リレーおよび電子部品か
ら構成されている。2は直流電源で、圧力スイッチ3の
共通接点3bに接続されている。前記圧力スイッチ3の
内部は前記共通接点3bから接片3aを介して低圧接点
3dに接続されており、冷凍サイクル中の高圧側の圧力
が前記圧力スイッチ3の設定値まで達すると前記接片3
aが高圧接点3Gに接続されるよう構成されている。ま
た前記低圧接点3dは、室外ファン停止用リレーコイル
4を介してトランジスタインバータ8に接続されている
。さらに前記高圧接点3Cはバイパス用リレーコイル6
を介してアースに接続されている。また除湿用2方弁リ
レーコイル6は前記直流電源2と接続され、細道端子は
トランジスタインバータ9に接続され、さらに4方弁用
リレーコイル7も前記直流電源2と接続され、他ている
In FIG. 1, reference numeral 1 denotes a DC low voltage circuit, which is comprised of various relays and electronic components, which will be described later, for controlling an air conditioner. 2 is a DC power supply, which is connected to the common contact 3b of the pressure switch 3. The inside of the pressure switch 3 is connected from the common contact 3b to the low pressure contact 3d via the contact piece 3a, and when the pressure on the high pressure side during the refrigeration cycle reaches the set value of the pressure switch 3, the contact piece 3
a is connected to the high voltage contact 3G. Further, the low voltage contact 3d is connected to a transistor inverter 8 via a relay coil 4 for stopping the outdoor fan. Furthermore, the high voltage contact 3C is a bypass relay coil 6.
connected to ground via. Further, the dehumidifying two-way valve relay coil 6 is connected to the DC power supply 2, the narrow path terminal is connected to the transistor inverter 9, and the four-way valve relay coil 7 is also connected to the DC power supply 2.

第2図は、空気調和機の負荷を制御するシーケンス回路
であり、同図において16は交流電源で、前記直流低電
圧回路1が並列に傍続されている。
FIG. 2 shows a sequence circuit for controlling the load of an air conditioner. In the figure, 16 is an AC power source, and the DC low voltage circuit 1 is connected in parallel.

前記交流電源16から除湿用2方弁コイル11の一端が
接続され、また細道端子は除湿用2方弁リレ一接点6a
を介して前記交流電源16の異極へ接続されている。ま
た前記交流電源16から4方弁用リレ一接点7!Lを介
して4方弁コイル12およびバイパス用2方弁コイル1
3に接続され、前記4方弁コイル12の逆端子は、前記
除湿用2方弁リレ一接点6aの接点部と、バイパス用リ
レー接点6aを介して室外ファン停止用リレー接点4a
の開接点部4bに接続されている。また前記交流電源1
5からは室外ファンモータ14(7)−11?Jが接続
され、細道端子は前記室外ファン停止用リレー接点4a
を介して前記交流電源16の異極へ接続されている。
One end of the dehumidifying two-way valve coil 11 is connected to the AC power supply 16, and the narrow path terminal is connected to the dehumidifying two-way valve relay contact 6a.
It is connected to a different polarity of the AC power source 16 via the AC power source 16. Also, from the AC power supply 16 to the four-way valve relay contact 7! 4-way valve coil 12 and bypass 2-way valve coil 1 via L
3, and the reverse terminal of the four-way valve coil 12 is connected to the outdoor fan stop relay contact 4a via the contact part of the dehumidifying two-way valve relay contact 6a and the bypass relay contact 6a.
It is connected to the open contact portion 4b of. In addition, the AC power supply 1
5 to outdoor fan motor 14(7)-11? J is connected, and the narrow path terminal is the outdoor fan stop relay contact 4a.
It is connected to a different polarity of the AC power source 16 via the AC power source 16.

上記構成において、トランジスタインバータ8゜9.1
0は、トランジスタインバータ入力信号8!L、9IL
、101LにそれぞれH信号(はぼ直流電源2の電圧)
がくると、トランジスタインノく一タ出力信号8b、9
b、10bにそれぞれL信号(はぼOV雷電圧が現われ
、前記室外ファン停止用リレーコイル4と前記除湿用リ
レーコイル6および前記4方弁用リレーコイル7に電位
差が生じそれぞれ励磁される。すなわち、従来の回路で
は、暖房時および暖気味除湿時の信号は第3図の組合せ
で制御している。
In the above configuration, the transistor inverter 8°9.1
0 is the transistor inverter input signal 8! L, 9IL
, H signal to 101L (voltage of DC power supply 2)
When this happens, the transistor output signals 8b and 9
An L signal (or OV lightning voltage) appears on b and 10b, and a potential difference is generated in the outdoor fan stop relay coil 4, the dehumidification relay coil 6, and the four-way valve relay coil 7, and they are excited. That is, In the conventional circuit, signals during heating and warm dehumidification are controlled by the combination shown in FIG.

したがって、暖房時は前記除湿用2方弁リレーコイル6
と前記4方弁用リレーコイル7が励磁され、暖気味除湿
時は前記室外ファン停止用リレーコイル4と前記除湿用
2方弁リレーコイル6が励磁される。また、過負荷によ
り前記圧力スイッチ3が動作すると、前記室外ファン停
止用リレーコイル4の回路が切り離されるため、必ず前
記室外ファン停止用リレーコイル4には励磁されず、前
記バイパス用リレーコイル6が励磁される(開く)回路
動作となっている。
Therefore, during heating, the dehumidifying two-way valve relay coil 6
The 4-way valve relay coil 7 is energized, and the outdoor fan stop relay coil 4 and the 2-way dehumidifier relay coil 6 are energized during warm dehumidification. Furthermore, when the pressure switch 3 is operated due to overload, the circuit of the outdoor fan stop relay coil 4 is disconnected, so the outdoor fan stop relay coil 4 is not always energized and the bypass relay coil 6 is not energized. The circuit is activated (opened).

そしてこの従来回路の場合、暖気法除湿の通常運転時、
室外ファン停止用リレーコイル4が励磁されるため、室
外ファンモータ14が停止する。
In the case of this conventional circuit, during normal operation of warm air dehumidification,
Since the outdoor fan stop relay coil 4 is excited, the outdoor fan motor 14 is stopped.

そして過負荷時には圧力スイッチ3の動作により、室外
ファンモータ14が運転される。しかしこのシステムの
場合は、過負荷時の圧力スイッチ3の動作と同時にバイ
パス用リレーコイル6にも励磁されるため、無駄な電気
を消費する欠点がある。
In the event of overload, the outdoor fan motor 14 is operated by the operation of the pressure switch 3. However, in the case of this system, since the bypass relay coil 6 is also excited at the same time as the pressure switch 3 is operated during overload, there is a drawback that electricity is wasted.

また暖房過負荷時において、圧力スイッチ3が動作する
と、バイパス用リレーコイル6に励磁され、バイパス用
リレー接点61Lが動作することがら冷凍サイクル中の
バイパス弁が動作し過負荷制御を行う。しかし暖房過負
荷時制御としては、冷凍サイクルにバイパス弁とそれを
制御するリレーが必要となり、非常に高価となり、また
冷凍サイクルも複雑となる欠点を有していた。
Furthermore, when the pressure switch 3 operates during heating overload, the bypass relay coil 6 is energized and the bypass relay contact 61L is operated, which causes the bypass valve in the refrigeration cycle to operate and perform overload control. However, control during heating overload requires a bypass valve and a relay to control the bypass valve in the refrigeration cycle, which is very expensive and has the disadvantage of complicating the refrigeration cycle.

本発明は、上記従来の回路構造にみられる欠点を解消す
るものである。
The present invention eliminates the drawbacks found in the above-mentioned conventional circuit structures.

以下、本発明をその一実施例を示す添付図面の第4図〜
第6図を参考に説明する。ここで第1図。
Hereinafter, FIGS. 4 to 4 of the accompanying drawings showing one embodiment of the present invention.
This will be explained with reference to FIG. Here is Figure 1.

第2図と同一のものについては同一の番号を付して説明
を省略する。
Components that are the same as those in FIG. 2 are given the same numbers and their explanation will be omitted.

まず、第4図により冷凍サイクルの概略基本構造につい
て説明する。
First, the basic structure of the refrigeration cycle will be explained with reference to FIG.

同図において、21は圧縮機、12は冷房、暖房の切換
えを行う4方弁、23は室外熱交換器、24は減圧器、
26は室内第1熱交換器、26は室内第2熱交換器で、
これらを環状に連結することにより冷媒循環回路が構成
されている。ここで、前記減圧器24には除湿用バイパ
ス2方弁11が並列に接続され、また前記室内第1熱交
換器26と室内第2熱交換器26の間には除湿用2方弁
28と冷房用減圧器22からなる並列回路が設けられて
いる。14は室外ファンモータ、27は室内ファンモー
タ、3は圧力スイッチである。
In the figure, 21 is a compressor, 12 is a four-way valve that switches between cooling and heating, 23 is an outdoor heat exchanger, 24 is a pressure reducer,
26 is an indoor first heat exchanger, 26 is an indoor second heat exchanger,
A refrigerant circulation circuit is constructed by connecting these in an annular manner. Here, a dehumidifying bypass two-way valve 11 is connected in parallel to the pressure reducer 24, and a dehumidifying two-way valve 28 is connected between the indoor first heat exchanger 26 and the indoor second heat exchanger 26. A parallel circuit consisting of a cooling pressure reducer 22 is provided. 14 is an outdoor fan motor, 27 is an indoor fan motor, and 3 is a pressure switch.

上記構成の冷凍サイクルは基本構造を示すものであり、
必要に応じて別途逆止弁等(いずれも図示せず)が設け
られる。
The refrigeration cycle with the above configuration shows the basic structure.
If necessary, a check valve or the like (none of which is shown) is separately provided.

次に、第6図、第6図により概略の電気回路について説
明する。
Next, a schematic electric circuit will be explained with reference to FIGS.

空気調和機の制御をするだめの後述する各種リレーおよ
び電子部品から構成されている。4は室外ファン停止用
リレーコイルで直流電源2と接続され、細道端子は圧力
スイッチ3の共通接点3bと接続されている。そしてこ
の低圧接点3dは、トランジスタインバータ8と接続さ
れている。1だ高圧接点3Cは、4方弁用リレーコイル
7とトランジスタインバータ9の接続部に接続されてい
る。
It is comprised of various relays and electronic components that will be described later to control the air conditioner. Reference numeral 4 denotes a relay coil for stopping the outdoor fan, which is connected to the DC power supply 2, and whose narrow terminal is connected to the common contact 3b of the pressure switch 3. This low voltage contact 3d is connected to a transistor inverter 8. The single high voltage contact 3C is connected to the connection between the four-way valve relay coil 7 and the transistor inverter 9.

さらに、直流低電圧回路16は第6図に示す如く交流電
源15と並列に接続されている。また第6図の回路構成
は、従来回路を示す第2図のバイパス用2方弁コイル1
3とバイパス用リレーコイル接点5亀および開接点部4
bを除いた回路である。
Further, the DC low voltage circuit 16 is connected in parallel with the AC power supply 15 as shown in FIG. The circuit configuration shown in FIG. 6 is similar to the bypass two-way valve coil 1 shown in FIG. 2, which shows a conventional circuit.
3 and bypass relay coil contact 5 and open contact part 4
This is the circuit without b.

また各トランジスタインバータ8,9.10の出力信号
81L、9N、102Lの信号の組合せは第3図と同一
である。
Further, the signal combinations of the output signals 81L, 9N, and 102L of each transistor inverter 8, 9, and 10 are the same as in FIG.

ここで、第6図、第6図にに示す回路は過負荷制御に必
要な部分のみを表示しており、第4図に示す室内ノア/
モータ27、除湿用2方弁28の制御回路、および冷房
、暖房、除湿の各運転切換え(ロ)路については、本発
明の要旨と直接関係しないことならびに従来周知の回路
でよいため説明を省略している。
Here, the circuit shown in Fig. 6 and Fig. 6 shows only the parts necessary for overload control.
The control circuit for the motor 27, the two-way dehumidifying valve 28, and the operation switching paths for cooling, heating, and dehumidification will not be described because they are not directly related to the gist of the present invention and may be conventionally known circuits. are doing.

−F記構成において、冷房運転時の冷媒の流れは第4図
の実線矢印で示す如く、圧縮機21.4方弁12、室外
熱交換器23、減圧器24、室内第1熱交換器26、冷
房用減圧器22、室内第2熱交換器26.4方弁12、
圧縮機21と循環する。
- In the configuration shown in F, the flow of refrigerant during cooling operation is as shown by the solid line arrow in FIG. , cooling pressure reducer 22, indoor second heat exchanger 26, four-way valve 12,
It circulates with the compressor 21.

また、暖房運転時の冷媒の流れは同図の破線矢印で示す
如く、圧縮機21.4方弁12、室内第1熱交換器26
、除湿用2方弁28、室内第2熱交換器26、減圧器2
4、室外熱交換器23.4方弁12、圧縮機21と循環
する。
In addition, the flow of refrigerant during heating operation is as shown by the broken line arrow in the same figure.
, two-way dehumidifying valve 28, indoor second heat exchanger 26, pressure reducer 2
4. The outdoor heat exchanger 23 circulates through the four-way valve 12 and the compressor 21.

さらに、除湿運転時の冷媒の流れは同図の一点鎖線矢印
で示す如く、基本的には冷房時と同じで、圧縮機21.
4方弁12、室外熱交換器23、除湿用バイパス2方−
yPll、室内第1熱交換器26、冷房用減圧器22、
室内第2熱交換器26.4方弁12、圧縮機1と循環す
る。
Furthermore, the flow of refrigerant during dehumidification operation is basically the same as during cooling, as shown by the dashed-dotted line arrow in the figure.
4-way valve 12, outdoor heat exchanger 23, dehumidification bypass 2-way
yPll, indoor first heat exchanger 26, cooling pressure reducer 22,
It circulates through the indoor second heat exchanger 26, the four-way valve 12, and the compressor 1.

ここで、暖房運転時における通常は、圧カスイノチ3が
第6図の状態になっており、各トランジスタインバータ
8,9.10の入力信号81L、 9a10ILはそれ
ぞれ第3図に示す状態にある。したがって室外ファンモ
ータ14が回転している。
Normally during heating operation, the pressure inlet 3 is in the state shown in FIG. 6, and the input signals 81L, 9a10IL of each transistor inverter 8, 9, 10 are in the state shown in FIG. 3, respectively. Therefore, the outdoor fan motor 14 is rotating.

そして過負荷状態になると、圧カスイノチ3の接片3a
が低圧接点3dから高圧接点3Cに切換わり、トランジ
スタインバータ90入力信号9&がLとなっているため
、室外ファン停止用リレーコイル4が励磁され、室外フ
ァンモータ14が停止する。
When an overload condition occurs, the contact piece 3a of the pressure gas inlet 3
is switched from the low voltage contact 3d to the high voltage contact 3C, and the transistor inverter 90 input signal 9& is at L, so the outdoor fan stop relay coil 4 is energized and the outdoor fan motor 14 is stopped.

また、暖気法除湿運転時における通常は、圧力スイッチ
3が第6図の状態になっており、各トランジスタインバ
ータ8,9.10の入力信号8&。
Further, during warm air dehumidification operation, the pressure switch 3 is normally in the state shown in FIG.

9!L、10aはそれぞれ第3図に示す状態にある。9! L and 10a are in the state shown in FIG. 3, respectively.

したがって室外ファンモータ14は停止の状態にある。Therefore, the outdoor fan motor 14 is in a stopped state.

そして過負荷状態になると、圧力スイッチ3の接片3a
が低圧接点3dから高圧接点3Cに切換わり、トラン、
ラスタインバータ90入力9aがHであることから室外
ファン停止用リレーコイル4が励磁されなくなり、室外
ファンモータ14は回転する。この室外ファンモータ1
4の回転により、高圧側圧力が低下し、過負荷が解消さ
れる。
When an overload condition occurs, the contact piece 3a of the pressure switch 3
switches from low voltage contact 3d to high voltage contact 3C,
Since the input 9a of the raster inverter 90 is H, the outdoor fan stop relay coil 4 is no longer excited, and the outdoor fan motor 14 rotates. This outdoor fan motor 1
Rotation 4 reduces the pressure on the high pressure side and eliminates the overload.

したがって、暖房運転時、および暖気法除湿運転時にお
ける過負荷が、室外ファンモータ14の運転、停止にて
行えるため、従来のように冷凍サイクル中に過負荷制御
用のバイパス弁を設ける必要がなくなり、冷凍サイクル
の構造が簡素化でき、安価となる。また電気回路も前記
バイパス弁に関係する部分が不要となり簡単な制御回路
ですむ。
Therefore, overload during heating operation and warm air method dehumidification operation can be achieved by starting and stopping the outdoor fan motor 14, so there is no need to provide a bypass valve for overload control in the refrigeration cycle as in the past. , the structure of the refrigeration cycle can be simplified and the cost can be reduced. Furthermore, the electric circuit does not require any portion related to the bypass valve, and a simple control circuit is required.

上記実施例より明らかなように、本発明における空気調
和機の過負荷制御装置は、暖房運転時および暖房気味除
湿運転時における過負荷制御を、室外ファンの運転制御
にて行うため、従来の如く冷凍サイクル中に過負荷制御
用のバイパス回路を設ける必要がなく、冷凍サイクルの
構造が簡素化でき、また前記バイパス回路を制御するた
めの電気回路も不要となり、電気回路構成が簡単となっ
て安価に作成できる等、種々の利点を有するものである
As is clear from the above embodiments, the overload control device for an air conditioner according to the present invention performs overload control during heating operation and during heating dehumidification operation by controlling the operation of the outdoor fan. There is no need to provide a bypass circuit for overload control in the refrigeration cycle, simplifying the structure of the refrigeration cycle, and eliminating the need for an electric circuit to control the bypass circuit, simplifying the electric circuit configuration and making it cheaper. It has various advantages, such as being able to create

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す空気調和機の過負荷制御装置を構
成する直流低電圧回路図、第2図は同制御装置を構成す
るシーケンス回路図、第3図は同直流低電圧回路におけ
る各トランジスタインバータの入力モードを示す説明図
、第4図は本発明の一実施例における過負荷制御装置を
具備した空気調和機の冷凍サイクル図、第6図は同制御
装置を構成する直流低電圧回路図、第6図は同制御装置
を構成するシーケンス回路図である。 3・・・・・・圧力スイッチ、4・・・・・・室外ファ
ン停止用リレーコイル、41L・・・・・・室外ファン
停止用IJレー接点、8,9・・・・・・トランジスタ
インバータ、7・・・・・・4方弁用リレーコイル、1
2・・・・・・4方弁、14・・・・・・室外ファンモ
ータ、21・・・・・・圧縮機、23・・・・・・室外
熱交換器、24・・・・・・減圧器、25・・・・・・
室内第1熱交換器、26・・・・・・室内第2熱交換器
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第4図
Fig. 1 is a DC low voltage circuit diagram configuring a conventional air conditioner overload control device, Fig. 2 is a sequence circuit diagram configuring the same control device, and Fig. 3 is a diagram showing various components in the same DC low voltage circuit. An explanatory diagram showing the input mode of a transistor inverter, FIG. 4 is a refrigeration cycle diagram of an air conditioner equipped with an overload control device according to an embodiment of the present invention, and FIG. 6 is a DC low voltage circuit configuring the same control device. 6 are sequence circuit diagrams configuring the control device. 3...Pressure switch, 4...Relay coil for stopping outdoor fan, 41L...IJ relay contact for stopping outdoor fan, 8, 9...Transistor inverter , 7... Relay coil for 4-way valve, 1
2...4-way valve, 14...Outdoor fan motor, 21...Compressor, 23...Outdoor heat exchanger, 24...・Pressure reducer, 25...
Indoor first heat exchanger, 26... Indoor second heat exchanger. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、冷暖房切換弁、室内側第1熱交換器、室内側第
2熱交換器、減圧装置、室外側熱交換器をそれぞれ環状
に連結してヒートポンプ式冷凍サイクルを構成し、さら
にこの冷凍サイクルに、冷房運転を除湿運転に切換える
切換弁装置およびこの冷凍サイクル内の圧力を検出して
ON、OFF動作(行う圧力スイッチと、前記室内側の
各熱交換器へ通風を行う室内ファンと、前記室外側熱交
換器へ通風を行う室外ファンをそれぞれ設け、さらに前
記圧力スイッチのON、OFF動作により前記室外ファ
ンの運転を制御する制御装置を設け、この制御装置にょ
シ除湿運転時において、通常前記室外ファンを停止し、
また前記圧力スイッチが圧縮機の過負荷を検出したとき
に前記室外ファンを運転し、さらに暖房運転時において
、通常室外ファンを運転し、また前記圧力スイッチが圧
縮機の過負荷を検出したときに前記室外ファンを運転す
るようにした空気調和機の過負荷制御装置。
A compressor, an air conditioning/heating switching valve, a first indoor heat exchanger, a second indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are each connected in a ring to form a heat pump refrigeration cycle, and this refrigeration cycle a switching valve device that switches cooling operation to dehumidification operation; a pressure switch that detects the pressure within the refrigeration cycle and turns it on and off; and an indoor fan that ventilates each heat exchanger on the indoor side; An outdoor fan is provided to provide ventilation to the outdoor heat exchanger, and a control device is provided to control the operation of the outdoor fan by turning on and off the pressure switch. Stop the outdoor fan,
The outdoor fan is operated when the pressure switch detects an overload of the compressor, and the outdoor fan is normally operated during heating operation, and when the pressure switch detects an overload of the compressor. An overload control device for an air conditioner that operates the outdoor fan.
JP56183538A 1981-11-16 1981-11-16 Overload control device for air conditioner Pending JPS5885044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183538A JPS5885044A (en) 1981-11-16 1981-11-16 Overload control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183538A JPS5885044A (en) 1981-11-16 1981-11-16 Overload control device for air conditioner

Publications (1)

Publication Number Publication Date
JPS5885044A true JPS5885044A (en) 1983-05-21

Family

ID=16137573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183538A Pending JPS5885044A (en) 1981-11-16 1981-11-16 Overload control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS5885044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581692A3 (en) * 2011-10-12 2013-06-26 Lg Electronics Inc. Air conditioner
CN109539471A (en) * 2018-11-05 2019-03-29 珠海格力电器股份有限公司 A kind of adjusting method and air conditioner heating high temperature-proof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118059B1 (en) * 1970-02-20 1976-06-07
JPS5174451A (en) * 1974-12-25 1976-06-28 Tokyo Shibaura Electric Co

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118059B1 (en) * 1970-02-20 1976-06-07
JPS5174451A (en) * 1974-12-25 1976-06-28 Tokyo Shibaura Electric Co

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581692A3 (en) * 2011-10-12 2013-06-26 Lg Electronics Inc. Air conditioner
US9217587B2 (en) 2011-10-12 2015-12-22 Lg Electronics Inc. Air conditioner
CN109539471A (en) * 2018-11-05 2019-03-29 珠海格力电器股份有限公司 A kind of adjusting method and air conditioner heating high temperature-proof
CN109539471B (en) * 2018-11-05 2019-10-18 珠海格力电器股份有限公司 A kind of adjusting method and air conditioner heating high temperature-proof

Similar Documents

Publication Publication Date Title
KR910015827A (en) Control Unit of Air Conditioner
JPS5885044A (en) Overload control device for air conditioner
JPH08178396A (en) Air conditioning equipment
JP3815463B2 (en) Separate air conditioner
JPH01302056A (en) Air conditioner
JP3858410B2 (en) Air conditioner
JPS63108147A (en) Air conditioner
JPS5848988Y2 (en) Defrosting device for heat pump air conditioner
JPH0533889Y2 (en)
JPS6124817Y2 (en)
JP2000213822A (en) Air conditioner
JPS6012724Y2 (en) air conditioner
JPS6126847Y2 (en)
JPS6317968Y2 (en)
JPS6038106Y2 (en) Air conditioner control circuit
JPS6038105Y2 (en) Air conditioner control circuit
JPS5854583Y2 (en) Air conditioner control circuit
JPS594617B2 (en) air conditioner
JPS5920582Y2 (en) Refrigerator operation control device
JPS5822045Y2 (en) Air conditioner/heater operation control device
JPS6017611Y2 (en) air conditioner
JPS5847614B2 (en) Method for varying the heating and cooling capacity of a heat pump air conditioner
JPS5911317Y2 (en) Air conditioner blow control device
JPS6039702Y2 (en) Heat pump air conditioning system
JPS596345Y2 (en) Control circuit for air heat source type heat pump air conditioner