JPS5884516A - Manufacture of substrate for surface acoustic wave element - Google Patents

Manufacture of substrate for surface acoustic wave element

Info

Publication number
JPS5884516A
JPS5884516A JP18226781A JP18226781A JPS5884516A JP S5884516 A JPS5884516 A JP S5884516A JP 18226781 A JP18226781 A JP 18226781A JP 18226781 A JP18226781 A JP 18226781A JP S5884516 A JPS5884516 A JP S5884516A
Authority
JP
Japan
Prior art keywords
plate
flat plate
crystal
sro
temperature gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18226781A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takeuchi
裕之 竹内
Yukio Ito
由喜男 伊藤
Kazuyuki Nagatsuma
一之 長妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18226781A priority Critical patent/JPS5884516A/en
Publication of JPS5884516A publication Critical patent/JPS5884516A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To grow crystal of a specific composition around the surface of a flat plate with arranged crystal axes, by thermally treating a glass component on the flat plate consisting of BaO, SrO, TiO2 and SiO2, through the provision of temperature gradient vertically to the plate surface. CONSTITUTION:BaO, SrO, TiO2 and SiO2 are weighed to obtain the composition indicated by formula (Ba1.0, Sr1.0)TiSi2O8 and mixed with the wet process. After the mixture is dried, it is ground and formed under pressure. A sintered body obtained by sintering it is subjected to high frequency heating, and the molten substance is rapidly cooled to obtain a transparent glassy lump. The lump is cut into a flat plate and one side is optically polished. This flat plate is arranged on the plate surface with a temperature gradient and subjected to heat treatment. Thus, piezoelectric crystal expressed by (Ba2-xSrx)TiSi2O8 (0<x<=2.0) is grown around the surface of the plate, allowing to obtain a substrate member used for a surface acoustic wave element such as a filter and a delay line.

Description

【発明の詳細な説明】 本発明ti. 7イルタ,遅嬌線などの弾性表119素
子に用いる,圧xi板材科の製造法に関するものである
。匠米.911L性六面波素子用基板材料としては二オ
プ酸すチウムLiNbO.,水晶などが良く用いられて
いる。しかし、ニオブ酸リチウムは電気機械結合係数が
大きいものの温度硬性が悪い。
DETAILED DESCRIPTION OF THE INVENTION The present invention ti. This article relates to a method for producing pressure xi plate materials used for elastic table 119 elements such as 7 ilters and slow-falling wires. Takumi rice. As the substrate material for the 911L hexagonal wave element, lithium diopate LiNbO. , crystal, etc. are often used. However, although lithium niobate has a large electromechanical coupling coefficient, it has poor temperature hardness.

逆に水晶は温に%性が良いが電気機械結合係数が小さく
,それぞれ一長一短をもっている。この丸め,′に気機
械結合係数が大きく、かつ温&特性の良い圧竃材科の探
索が現在盛んに行なわれている。
On the other hand, quartz has good temperature resistance but low electromechanical coupling coefficient, and each has its advantages and disadvantages. The search for compression materials that have a large air-mechanical coupling coefficient and good temperature and properties is currently being actively conducted.

七〇中”t’?11えば(Ba.−gsrJTts!1
o.の単結晶が,その条件を情死す材料としてアプライ
ド・フイジイツクス・レター誌第36巻11号894〜
895頁(1980)に報告されている。この単結晶は
対称性4mに嬌し.水晶と同様常*1lcの圧電体で分
極処理を必蟹としない。また、 S−rの量を増すに従
い温に%性が良くなることが報告されている.しかし、
この結晶はいわゆるコングルーエント・メルティング組
成をもたないため.量産に向く引上は法で単結晶を育成
すると組成ずれがおこ〕一様なものが得られない。
"t'? 11 out of 70 (Ba.-gsrJTts!1
o. Applied Physics Letters, Vol. 36, No. 11, 894~
Reported on page 895 (1980). This single crystal has a symmetry of 4m. Like crystal, it is a piezoelectric material of 1 lc and does not require polarization treatment. It has also been reported that as the amount of S-r increases, the temperature % property improves. but,
This is because this crystal does not have a so-called congruent melting composition. When single crystals are grown using the pulling method suitable for mass production, compositional deviations occur and uniform crystals cannot be obtained.

そこで本発明の目的は弾性底面波素子用基板として適し
た一様な( Bag−xsrm ) Ti841 08
  結晶の製造法を提供することにある。本発明の製造
法は,ガラス状態から,同一組成の結晶を結晶軸をそろ
えて成長させることを%稙としている。これまで、ガラ
ス状態から結晶を成長させる技術を用イs PbsG”
sOstやLt.st.os などの結晶が得られてい
る.特にL輸8’*Os  K関しては。
Therefore, the object of the present invention is to provide a uniform (Bag-xsrm) Ti841 08 suitable as a substrate for a bottom acoustic wave device.
The object of the present invention is to provide a method for producing crystals. The manufacturing method of the present invention is based on growing crystals of the same composition from a glass state with their crystal axes aligned. Until now, we have used technology to grow crystals from a glassy state.
sOst and Lt. st. Crystals such as os have been obtained. Especially regarding L import 8'*Os K.

L’lS’*Olのガラス板を,板面に垂直方向に温度
勾配を本゛たせて熱処理することによシ、極性軸である
C軸が板面に垂直にそろったL輸S+、O,の結晶が表
向付近に炒成されることが報告されている(アプライド
・フイジイクス・レター誌第36巻10号(1980年
)817〜818頁)。本発弊鵬この方法を用いること
によシ(Bag 、xsrx)T ’ 8 ’* Os
 (0< x<2.0 ) O結t&is”侍うtl−
カつ帖Irl1博造が異なるにもかかわらず板面に垂直
に50〜150C/m程夏の一度勾配をもたせて熱処理
することによシL輸S輸O1と同様C軸が板面に垂直に
そろうという発見に基づくものでるる。
By heat-treating a glass plate of L'lS'*Ol with a temperature gradient perpendicular to the plate surface, L'S+, O1 with the C axis, which is the polar axis, aligned perpendicular to the plate surface. , has been reported to be fried near the surface (Applied Physics Letters, Vol. 36, No. 10 (1980), pp. 817-818). By using this method, the present invention can be applied to (Bag, xsrx)T'8'*Os
(0<x<2.0)
Despite the difference in Katsucho Irl1 Hirozo, the C-axis is perpendicular to the board surface by heat treatment with a gradient of 50 to 150 C/m perpendicular to the board surface once in the summer. It is based on the discovery that the

また、!11性懺面波素子用基板材料としては、基板衆
囲付近たけ結晶化、すなわち圧電的に活性化してあれは
よいという点も1つの着眼点になっている。以下本発明
を実施例を用いて詳しく説明する。
Also,! As a substrate material for an 11-dimensional surface wave element, one point of interest is that it is good to have crystallization near the substrate, that is, to piezoelectrically activate it. The present invention will be explained in detail below using examples.

拠施例1 組成式が(Ba1.ls’Ll)、Tj19i、O,と
なるようにBad、8rO,TtO,およびStO,を
秤量し、湿式混合した。乾燥後、粉砕し350Kf/c
m”の圧力で粉体をプレス成形し九〇これを130(1
’x3hの条件で焼結し得られた焼結体を白金るつぼに
入れ、高周波加熱で浴融した。急激に電源をおとし。
Based on Example 1 Bad, 8rO, TtO, and StO were weighed and wet-mixed so that the composition formula was (Ba1.ls'Ll), Tj19i, O. After drying, pulverize to 350Kf/c
The powder was press-molded at a pressure of 90 m" and then
The sintered body obtained by sintering under the conditions of 3 hours was placed in a platinum crucible and bath-melted by high frequency heating. Turn off the power suddenly.

炉からるつほを取シ出すことによりこれを急冷したとこ
ろ無色透明のガラス状態の塊が得られた。
When the rutsuho was removed from the furnace and quenched, a colorless and transparent glassy mass was obtained.

これから10  X10’X5’m(D角板を切シ出し
片面を光学研磨した。この角板を板面に垂直方向に10
0tll’/sawのm度勾配がつくようにホットプレ
ートにのせ700Cに加熱し2次に温度を2C/II!
Iの割合で850Cまで徐々に上昇させ死後、空気中に
とり出すことにより室温まで急冷した。
From this, cut out a 10 x 10' x 5' (D) square plate and optically polish one side.
Place it on a hot plate and heat it to 700C so that there is a m degree gradient of 0tll'/saw, then increase the temperature to 2C/II!
After death, the body was gradually raised to 850C at a rate of I and rapidly cooled to room temperature by taking it out into the air.

ホットプV−)からとり出した後、光学研磨しである面
をX線ディフラクトメータで調べたところ。
After taking it out from the hot plate (V-), the optically polished surface was examined using an X-ray diffractometer.

C軸が配向したBa1Ti8i10@型の結晶が得られ
ていることがわかった。この表面付近に成長した結晶の
組成分析を行なった結果、はぼ (Bat、sS’e、5)Ti81tOs  テNワサ
tLルffi成+7)結晶であることがわかった。次に
断面を光学研磨して結晶化している智の厚みを光学顕微
鏡を用い       [て測定したところ表面から約
100μmの深さまで結晶化していることが明らかにな
った。
It was found that a Ba1Ti8i10@ type crystal in which the C axis was oriented was obtained. As a result of conducting a compositional analysis of the crystal grown near the surface, it was found that it was a (Bat, sS'e, 5)Ti81tOsTeNwasatLruffi+7) crystal. Next, the cross section was optically polished and the thickness of the crystallized particles was measured using an optical microscope, and it was found that the crystals were crystallized to a depth of about 100 μm from the surface.

そこで、狭面を簡単に杏研磨した後1通常のホトリック
ラフイを用い2つのAtのすだれ状電極(弾性表n波v
J振用および受偏用)を炒成した(第1図)。谷すだれ
状電惚は、電惚指巾20μm。
Therefore, after briefly polishing the narrow surface, we used two At interdigital electrodes (elastic surface n-wave v
(J-shape and keiki) were roasted (Fig. 1). The width of the finger of the valley blind is 20 μm.

ギャップ20μmの10対のi!Ilc憔指からなシ、
交叉中は3■である。このようなすだれ状電極を用い、
54を性弐面波の基本特性を胸ぺた。その結果。
10 pairs of i! with a gap of 20 μm! From the Ilc finger,
There are 3 ■ in the crossover. Using such interdigital electrodes,
54, the basic characteristics of the two-sided wave. the result.

電気機械結合係数の自乗が約1.5%、遅延時間温度係
数33 ppmICと、同一組成の単結晶の2カツ)<
110>伝搬の特性とthとんど一紋した。
The square of the electromechanical coupling coefficient is approximately 1.5%, the delay time temperature coefficient is 33 ppm IC, and two single crystals of the same composition)
110>The characteristics of propagation and th are all the same.

これは、(Ba、−mSrs )’rtst、o、の単
結晶における2カツト向内では狭面波特性の異方性が非
常に小さいたあ、C軸が板面に垂直そろっているだけで
充分な特性が得られているものと考えられる。
This is because the anisotropy of the narrow plane wave characteristics is very small in the two-cut direction in the single crystal of (Ba, -mSrs)'rtst,o, and the C axis is aligned perpendicular to the plate surface. It is considered that sufficient characteristics are obtained.

実際に、!+=QのBa、T i 8 i、0@にオイ
テ社、2面内を伝搬する表面波の特性は伝搬方向にほと
んど依存し泳いことが報告されている(ジャーナル・オ
ブ・アブライドフイジイツクス誌#g49巻12号61
62〜6164頁(1978))。
actually,! It has been reported that the characteristics of surface waves propagating in two planes depend almost on the propagation direction (Journal of Abrid Physics). Tsukusu magazine #g49 volume 12 issue 61
62-6164 (1978)).

実施例2 組成式が(Bat、oS’t、o)T’S輸Osとなる
ようにBad、 8rO,Tie、および8i0.を神
童し、実施例1と全く同様な方法で、ガラス板を作成し
友。
Example 2 Bad, 8rO, Tie, and 8i0. As a child prodigy, he created a glass plate using exactly the same method as in Example 1.

この角板を板面に垂直に70tl:’/wmの温度勾配
がつくようにホットプレーにのせ650t:’に加熱し
、次に温度を2C/Millの割合で800Cまで徐々
に上昇させた後1gi気中に城シ出して室温まで急冷し
友、その結果、ガラス板表面から約100μmの深さま
でC軸が配向したBa、TiS輸o、 mの結晶が成長
していることがわかった。組成もBaとBrO比が約l
:lと所望のものでめつ九、実施例1の堝合と1W14
1Iな方法で狭面波特性を調べたところ、 m′fA慎
械結合係数の自乗が1.3%、遅延時間温度係数が20
PI)m/Cでめった。これは他の単結晶材料と比較し
て、・高結合係数と低温度係数を同時に兼ねそなえてい
るという点で優れた特性である・ 本発明の製造法鉱、ガラス状態という同相から結晶成長
させるため*  (bat−xsrx)tisi*o。
This square plate was placed on a hot plate with a temperature gradient of 70tl:'/wm perpendicular to the plate surface and heated to 650t:', and then the temperature was gradually increased to 800C at a rate of 2C/Mill. The glass was poured into 1g of air and rapidly cooled to room temperature. As a result, it was found that Ba, TiS crystals with C-axes oriented had grown to a depth of about 100 μm from the surface of the glass plate. The composition also has a Ba to BrO ratio of about 1
:L and the desired one, 1W14 with the 1W14 of Example 1
When the narrow-plane wave characteristics were investigated using the 1I method, the square of the m'fA modest coupling coefficient was 1.3%, and the delay time temperature coefficient was 20.
PI) m/C failed. Compared to other single-crystal materials, this material has excellent properties in that it has both a high coupling coefficient and a low temperature coefficient at the same time.Production method of the present inventionCrystal growth from the same phase of mineral and glass states tame* (bat-xsrx) tisi*o.

においてO<X<’10の全域にわたって結晶を得るこ
とかできることは明らかである。実際に同相反応で得ら
れるセラミックスではすべてのXの値に対し所望の組成
のものが得らnている。
It is clear that crystals can be obtained over the entire range O<X<'10. Ceramics actually obtained by in-phase reaction have desired compositions for all values of X.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表向波特性の評価法を示す説明図でるる。 l・・・衆111tRを励振、受信するためのすだれ状
電極。
FIG. 1 is an explanatory diagram showing a method for evaluating surface wave characteristics. l... interdigital electrode for exciting and receiving the mass 111tR.

Claims (1)

【特許請求の範囲】[Claims] Bad、sro、’rio、および5t□、からなる平
板状のガラス状態組成物を板面に垂直方向に温度勾配を
もたせて熱処理することにょシその表面付近に一般式(
Bag−x8’ II )’pi 8 ’10@ (0
< ” <20)で表わされる圧電結晶を[長させるこ
とを特許とするII性次囲装素子用基板の製造法。
A flat glass-state composition consisting of Bad, sro, 'rio, and 5t□ is heat-treated with a temperature gradient perpendicular to the plate surface, and the general formula (
Bag-x8' II )'pi 8 '10@ (0
< 20) A method for manufacturing a substrate for a secondary enclosure element patented for lengthening a piezoelectric crystal represented by < 20).
JP18226781A 1981-11-16 1981-11-16 Manufacture of substrate for surface acoustic wave element Pending JPS5884516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18226781A JPS5884516A (en) 1981-11-16 1981-11-16 Manufacture of substrate for surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18226781A JPS5884516A (en) 1981-11-16 1981-11-16 Manufacture of substrate for surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPS5884516A true JPS5884516A (en) 1983-05-20

Family

ID=16115263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18226781A Pending JPS5884516A (en) 1981-11-16 1981-11-16 Manufacture of substrate for surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPS5884516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272431A (en) * 1990-09-25 1992-09-29 Cummins Engine Co Inc Turbo composite engine
WO2015023556A3 (en) * 2013-08-16 2015-10-08 Schott Corporation Piezoelectric glass ceramic compositions and piezoelectric devices made therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272431A (en) * 1990-09-25 1992-09-29 Cummins Engine Co Inc Turbo composite engine
WO2015023556A3 (en) * 2013-08-16 2015-10-08 Schott Corporation Piezoelectric glass ceramic compositions and piezoelectric devices made therefrom
US9255033B2 (en) 2013-08-16 2016-02-09 Schott Corporation Piezoelectric glass ceramic compositions and piezoelectric devices made therefrom

Similar Documents

Publication Publication Date Title
Li et al. Dielectric and elastic properties of ferroelectric materials at elevated temperature
Yu et al. Characterization of neodymium calcium oxyborate piezoelectric crystal with monoclinic phase
US20070199348A1 (en) Method of preparing textured glass ceramics
Halliyal et al. Study of the piezoelectric properties of Ba 2 Ge 2 TiO 8 glass-ceramic and single crystals
Yamamoto et al. Piezoelectric properties of layered perovskite A 2Ti2O7 (A= La and Nd) single‐crystal fibers
Shen et al. Dielectric, elastic and piezoelectric properties of SrLaGa3O7 and BaLaGa3O7 crystals with Melilite structure
Gerace et al. Piezoelectric glass‐ceramics: Crystal chemistry, orientation mechanisms, and emerging applications
Sigaev et al. Stillwellite glass-ceramics with ferroelectric properties
Halliyal et al. Polar glass ceramics
Xia et al. Nearly zero thermal expansion of β-spodumene glass ceramics prepared by sol–gel and hot pressing method
Takeda et al. Growth and characterization of lanthanum calcium oxoborate LaCa4O (BO3) 3 single crystals
JPS5884516A (en) Manufacture of substrate for surface acoustic wave element
Davis et al. Ferroelectric and nonferroelectric (polar) piezoelectric glass–ceramics
Halliyal et al. Glass-ceramics for piezoelectric and pyroelectric devices
Halliyal et al. Piezoelectric properties of lithium borosilicate glass ceramics
Cao et al. The growth and thermal, electrical properties characterization of Ba2TiSi2O8 piezoelectric crystal
Fraser Acoustic loss of vitreous silica at elevated temperatures
CN110318098A (en) A kind of substrate of SAW device and preparation method thereof with artificial farmland construction
Takeda et al. Growth and piezoelectric properties of R3Ga5SiO14 and RCa4O (BO3) 3 (R: rare-earth elements) single crystals
Chen et al. Temperature-dependent behaviours of electro-elastic constants for the Bi 2 ZnB 2 O 7 piezoelectric crystal
Fan et al. Electro-elastic features of Nd-doped YAl 3 (BO 3) 4 single crystal
US2906973A (en) Electrostrictive ceramics comprising a principal component of barium titanate
Atkinson et al. Glass-ceramics with random and oriented microstructures: Part 1 The microstructure of a randomly oriented glass-ceramic
Sigaev et al. Glass ceramic textures based on new ferroelectric complex oxides
Murugan et al. Anomalous dielectric behaviour in melt quenched lithium borate glasses