JPS5884020A - Pressure variation for separation of gas mixture due to adsorption - Google Patents

Pressure variation for separation of gas mixture due to adsorption

Info

Publication number
JPS5884020A
JPS5884020A JP57190905A JP19090582A JPS5884020A JP S5884020 A JPS5884020 A JP S5884020A JP 57190905 A JP57190905 A JP 57190905A JP 19090582 A JP19090582 A JP 19090582A JP S5884020 A JPS5884020 A JP S5884020A
Authority
JP
Japan
Prior art keywords
adsorber
pressure
adsorption
oxygen
absolute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57190905A
Other languages
Japanese (ja)
Other versions
JPH02962B2 (en
Inventor
ゲルハルト・ライス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of JPS5884020A publication Critical patent/JPS5884020A/en
Publication of JPH02962B2 publication Critical patent/JPH02962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/4003Depressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0473Rapid pressure swing adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は吸着による気体混合物を連続的に分離するため
の改良された圧力変動す法に関するものであり、該方法
は空気を酸素で富ませるために有利に使用できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved pressure swing process for the continuous separation of gaseous mixtures by adsorption, which process can advantageously be used to enrich air with oxygen.

粗製生成物気体から除去しようとする成分が比較的高濃
度で、例えば1容量−以上で、存在している場合、又は
それが吸着剤により不充分に吸着されその結果熱再生用
に大きい吸着装置及び大きい再生量を必要とする場合に
は、圧力変動吸着(PCム)を用いる方法が使用される
。吸着による分離は一般に吸着段階後の吸着された成分
の脱着よ抄為い圧力において実施される。脱着方法はほ
とんどの場合、例えば燃焼気体からの窒素の回収時又は
気体乾燥時に、吸着剤を生成物気体の一部分で洗浄する
ことにより補助される。吸着により空気を酸素で富ませ
るときには、この洗浄は2〜4バール(絶対圧)の吸着
圧力に関して1パール〈絶対圧)において、分離され九
生成物気体(ドイツ公告明細書1.259.844 )
又は圧力解放気体の一部(ドイツ公告明細書2.5sa
964)を用いて、行なわれる。
If the component to be removed from the crude product gas is present in a relatively high concentration, e.g. more than 1 volume, or it is insufficiently adsorbed by the adsorbent and as a result a large adsorption device for thermal regeneration is required. and when a large regeneration amount is required, a method using pressure swing adsorption (PC) is used. Separation by adsorption is generally carried out at pressures higher than the desorption of the adsorbed components after the adsorption step. The desorption process is most often assisted by washing the adsorbent with a portion of the product gas, for example during recovery of nitrogen from combustion gases or during gas drying. When the air is enriched with oxygen by adsorption, this washing is carried out at 1 part (absolute) for an adsorption pressure of 2 to 4 bar (absolute), and the product gas is separated (German Publication No. 1.259.844).
or part of the pressure release gas (German Publication Specification 2.5sa
964).

吸着剤として使用される分子ふるいゼオライト類は空気
から窒素だけでなく酸素及びアルゴンも吸着するため、
空気を酸素で富ませることは他のpc入方法と比べて特
に重要性のある位置を占めている。従って窒素だけを吸
着しそして粗製生成物空気中に存在している全ての酸素
を得ることは不可能である。アルゴンは酸素と同じゆっ
くりした速度で吸着される友め、空気を酸素で富ませる
方法は5%のアルゴン及び窒素の残留含有量を有する9
5%だけの酸素生成物を与える。これまで公知の方法で
は、吸着段階の終りに分子ふるいゼオライト上の窒素の
量を吸着出口区域部分中でできる限り低く保つ場合又は
この区域を酸素で満たす場合だけに、これらの高い酸素
濃度が得られる。
Molecular sieve zeolites used as adsorbents adsorb not only nitrogen but also oxygen and argon from the air.
Enriching the air with oxygen occupies a place of particular importance compared to other PC injection methods. It is therefore not possible to adsorb only nitrogen and obtain all the oxygen present in the crude product air. Since argon is adsorbed at the same slow rate as oxygen, the method of enriching air with oxygen has a residual content of argon and nitrogen of 5%.
Gives only 5% oxygen product. In the hitherto known methods, these high oxygen concentrations can only be achieved if the amount of nitrogen on the molecular sieve zeolite is kept as low as possible in the adsorption outlet zone at the end of the adsorption stage, or if this zone is filled with oxygen. It will be done.

このことは、膜着段階の実施中に価値ある高パーセンテ
ージの酸素が吸着出口区域で損失され、従って酸素用の
回収率(該方法に加えられ九空気中の酸素の量に比例し
て優られる酸素の量)及びPCム装置の収率は相当減少
することを意味する。
This means that during the performance of the deposition step a valuable high percentage of oxygen is lost in the adsorption outlet zone and therefore the recovery rate for oxygen (which is proportional to the amount of oxygen in the air added to the process) is This means that the amount of oxygen) and the yield of the PC system are considerably reduced.

これは、吸着をり1バール(絶対圧)の圧力下で実施し
、そして分子ふるいを真空ポンプを用いて吸着と向流状
でポンプ除去することにょ抄税着を実施する場合に本適
用される〔ドイツ公告明細書1.26へ724及び1,
81スo04〕。空気を酸素で富ませるために脱着を減
圧下で実施するときには、窒素の脱着は吸着出口区域中
でのe累の洗浄効果によ抄改良される。酸素で富ませる
方法は、吸着圧力へ減圧後に吸着器に酸素生成物を充填
することによ抄さらに相当程度改良され、その理由はこ
の気体は窒素の量を吸着出口部分から大口区域に押すか
らである〔ドイツ公告viim書5− 1、544.152 )。脱着する必要のある分子ふる
い床中に生成物流の一部を加えることにより洗浄効果を
改良することも試みられているが〔ドイツ公告明細書2
.70スフ45〕、それには価値ある生成物気体の一部
の損失゛を伴なうため、これは工程の効率の実質的な改
良ムまもたらさなかった。下記の実施例1で得られた実
験結果は、1100N”7時の酸素(濃度9oチ)の製
造には1個の吸着器当抄約5m”の量の分子ふるいを必
要とすることを示しており、このことは生成物気体の1
0%を清掃気体として分ける場合それは1 m”のゼオ
ライト当り[LO33Nm”だけの個々の量の清掃気体
を与えることを意味しており、それは実験から洗浄′効
果を生ずるにははるかに少なすぎることが知られている
This applies when the adsorption is carried out under a pressure of 1 bar (absolute) and the molecular sieve is pumped away countercurrently to the adsorption using a vacuum pump. [German Publication Specification 1.26 to 724 and 1,
81suo04]. When the desorption is carried out under reduced pressure in order to enrich the air with oxygen, the desorption of nitrogen is improved by the cleaning effect of the eluate in the adsorption outlet area. The method of oxygen enrichment is considerably improved by filling the adsorber with oxygen product after depressurization to the adsorption pressure, since this gas pushes the amount of nitrogen from the adsorption outlet section into the bulk area. [German Announcement VIIM 5-1, 544.152]. Attempts have also been made to improve the cleaning effect by adding a portion of the product stream into the molecular sieve bed that needs to be desorbed [German Published Specification 2].
.. This did not result in any substantial improvement in the efficiency of the process since it involved a loss of some of the valuable product gas. The experimental results obtained in Example 1 below show that the production of 1100N"7'Ox (concentration 90%) requires an amount of molecular sieves of about 5m" per adsorber. This means that 1 of the product gas
When dividing 0% as cleaning gas, it means providing an individual amount of cleaning gas of only [LO33Nm'' per m'' of zeolite, which from experiments is far too small to produce a cleaning effect. It has been known.

本発明は、ある割合の生成物気体を用いる真空洗浄のこ
れらの欠点を除き、純粋真空膜着(洗浄6− 気体なし)により分離方法の効率を実質的に改良するよ
うな気体混合物の分離方法に関する本のである。
The present invention provides a method for the separation of gas mixtures which eliminates these drawbacks of vacuum cleaning with a proportion of product gas and substantially improves the efficiency of the separation method by pure vacuum membrane deposition (cleaning 6 - no gas). This is a book about.

得られる生成物の割合の回収率がそれにより増加し、そ
れにより真空ポンプの比生産高(kvh/N m”の生
成した酸素量)が改良され、そして吸着剤及び粗製生成
物気体の使用量を減じることのできるような方法を見出
した。
The percentage recovery of the product obtained is thereby increased, thereby improving the specific output of the vacuum pump (oxygen produced in kvh/N m") and the usage of adsorbent and crude product gas. We have found a way to reduce this.

本発明は粗製生成物、例えば空気が一端である吸着器入
口で充填されていてもよい少なくとも5個の吸着剤床を
用いて、精製された又は分離された生成物、例えば酸素
に富んだ空気、を吸着器出口において除去しながら、吸
着され九成分の脱着を1バール(絶対圧)以下の圧力に
おいて実施し、そして吸着器がその吸着段階すなわち生
成物の放出を完了したときに吸着器から得られる洗浄気
体を改良された脱着用に使用し、この洗浄気体を蚊充填
されている吸着器から吸着を同じ流れ方向で除去し、同
時Ka着器を粗製生成物への引き続きの関係によ抄それ
の吸着圧力に保ち、或いはll*数*吸着器中力を洗浄
気体の放出中に吸着入口端の閉鎖により1パール以下の
値に下げ、この洗浄気体を吸着剤(脱着しようとするも
の)の床を通して吸着方向とは向流状で1バール(絶対
圧)以下の圧力で除去する。
The present invention uses at least five adsorbent beds which may be filled at the adsorbent inlet with one end containing the crude product, e.g. air, and the purified or separated product, e.g. oxygen-enriched air. , is removed at the adsorber outlet, the desorption of the nine adsorbed components is carried out at a pressure below 1 bar (absolute), and from the adsorber when it has completed its adsorption step, i.e. product release. The resulting cleaning gas is used for improved desorption, removing adsorption from the mosquito-filled adsorber in the same flow direction and simultaneously using the Ka adsorption device with subsequent connection to the crude product. The adsorption pressure can be maintained at the same adsorption pressure, or the adsorption pressure can be lowered to less than 1 pearl by closing the adsorption inlet end while the cleaning gas is being released, and this cleaning gas can be absorbed into the adsorbent (the substance to be desorbed). ) through a bed countercurrently to the direction of adsorption at a pressure of less than 1 bar (absolute).

本発明に従う方法は空気を酸素で富ます丸めに好適に使
用される。それは吸着される能力の点で異なっている成
分を有する気体類及び蒸気類の分離、例えばNlもしく
はCH4からのco!もしくはCOの除去、又はatか
らのNl、CoもしくはCH4の除去、用に適している
The method according to the invention is preferably used for enriching air with oxygen. It is useful for the separation of gases and vapors whose components differ in their ability to be adsorbed, for example co! from Nl or CH4! Alternatively, it is suitable for the removal of CO, or the removal of Nl, Co or CH4 from at.

これまで使用されている方法とはそれの改良され九効率
及び減じられ九操作費用の点で異なっている方法を見出
し九。本発明に従う方法の構成上の特徴を添付図面を参
照しながら今記載しよ5:第11図はムICHIC8y
mp、 8er、 Ila I X 4.6!巻(19
73)7頁中に記されている如き従来方法の図式表示で
あり、そして 第2図は本発明に従う方法の工程図である。
We have found a method that differs from methods previously used in terms of its improved efficiency and reduced operating costs. The structural features of the method according to the invention will now be described with reference to the accompanying drawings.
mp, 8er, Ila IX 4.6! Volume (19
73) is a diagrammatic representation of the conventional method as described on page 7, and FIG. 2 is a flowchart of the method according to the invention.

図面をさらに4Iに参照すると、第1図では、粗製気体
の入口用の弁(11)及び脱着され九気体の出口用弁(
12)が吸着器の膨部に置かれて−る。
Referring further to the drawing 4I, in FIG.
12) is placed in the bulge of the adsorber.

吸着剤床はその低端Kg人してくるlll1気体の予備
乾燥用の保睡層、例えけシリ″カゲル、を量してこの層
の上に気体流の分離用011着剤を含有している主区域
を含んでいる。吸着によ抄部lI@れている気体の放出
用の弁(14)及び吸着器を吸着圧力に再び充填する九
゛めO弁(1s)が吸着−の上端に置かれている。吸着
器の充填は弁(15)によ−調節できて、圧力の一定増
加すなわち充填気体の一定供給を与えることができる。
The adsorbent bed has a storage layer, for example a silica gel, for pre-drying the gases coming at its lower end, and contains a 011 adhesive for the separation of the gas streams on top of this layer. The valve (14) for the release of the gas contained in the adsorption section and the ninth O valve (1s) for recharging the adsorber to the adsorption pressure are located at the upper end of the adsorption section. The filling of the adsorber can be regulated by a valve (15) to provide a constant increase in pressure, i.e. a constant supply of charging gas.

一!− 第2図の装置は第1図のものと、追加の弁(25)及び
制限器(26)を有する点で異なっている。弁の寸法の
割合は大体図面に示されている。追加の弁(25)は清
掃気体流の低速のために比較的小さい。清掃気体流の寸
法は制限器(26)により1節できる。
one! - The device of FIG. 2 differs from that of FIG. 1 in that it has an additional valve (25) and restrictor (26). The dimensional proportions of the valve are approximately indicated in the drawing. The additional valve (25) is relatively small due to the low velocity of the cleaning gas flow. The size of the cleaning gas flow can be restricted by a restrictor (26).

本発明に従5方法の本質的な一特徴は、吸着物質を担持
している吸着剤の脱着を1バール(絶対圧)以下の圧力
で実施しそして別の洗浄気体流を使用することである。
An essential feature of the process according to the invention is that the desorption of the adsorbent carrying adsorbent substances is carried out at a pressure of less than 1 bar (absolute) and that a separate cleaning gas stream is used. .

この洗浄気体は生成物気体の一部ではないが、すでにそ
の吸着すなわち生成物の放出、が完了している吸着器か
ら得られる。
This cleaning gas is not part of the product gas, but is obtained from the adsorber in which its adsorption, i.e. the release of the product, has already been completed.

この気体を得るためKは、吸着段階から除去された吸着
器を粗製気体と関連させて保ち、そして気体流を吸着出
口から吸着圧力において除去し、該気体流を低圧におい
て吸着とは向流状で脱着しようとする吸着床中に通す。
To obtain this gas, K keeps the adsorber removed from the adsorption stage in association with the crude gas, and removes the gas stream from the adsorption outlet at the adsorption pressure, at a low pressure in a countercurrent manner to the adsorption. It passes through the adsorption bed where it is to be desorbed.

−10− 本発明に従5方法の別のs41では、吸着段階を完了し
た吸着器を粗製気体入口で閉鎖しそしてこの吸着器から
の気体を吸着方向とは向流状に1パール以下の圧力で脱
着しようとする吸着器中に通すことによ抄洗浄気体が得
られる。
-10- In another s41 of the method 5 according to the invention, the adsorber which has completed the adsorption stage is closed with a crude gas inlet and the gas from this adsorber is transferred countercurrently to the adsorption direction to a pressure of less than 1 par. A paper cleaning gas is obtained by passing it through an adsorption device where it is to be desorbed.

下記の実施例は該方法の種々の段階を詳しく説明するも
のであ抄、そして集験で得られた生成物気体の量に関す
る値は本発明に従う清掃方法O重要な効果及び利点を示
して−る。
The following examples illustrate in detail the various steps of the process, and the values obtained collectively for the amount of product gas demonstrate the important effects and advantages of the cleaning process according to the invention. Ru.

実施例1 第1図に示されている如き圧力変動吸着装置を使用した
。吸着器中の床の合計O高さは2500謔であつ九。各
吸着器は25−の粒子寸法が!−5藺の分子ふるいゼオ
ライト5ムによ勢シシわれている底部に5−のシリカゲ
ルを含有していえ。
Example 1 A pressure swing adsorber as shown in FIG. 1 was used. The total height of the bed in the adsorber is 2,500 cm. Each adsorber has a particle size of 25-! It contains 5-5 silica gel at the bottom which is surrounded by 5-5 molecular sieve zeolite.

25 m”/lliの見かけ能力を有する油操作鴎転真
空ポンプff)を使用し九、*素に富んだ空気を黴着器
ム、B及びCから除去しそしてそれを1.1〜t5バー
ル(絶対圧)K加圧するためK、コンプレッサー(R)
が備えられていた。
Using an oil-operated rotary vacuum pump ff) with a nominal capacity of 25 m"/lli, the element-enriched air was removed from the mold applicators, B and C, and it was heated to a pressure of 1.1 to 5 bar. (Absolute pressure) K for pressurizing, compressor (R)
was provided.

コンプレッサー(R) Kよる気体の連続的除去を含む
連続的方法はこれらの5個の吸着器を用いて得られた。
A continuous process involving continuous removal of gas by Compressor (R) K was obtained using these five adsorbers.

下記の時間プロゲラ人を選択し九二段階1:0−60秒 周辺空気をプロワ−(G)、パイプL12及び弁11ム
を通して吸着器A中に約1バール(絶対圧)の一定圧力
で流入させ喪。酸素に富んだ空気を生成物としてプロワ
−Rのところで弁14A及びパイプL13によ抄除去し
た。弁12A113Aを閉じた。同時に、酸素で富んだ
空気の一部はパイプL15から流量調節弁15、パイプ
L14及び弁15Bを通って吸着器B中に流れ、その開
弁1411.11B及び12Bは閉じられていた。あら
かじめ脱着され友、すなわち減圧された、吸着器Be1
1票−富んだ空気で再充填した。例えばパイプL13を
通る生成物(充填気体)の急速な除去による吸着器A中
の圧力降下を防止するために、パイプL14及び弁13
11による吸着器B中への生成物流の一定速度(N−7
時で表わされている)を確実にするように弁15を調節
した。
92 steps 1: 0-60 seconds ambient air flows into adsorber A through blower (G), pipe L12 and valve 11m at a constant pressure of about 1 bar (absolute). Mourning. Oxygen-enriched air was filtered off as product at blower R through valve 14A and pipe L13. Valve 12A113A was closed. At the same time, part of the oxygen-enriched air flowed from pipe L15 through flow control valve 15, pipe L14 and valve 15B into adsorber B, whose opening valves 1411.11B and 12B were closed. Adsorber Be1, previously desorbed and depressurized
1 vote - Refilled with enriched air. Pipe L14 and valve 13 to prevent a pressure drop in adsorber A due to rapid removal of product (filling gas) through pipe L13, for example.
Constant rate of product flow into adsorber B by 11 (N-7
Valve 15 was adjusted to ensure that (expressed in hours).

吸着器A中の吸着段階中及び吸着器B中の充填段階中に
、吸着器Cは弁120及びパイプ1,11を用いて真空
ポンプによ抄減圧されてお艶、すなわち吸着器Cの弁1
1C,13C及び14Cけ閉じられていえ。60秒間の
脱着時間すなわち一ンプ吸引時間後に、弁12C及び吸
着器Cの間におかれている水銀圧力針は200パールの
最終圧力を示した。
During the adsorption stage in adsorber A and during the filling stage in adsorber B, adsorber C is depressurized by a vacuum pump using valve 120 and pipes 1 and 11, i.e., the valve of adsorber C 1
1C, 13C and 14C are closed. After a 60 second desorption time or one pump draw time, the mercury pressure needle placed between valve 12C and adsorber C showed a final pressure of 200 pars.

段階2:60−120秒 弁11A、15A及び14Aを閉じながら、吸着器ムを
弁12A及びパイプL11を用いて真空13− ポンプによ6zoo<リバールの最終的圧力に減圧した
。吸着器BK空気をプロワ−(G)、パイプL12及び
弁11Bを用いて充填し、そして生成物気体を吸着器B
から弁14B及びパイプIlSを用いてコンプレッサー
(R)により除去した。弁12B及び13Bを閉じた。
Step 2: 60-120 seconds While closing valves 11A, 15A and 14A, the adsorber was evacuated to a final pressure of 6zoo<libar by vacuum 13-pump using valve 12A and pipe L11. Adsorber BK air is charged using blower (G), pipe L12 and valve 11B, and product gas is charged to adsorber B.
was removed by a compressor (R) using valve 14B and pipe IIS. Valves 12B and 13B were closed.

吸着器CK11累で富んだ空気をパイプL15、流量調
節弁15、パイプL14及び弁15Cを用いて充填し、
その結果吸着器C中の圧力を200叱りパールから約1
パールの吸着圧力に上昇させた。同時に、吸着器CO弁
11C112C及び14Cを閉じた。
Fill the adsorber CK11 with enriched air using pipe L15, flow rate control valve 15, pipe L14 and valve 15C,
As a result, the pressure in the adsorber C was increased from 200% to approximately 1%.
The adsorption pressure of the pearl was increased. At the same time, adsorber CO valves 11C, 112C and 14C were closed.

段階5:120−180秒 吸着器五に酸素で富んだ空気をパイプL13から弁15
、パイプL14及び弁15ムを用いて充填し、その結果
吸着器ム中の圧力をそれの最少脱着圧力(200ミリバ
ール)から吸着圧力1バールに上昇させ、一方弁11A
、12A及び14ム14− を閉じた。
Stage 5: 120-180 seconds oxygen-enriched air is supplied to the adsorber 5 from pipe L13 to valve 15.
, using pipe L14 and valve 15m, so as to increase the pressure in the adsorber from its minimum desorption pressure (200 mbar) to an adsorption pressure of 1 bar, and on the other hand valve 11A.
, 12A and 14mu 14- were closed.

吸着器BをパイプL11及び弁12Bを用いて真空ポン
プ(V)により200ンリパールの最終的圧力に減圧し
、一方弁11B、13B及び14]iを閉じ友。
Adsorber B was depressurized to a final pressure of 200 liters by vacuum pump (V) using pipe L11 and valve 12B, while valves 11B, 13B and 14]i were closed.

吸着器CKal素で富んだ空気を供給し、すなわち同辺
空気がブロワ−(G)、パイプL12及び弁11Cを用
いて吸着器CKはい抄、そして生成物気体をコンプレッ
サー(IL) Kよ抄弁14C及びパイプL13を用い
て除去し、一方弁12C及び15Cを閉じた。
Supply air enriched with adsorbent CKal elements, i.e. the same air is transferred to the adsorber CK using the blower (G), pipe L12 and valve 11C, and the product gas is transferred to the compressor (IL) and the product gas to the compressor (IL). 14C and pipe L13, and one-way valves 12C and 15C were closed.

180秒間のサイクルの後に%皺方法自身を繰返し、す
なわち吸着器ムは吸着時でToL員着畢Bは充填中であ
り、そして吸着器Cは減圧されてい良。
After a 180 second cycle, the process repeats itself, ie adsorber M is adsorbing, ToL member B is filling, and adsorber C is depressurized.

実験開始後(15〜1時間内、k一定のll累嬢度を有
する生成物流が;ンプレッサー(R)から得られ喪。9
0gI及び80−の酸素含有量における生成物速度を測
定するために、ブロワ−(G)をバイパス設定(第1図
に示されていない)に調節するために該方法を種々の生
成物速度に調節した。9〇−の酸素濃度において、10
0−の酸素を基にして1675Nm”7時の酸−素生成
物速度が得られた。
After the start of the experiment (within 15 to 1 hour), a product stream with a constant degree of reactivity was obtained from the Empressor (R).9
To measure product rates at 0 gI and 80-gI oxygen content, the method was run at various product rates by adjusting the blower (G) to a bypass setting (not shown in Figure 1). Adjusted. At an oxygen concentration of 90-, 10
An oxygen product rate of 1675 Nm''7 hours was obtained based on 0-oxygen.

80−の酸素横変において、100嘔酸素を基にした酸
素生成物は[1? ONm”7時であった。
At an oxygen lateral change of 80-, the oxygen product based on 100 noxia is [1? ONm" It was 7 o'clock.

実施例2 第2図は3個の吸着器を用いてPCA技術によ抄空気を
酸素で富ませる九めの本発明に従う方法の工程図である
。脱着は吸着とは向流状の吸着剤床の真空化により行な
われ、そして脱着の終りに生成物の第二部分を生成物の
放出が完了し友吸着器からの洗浄気体として、、除去し
た。この洗浄気体を吸着と向流状で脱着しよ5とすゐ床
中に通した。
Example 2 FIG. 2 is a flowchart of the ninth method according to the invention for enriching draft air with oxygen by PCA technique using three adsorbers. Desorption was performed by evacuation of the adsorbent bed in countercurrent to adsorption, and at the end of desorption a second portion of the product was removed as a wash gas from the adsorber after product release was complete. . This cleaning gas was passed through the bed for desorption and adsorption in a countercurrent manner.

この脱着段階中に、生成物の第二部分が採取された吸着
器を弁によam放に保九れている空気入口端部でそれの
以前の吸着圧力に保った。実施例スの実験では、上記の
清掃気体の量はt ? @Nw17時、すなわち1吸着
サイクルfi911Nt、であつ九。吸着器の寸法、吸
着剤OIl変、吸着圧力、量及び型、湛びに真空ポンプ
の寸法は実施例1中と同一であった。下記のプログラム
を一笑験で使用し九二 段階1:0−20秒 一辺空気を吸着器五に1パール(絶対圧)の執着圧力に
おいてブロワ−(G)、パイプL2ffi及び弁21ム
を用いて加え喪。酸素に富んだ空気は吸着器ムから弁2
4ム及びパイプLflSを用いて出ていきそしてコンプ
レツナ−tR)を通して生成物として除かれた。吸着器
Bはそれの再生wI1.階の最終相に達し、すなわち吸
着器Bは弁22B及びパイプL21を用いて真空がンプ
(v)Kよ伽減圧さ17− れ、モして11311[富んだ空気を弁25C1制限器
26、パイプL24及び弁25Bを用いて吸着器Cから
吸着器3に移した。この時間中、弁21Cは鴎いたまま
であや、すなわち吸着器Cは吸着圧力に保九れてお抄そ
してブロワ−(G)からの空気が充填されていえ。実験
で使用された弁26は簡単な制限器弁であったが、弁2
6は一定流速を確実にする九めに調節されるようKも設
計できえ。
During this desorption step, the adsorber from which the second portion of the product was taken was kept at its previous adsorption pressure with the air inlet end held open by a valve. In the experiment of Example 1, the amount of the above cleaning gas was t? @Nw17 o'clock, that is, 1 adsorption cycle fi911Nt. The dimensions of the adsorber, adsorbent oil change, adsorption pressure, quantity and type, and dimensions of the vacuum pump were the same as in Example 1. Using the following program as a test, use the blower (G), the pipe L2ffi and the valve 21m at a fixed pressure of 1 par (absolute pressure) to the adsorber for 92 steps 1: 0-20 seconds per side. Added mourning. Oxygen-enriched air is transferred from the adsorber to valve 2.
4 and exited using a pipe LflS and was removed as product through a compressor (tR). Adsorber B is regenerated wI1. The final phase of the phase is reached, i.e. the adsorber B is depressurized by the pump (v) K using valve 22B and pipe L21, and the vacuum is reduced to 11311 [enriched air by valve 25C1 restrictor 26, It was transferred from adsorber C to adsorber 3 using pipe L24 and valve 25B. During this time, valve 21C remains open, ie, adsorber C is maintained at adsorption pressure and filled with air from the vacuum cleaner and blower (G). Valve 26 used in the experiment was a simple restrictor valve, but valve 2
K can also be designed so that 6 is adjusted to the 9th point to ensure a constant flow rate.

弁22ム、23ム、25A、 211に、 24B。Valve 22m, 23m, 25A, 211, 24B.

25B、220.2SC,24C及び25は閉じられて
い友。
25B, 220.2SC, 24C and 25 are closed friends.

段階2:2G−60秒 周辺空気をブロワ−(G)、パイプL22及び弁21A
を通して吸着器A中に流し続け、そして酸素に富んだ空
気な吸着器Aから弁24ム及びパイプL2Sを通して放
出し、そしてそれはコンブレラす−(R)により生成物
として除去された。
Stage 2: 2G - 60 seconds surrounding air to blower (G), pipe L22 and valve 21A
The oxygen-enriched air continued to flow through adsorber A and was discharged from adsorber A through valve 24 and pipe L2S, and it was removed as product by a combrella (R).

18− 吸着器BKパイプL23からの酸素に富んだ空気を弁2
5、パイプL24及び弁2SBを用−1吸着圧力まで充
填した。
18- Oxygen-rich air from adsorber BK pipe L23 to valve 2
5. Pipe L24 and valve 2SB were filled to -1 adsorption pressure.

吸着器Cを弁220及びパイプL21を用いて真空ポン
プff) Kよ抄減圧した。弁22ム、25ム%25ム
、21B、22B、24B、25B。
Adsorber C was depressurized by vacuum pump ff) K using valve 220 and pipe L21. Valves 22mm, 25mm% 25mm, 21B, 22B, 24B, 25B.

210.2!ic1240及び25Cは閉じられていえ
210.2! IC1240 and 25C are closed.

@1fts:60−80秒 工l!段階は段階ロー20秒と同様であり、すなわち吸
着器Cは減圧されていえ。酸素で富んだ空気を酸素生成
物の放出が完了し九教着器ムかも除去し、そしてこの空
気は吸着器CK清掃気体としてはい抄、一方吸着器Cは
真空ポンプ(v)Kよや減圧されてい喪。−辺空気を吸
着器す中にプーツ−(G) Kよ抄加え、そして酸素に
富んだ空気を生成物として与え、それを1m 9− (
R) Kより除★した。
@1fts: 60-80 seconds! The stage is similar to stage low 20 seconds, ie adsorber C is depressurized. After the release of oxygen products is completed, the oxygen-enriched air is removed from the adsorbent, and this air is used as a cleaning gas in the adsorber C, while the adsorber C is operated by a vacuum pump (V) or depressurized. Mourning. Add air to the adsorbent (G) and give oxygen-enriched air as a product, which is 1 m 9- (
R) Removed from K.

段階4:80−120秒 工程段階は段階20−60秒と同様であ抄、すなわち吸
着器ムは真空ポンプ(V) Kよ抄減圧されていた。吸
着器Bはプロワ−(G)及びコンプレッサー(R)を用
いて酸素に富んだ空気を生成した。
Step 4: 80-120 seconds The process step was similar to Step 20-60 seconds, ie, the adsorber was depressurized by the vacuum pump (V) K. Adsorber B produced oxygen-enriched air using a blower (G) and a compressor (R).

吸着器CK@着器BからOII素で富んでいる空気をそ
れが吸着圧力に達するまで充填した。
Air enriched with OII element was charged from adsorber CK@adsorber B until it reached adsorption pressure.

段階5:120−140秒 工程段階は段階0−20秒と同様でアゆ、すなわち吸着
器Aを生成物の放出が完了した吸着器からの酸素に富ん
だ空気で洗浄し、そして吸着器Aを真空ポンプによ抄減
圧した。吸着器CK1バール(絶対圧)の吸着圧力でプ
ロワ−(G)を用いて周辺空気を充填し、そして酸素に
富んだ空気を吸着器Bから放出し、そしてそれはコンプ
レッサー(R)によ抄生成物として除去された。
Step 5: 120-140 seconds The process step is similar to step 0-20 seconds, cleaning the adsorber A with oxygen-enriched air from the adsorber where product release has been completed, and The pressure was reduced using a vacuum pump. Adsorber CK is charged with ambient air using a blower (G) at an adsorption pressure of 1 bar (absolute), and the oxygen-enriched air is discharged from adsorber B, which is compressed by compressor (R). removed as an object.

段階6:14G−180秒 工程段階は時間サイクル20−60秒間と同様であに1
すなわち吸着器ムに吸着器Cからの酸素で富んでいる空
気を吸着圧力まで充填し友。−辺空気をプロ* −(G
)を用いて吸着器CK送抄、一方酸素に富んだ空気は吸
着器Cから放出されそしてコンプレッサー(R) Kよ
り生成物として除去された。吸着器Bを真空ポンプ(v
)Kよ抄減圧しえ。
Step 6: 14G-180 seconds process step is similar to time cycle 20-60 seconds
That is, the adsorber M is filled with oxygen-enriched air from adsorber C up to the adsorption pressure. - Side air pro * - (G
) with adsorber CK pumping, while oxygen-enriched air was discharged from adsorber C and removed as product by compressor (R) K. Adsorber B is connected to vacuum pump (v
)K, please reduce the pressure.

酸素#Ik度が90参であるとIkは、10tl−酸素
を基にして(L 76 Nm”7時の酸素生成物が得ら
れ九。酸累濃変が5oloとlkKは、100参酸素を
基にし九酸素生成物連1は1.02Nm”7時であう九
If the oxygen #Ik degree is 90 sq., then Ik is based on 10 tl-oxygen (L 76 Nm” 7 o'clock oxygen product is obtained. Based on the nine oxygen product series 1 is 1.02 Nm'' at 7 o'clock.

実施例1の公知の方法と比べると、瞭素生成物速1は酸
素+111が90−であるときには114%だけそして
1IWA#1度が80−であるときには7−だけ増加で
き九。
Compared to the known method of Example 1, the product rate 1 can be increased by 114% when oxygen +111 is 90- and by 7- when 1IWA#1 is 80-9.

21 − 実施例3 第2図は3個の吸着器を用いてPCム技術にょ抄空気を
酸素て富唆せる丸めの本発明に従う方法の工程図である
。脱着は吸着とは向流状の吸着剤床の真空化によ抄行な
われた。脱着の終りに酸素に富んだ空気又は洗浄気体を
吸着段階すなわち生成物の放出がすでに完了した吸着器
から吸着と同じ流れ方向で除去し友。この洗浄気体を脱
着しようとする吸着器中に吸着と自流状で真空ポンプに
より通したが、この脱着段階中に洗浄気体が除去された
吸着器は吸着入口端が閉まっているため圧力降下を受け
た。
21 - Example 3 FIG. 2 is a flowchart of a method according to the present invention for oxygen enriching PC-based air using three adsorbers. Desorption was performed by vacuuming the adsorbent bed in a countercurrent manner to adsorption. At the end of the desorption, the oxygen-enriched air or cleaning gas is removed from the adsorber in which the adsorption stage, i.e. product release, has already been completed, in the same flow direction as the adsorption. This cleaning gas was passed through the adsorber to be desorbed using a vacuum pump in a self-flowing manner, but during this desorption stage, the adsorber from which the cleaning gas was removed suffered a pressure drop because the adsorption inlet end was closed. Ta.

実施例3では、この圧力は1パール(絶対圧)から77
0ミリバール(絶対圧)に降下した。洗浄気体の最適除
去速度、すなわち圧力の最適降下、を実験的に決める必
要があり、その理由はそれが%に使用する吸着剤の性質
及び真空ポンプの性質22 − に依存しているためである。
In Example 3, this pressure ranges from 1 par (absolute) to 77
The pressure dropped to 0 mbar (absolute). The optimum removal rate of the cleaning gas, i.e. the optimum drop in pressure, has to be determined experimentally, since it depends on the properties of the adsorbent used and the properties of the vacuum pump. .

実施例2と同様な工程プログラムを実施例3の実験で使
用した。吸着器の寸法、吸着剤の温度、吸着圧力、貴及
び型、並びに真空ポンプの寸法は実施例1の実験と同じ
であった。
A process program similar to that of Example 2 was used in the experiment of Example 3. The adsorber dimensions, adsorbent temperature, adsorption pressure, pressure and mold, and vacuum pump dimensions were the same as in the experiment of Example 1.

実施例3の檀々の工程段階を鍛初のニサイクルに関して
評しく説明しよう。
Let us briefly explain the process steps of Example 3 with respect to the first two-cycle process.

段階1:0−20秒 一辺空気を吸着善人に1パール(絶対圧)の吸着圧力に
おいてブロワ−(G)、パイプL22及び弁21Aを用
いて加ええ。酸素に富んだ空気は1着量Aから弁24ム
及びパイプL2Sを用いて出ていきそしてコンプレッサ
ー(R)を通して生成物として除かれた。吸着器3はそ
れの再生段階の最終相に達し、すなわち吸着器Bは弁2
2B及びパイプL21を用いて真空ポンプff) Kよ
抄減圧され、そして酸素に富んだ空気を弁25C1制限
器26、パイプL24及び弁23Bを用いて吸着器Cか
ら吸着器BK移した。この時間中、弁21Cは閉じられ
てお抄、その結果吸着器C中の圧力は1バール(絶対圧
)から例えば770ミリバール(絶対圧)に降下した。
Step 1: Add air to the adsorbent for 0-20 seconds at an adsorption pressure of 1 par (absolute) using the blower (G), pipe L22 and valve 21A. Oxygen-enriched air left volume A using valve 24 and pipe L2S and was removed as product through compressor (R). Adsorber 3 has reached the final phase of its regeneration stage, i.e. adsorber B
2B and pipe L21 to vacuum pump ff) K and oxygen-enriched air was transferred from adsorber C to adsorber BK using valve 25C1 restrictor 26, pipe L24 and valve 23B. During this time, valve 21C is closed and the pressure in adsorber C drops from 1 bar (absolute) to, for example, 770 mbar (absolute).

吸着器B中に加えられ九洗浄気体は実施例1の如く真空
サイクルの終りに200ミリバールの最終的圧力をもた
らさなかったが、洗浄気体の量により220〜500ミ
リバールの最終的圧力をもたらした。弁22A、23ム
、25ム、21B、24B、25B、22C。
The nine wash gases added into adsorber B did not result in a final pressure of 200 mbar at the end of the vacuum cycle as in Example 1, but the amount of wash gas resulted in a final pressure of 220-500 mbar. Valves 22A, 23m, 25m, 21B, 24B, 25B, 22C.

2SC,24C及び25は閉じられてい友。2SC, 24C and 25 are closed friends.

段階2:20−60秒 一辺空気をブロワ−(G)、パイプL22及び弁21A
を通して吸着器A中に流し続け、そして酸素に富んだ空
気を吸着器Aから弁24A及びパイプL25を通して放
出し、そしてそれはコンプレッサーrR) Kよ抄生成
物として除去された。
Step 2: 20-60 seconds per side air blower (G), pipe L22 and valve 21A
The oxygen-enriched air continued to flow through adsorber A through the adsorber A and was discharged from adsorber A through valve 24A and pipe L25, where it was removed as a papermaking product by compressor rR)K.

吸着1111に酸素に富んだ空気を吸着圧力まで充填し
、パイプL25かもの気体は弁25、パイプL24及び
弁258によ抄吸着1)B11’lKはいつえ。
The adsorption unit 1111 is filled with oxygen-rich air up to the adsorption pressure, and the gas from the pipe L25 is adsorbed through the valve 25, pipe L24, and valve 258. 1) B11'1K is removed.

吸着器Cを弁22c及びパイプL21を用いて真空ポン
プ(V) Kより減圧した。弁22ム、2墨ム、25ム
、21B、22B、2411.25B。
Adsorber C was depressurized by vacuum pump (V) K using valve 22c and pipe L21. Valve 22mm, 2mm, 25mm, 21B, 22B, 2411.25B.

21C,25C,24C及びzscfi閉じられてい友
21C, 25C, 24C and zscfi closed friends.

段階5:60−80秒 工程段階は段階0−20秒と同様てあ伽、すなわち吸着
器Cは空であ抄、数!器五01N着入ロ端部は閉じられ
てお抄(弁21ム/22ム)、そして酸素に富んだ気体
を吸着器ムかも吸着と同一の流れ方向で減圧し、そして
それは洗浄気体として吸着器C中を流れた。吸着器Ba
t生成物として酸素に富んだ空気を生成しえ。
Stage 5: 60-80 seconds The process stage is similar to Stage 0-20 seconds, i.e. the adsorber C is empty. The inlet end of the vessel is closed (valve 21/22), and the oxygen-rich gas is depressurized in the same flow direction as adsorption, and it is adsorbed as cleaning gas. It flowed through vessel C. Adsorber Ba
Produce oxygen-rich air as a product.

段階4:1IO−120秒 25一 工程段階は時間ディクル20−60秒と同様でToり、
すなわち吸着器Bは酸素に富んだ空気を分配し、それは
生成物としてコンプレッサー(R)によ抄受理された。
Step 4: 1 IO - 120 seconds 25 One process step is similar to time 20 - 60 seconds,
That is, adsorber B distributed oxygen-enriched air, which was accepted as product by compressor (R).

吸着器CK吸着器Bがらの酸素に富んだ空気を吸着圧カ
オで充填した。吸着器Aを真空ポンプにより減圧′した
The oxygen-enriched air from adsorber CK and adsorber B was filled with adsorptive pressure Kao. Adsorber A was depressurized using a vacuum pump.

段階5:120−140秒 0−20秒の時間サイクルと同様にして、すなわち吸着
器Bの吸着入口端を閉じ(弁21B/22B)ながら吸
着器ムを減圧し続け、そして酸素に富んだ気体を吸着器
Bから吸着と同じ流れ方向で除去し、そしてそれは洗浄
気体として吸着器ム中を流れた。吸着器Cは生成物とし
て酸素に富んだ空気を生成した。
Step 5: continue to depressurize the adsorber in the same way as the time cycle of 120-140 seconds 0-20 seconds, i.e. while closing the adsorption inlet end of adsorber B (valve 21B/22B), and oxygen-enriched gas was removed from adsorber B in the same flow direction as adsorption, and it flowed through the adsorber as a wash gas. Adsorber C produced oxygen-enriched air as a product.

段階6: 140−180’秒 工程段階は20−60秒の時間サイクルと同様であ抄、
すなわち吸着gSCはコンプレッサー(R)26− へ生成物として分配されている酸素で富んだ空気を生成
した。吸着器ムに吸着器Cからの酸素で富んだ空気を吸
着圧力まで充填し喪。吸着器Bは真空ポンプ(v)によ
抄減圧されていた。
Step 6: 140-180' second process step is similar to 20-60 second time cycle;
Thus, the adsorbed gSC produced oxygen-enriched air which was distributed as a product to the compressor (R) 26-. The absorber is filled with oxygen-enriched air from absorber C to the adsorption pressure. Adsorber B was depressurized by a vacuum pump (v).

実施例3の実験では、100919素を基にして187
 Nm”7時の酸素生成物速度がコンプレッサー(R)
から90%の酸素濃度で得られ喪。酸素濃度が60−で
あるときKは、10〇−酸素を基にした酸素生成物速度
はt02Nm”7時であり九。
In the experiment of Example 3, 187 was calculated based on 100919 elements.
The oxygen product rate at Nm”7 is compressor (R)
Mourning obtained at an oxygen concentration of 90%. When the oxygen concentration is 60- K, the oxygen product rate based on 100-oxygen is t02Nm''7 and 9.

実施例1からの実験と比較して、酸素生成物速度は酸素
濃度が90−であるときKtj29参だけ量して酸素濃
度が801sであるときには1五5Isだけ増加できた
Compared to the experiment from Example 1, the oxygen product rate could be increased by Ktj29 when the oxygen concentration was 90- and by 155 Is when the oxygen concentration was 801s.

4個の吸着器を用いることによ抄本発明に従5方法にお
いてさらに&jLが得られえ。5儒O吸着器を用いる系
では、吸着器を吸着圧力に充填する丸めKI!する時間
は最終的洗浄段階により短縮され、すなわちそれは吸着
時間とは等しくなかつ友。
Further &jL can be obtained in the 5 method according to the present invention by using 4 adsorbers. In systems using a 5-O adsorber, rounding KI! fills the adsorber to adsorption pressure. The time for adsorption is reduced by the final washing step, i.e. it is not equal to the adsorption time.

最終的洗浄時間中にブロワ−(G)は空気を平均以下の
速度で供給し、一方充填工程中はそれは空気を平均速度
以上で供給した。
During the final cleaning period the blower (G) supplied air at a below average rate, while during the filling process it supplied air at an above average rate.

4個の吸着器を供することKよ抄、一定の分配速度がブ
ロワ−(G)から得られ、そして実施例4が示している
如く、例えば実施例5の方法と比べてよ抄高い酸素生成
物速度が得られた。しかしながら、4個の吸着器系用の
装置費用は5個の吸着器系用のものよ抄高かつ九。4個
の吸着器系では比較的高い比酸素生成物速度(Nwn”
酸素/時間×吸着器のゼオライトの−)のために同じ酸
素生成物速t(Nm”7時)に対しては比較的低いポン
プのエネルギー消費が可能であるため、4個の吸着器系
に関する全体的な装置及び操作費用は有利であると証さ
れている。
By providing four adsorbers, a constant distribution rate is obtained from the blower (G) and, as Example 4 shows, a higher oxygen production compared to, for example, the method of Example 5. The velocity of the object was obtained. However, the equipment cost for a four-adsorber system is significantly higher than that for a five-adsorber system. The four adsorber system has a relatively high specific oxygen product rate (Nwn”
For the four adsorber system, a relatively low pump energy consumption is possible for the same oxygen product rate t (Nm"7 h) due to oxygen/time x adsorber zeolite -) Overall equipment and operating costs have proven advantageous.

実施例1と同様なプログラムを実施例4中の実験用に使
用した。吸着器の寸法、吸着剤の温度、吸着圧力、量及
び型、並びに真空ポンプの寸法は実施例1の実験中と同
じであり光。
A program similar to Example 1 was used for the experiments in Example 4. The adsorber dimensions, adsorbent temperature, adsorption pressure, quantity and type, and vacuum pump dimensions were the same as during the experiment of Example 1 and the light.

実施例4 段階z:o−6o秒 吸着器ムは酸素に富んだ空気を供給し、すなわちブロワ
−(G)は空気をパイプLS2及び弁11ムを用いて吸
着器A中に供給し、そして酸素で富んだ空気は弁54A
及びパイプL35を用いて吸着器ムから放出されて、コ
ンブレラす−(8)kよや生成物として除かれ九、吸着
器IK吸着器器五らの酸素に富んだ空気を流量関節弁3
6、パイプL54及び弁3sBを用いて充填し、その結
果徴着器B中の圧力はそれの最も低い脱着圧力から1パ
ール(絶対圧)の吸着圧力に上昇し大、l1着−8をパ
イプL31及び弁32Bを用いて真空ポンプff) K
より脱着すなわち減圧し、そして洗浄気29一 体を吸着器りから吸着と向流状で除去し九。弁BID及
びS2Dが閉じられているため、吸着器り中の圧力は例
えば1パール(絶対圧)から770ミリバール(絶対圧
)へ下がり、そして吸着器りからの洗浄気体は弁35D
、パイプL55、制限器39及び弁35Cを用いて吸着
器Cにはいった。
Example 4 Stage z: o-6o seconds The adsorber supplies oxygen-enriched air, i.e. the blower (G) supplies air into the adsorber A using pipe LS2 and valve 11, and Oxygen-enriched air is released through valve 54A.
The oxygen-enriched air is discharged from the adsorber using pipe L35 and removed as a product from the combiner.
6. Fill using pipe L54 and valve 3sB, so that the pressure in collector B rises from its lowest desorption pressure to an adsorption pressure of 1 part (absolute pressure), and pipe 11-8 is filled. Vacuum pump ff) K using L31 and valve 32B
Then, the cleaning air 29 is removed from the adsorber in a countercurrent manner to the adsorption. Since valves BID and S2D are closed, the pressure in the adsorber drops from e.g. 1 bar (absolute) to 770 mbar (absolute), and the cleaning gas from the adsorber is removed from valve 35D.
, pipe L55, restrictor 39 and valve 35C were used to enter adsorber C.

弁32A、 35に、35A、51B、32B。Valve 32A, 35, 35A, 51B, 32B.

34B、35B、!5IC133C,54C,31D、
32D、33D、54Dは閉じられていた。
34B, 35B,! 5IC133C, 54C, 31D,
32D, 33D, and 54D were closed.

段階2:60−120秒 0−60秒の時間サイクルと同様にして、吸着器Bは酸
素に富んだ空気を分配し、そしてこの富んでいる空気の
一部を吸着器Cを1パール(絶対圧)まで充填するため
に使用した。吸着器りを減圧し、洗浄気体を吸着器ムか
ら除去しそして吸着器り中に加えた。
Stage 2: 60-120 seconds Similar to the time cycle 0-60 seconds, adsorber B distributes oxygen-enriched air and a portion of this enriched air is transferred to adsorber C for 1 perl (absolute It was used to fill up to the pressure. Vacuum was applied to the adsorber and the wash gas was removed from the adsorber and added into the adsorber.

段階!i:120−180秒 50− 0−60秒の時間サイクルと同様にして、吸着器Cは酸
素に富んだ空気を生成し、それ〇一部を吸着器りを吸着
圧力まで充填する九めに使用し良。
step! i: 120-180 seconds 50 - Similar to the time cycle of 0-60 seconds, adsorber C generates oxygen-enriched air and uses a portion of it to fill the adsorber up to the adsorption pressure. Good to use.

吸着器ムを減圧し、洗浄気体を吸着器Bから除去しそし
て吸着器A中に加えた。
Vacuum was applied to the adsorber and the wash gas was removed from adsorber B and added into adsorber A.

段階4:180−240秒 0−60秒の時間サイクルと同様にして、吸着器りは酸
素に富んだ空気を分配し、そしてこO富んだ空気の一部
を吸着器ムを吸着圧力まで充填する丸めに使用した。吸
着器Bを減圧し、洗浄気体気体を吸着器Cから除きそし
て吸着器B中に加えた。
Stage 4: Similar to the time cycle of 180-240 seconds 0-60 seconds, the adsorber dispenses oxygen-enriched air, and a portion of this O-enriched air fills the adsorber to adsorption pressure. Used for rounding. Adsorber B was evacuated and the wash gas was removed from adsorber C and added into adsorber B.

実施例4の実験では、酸素機変が90%であるときに、
1009152票を基にし九α9 S Nvl/時の酸
素生成物速度がコンプレッサー(R)から得られた。8
01!O1l素濃変においては、10〇−酸素を基にし
た酸素生成物速度はto s Nm”7時であり九。こ
のようにして実施例4の方法は実施例1と比べて、90
%の酸素濃度において58%の生成物増加をそして80
%の酸素濃度において1711の増加を与え喪。
In the experiment of Example 4, when the oxygen mechanical change was 90%,
Based on 1,009,152 votes an oxygen product rate of 9 α9 S Nvl/hr was obtained from the compressor (R). 8
01! In the O1l concentration conversion, the oxygen product rate based on 100-oxygen is to s Nm''7 and 9. Thus, the method of Example 4, compared to Example 1,
58% product increase at % oxygen concentration and 80%
Mourning gave an increase of 1711% in oxygen concentration.

本明細書及び実施例は説明用であり限定用に示されてい
るものではないこと並びに本発明の精神及び範囲から逸
脱しないかぎり種々の改変を行なえることは認識されよ
う。
It will be recognized that the specification and examples are presented in an illustrative and not a restrictive sense, and that various modifications may be made without departing from the spirit and scope of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 t 少なくとも5個の吸着剤区域を用いて、吸着された
成分(5)を1バール以下の圧力で吸着方向と向流状で
脱着し、脱着しよさとする吸着剤を1着段階すなわち生
成物の放出が完了していゐ吸着器から吸着方向に引かれ
ている気体流で清掃し、同時K11着器を粗製気体入口
を開くことkよ抄機着圧力に保りか、又は吸着器中の圧
力を粗調気体入口を閉じるととによlI吸着圧力以下に
下けることからなる、気体状混合物を精製しそして分離
するための圧力変動吸着方法。 2、 ^illび/又はXjllt)分、子ふるいポオ
ライト、1 を少なくとも1個の阪曽爾区域中で使用する、特許請求
の範囲第1項記載の方法。 11〜4バール(絶対圧)の一定清掃気体分配圧力及び
1バール以下(絶対圧)の咬着圧力において、1〜4バ
ール(絶対圧)の吸着圧力を特徴する特許請求、の範囲
第1又は2項記載の方法。 4.1〜4バール(絶対圧)の吸着圧力、1〜4バール
(絶対圧)の初期清掃気体分配圧力及び1バール以下(
絶対圧)の最終的清掃気体分配圧力を特徴する特許請求
の範囲第1〜5項のいずれかに記載の方法。 & 気体状混合物が空気である、特許請求の範囲第1〜
4項のいずれかに記載の方法。 & 実質的に明細書中で特に実施例及び/又は添付図面
を参照しながら記されている如き、特許請求の範囲第1
項記載の方法。
[Claims] t Desorbing the adsorbed component (5) countercurrently to the direction of adsorption at a pressure of 1 bar or less using at least five adsorbent zones, and using an adsorbent that is good for desorption. At the first loading stage, i.e., when the release of the product has been completed, the adsorber is cleaned with a gas flow drawn in the adsorption direction, and at the same time the crude gas inlet of the K11 absorber is opened and the paper machine loading pressure is maintained. or a pressure swing adsorption process for purifying and separating gaseous mixtures, which consists in reducing the pressure in the adsorber below the adsorption pressure by closing the coarsening gas inlet. 2. Process according to claim 1, characterized in that 1.2. Claims characterized by a suction pressure of 1 to 4 bar (absolute) at a constant cleaning gas dispensing pressure of 11 to 4 bar (absolute) and an occlusal pressure of less than 1 bar (absolute); The method described in Section 2. 4. Adsorption pressure of 1 to 4 bar (absolute), initial cleaning gas distribution pressure of 1 to 4 bar (absolute) and below 1 bar (absolute)
6. A method according to any one of claims 1 to 5, characterized in that the final cleaning gas dispensing pressure is (absolute pressure). & Claims 1 to 3, wherein the gaseous mixture is air.
The method described in any of Section 4. & Claim 1 substantially as set forth in the specification with particular reference to the embodiments and/or the accompanying drawings.
The method described in section.
JP57190905A 1981-11-05 1982-11-01 Pressure variation for separation of gas mixture due to adsorption Granted JPS5884020A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813144012 DE3144012A1 (en) 1981-11-05 1981-11-05 PRESSURE CHANGE METHOD FOR SEPARATING GAS MIXTURES BY ADSORPTION
DE31440126 1981-11-05

Publications (2)

Publication Number Publication Date
JPS5884020A true JPS5884020A (en) 1983-05-20
JPH02962B2 JPH02962B2 (en) 1990-01-10

Family

ID=6145721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190905A Granted JPS5884020A (en) 1981-11-05 1982-11-01 Pressure variation for separation of gas mixture due to adsorption

Country Status (3)

Country Link
JP (1) JPS5884020A (en)
DE (1) DE3144012A1 (en)
GB (1) GB2109266B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133114A (en) * 1984-12-04 1986-06-20 Showa Denko Kk Preparation of oxygen-enriched gas
JPS61133115A (en) * 1984-12-04 1986-06-20 Showa Denko Kk Preparation of oxygen-enriched gas

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922625A (en) * 1982-07-27 1984-02-04 Osaka Oxgen Ind Ltd Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
DE3307087A1 (en) * 1983-03-01 1984-09-06 Bergwerksverband Gmbh, 4300 Essen Process for the elimination of nitrogen oxides from gas mixtures containing them by means of pressure swing adsorption
US4509959A (en) * 1983-07-28 1985-04-09 Greene & Kellogg, Inc. Modular industrial oxygen concentrator
FI76003C (en) * 1986-02-12 1988-09-09 A Happi Oy FOERSTAERKNINGSFOERFARANDE OCH -ANORDNING FOER GAS.
US5074892A (en) * 1990-05-30 1991-12-24 Union Carbide Industrial Gases Technology Corporation Air separation pressure swing adsorption process
US5258058A (en) * 1992-10-05 1993-11-02 Air Products And Chemicals, Inc. Nitrogen adsorption with a divalent cation exchanged lithium X-zeolite
US5330561A (en) * 1992-11-16 1994-07-19 Air Products And Chemicals, Inc. Extended vacuum swing adsorption process
DE19503007C2 (en) * 1995-01-31 2002-11-07 Linde Ag pressure swing adsorption
DE19602450C1 (en) * 1996-01-24 1997-02-13 Linde Ag Vacuum pressure swing adsorption method and device
WO2014056604A1 (en) * 2012-10-09 2014-04-17 Linde Aktiengesellschaft Method for measuring a temperature profile in an adsorber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883078A (en) * 1972-01-24 1973-11-06

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809168A (en) * 1956-08-29 1959-02-18 British Oxygen Co Ltd Purification of argon
GB1449864A (en) * 1973-10-24 1976-09-15 Boc International Ltd Adsorption system
US4144038A (en) * 1976-12-20 1979-03-13 Boc Limited Gas separation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883078A (en) * 1972-01-24 1973-11-06

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133114A (en) * 1984-12-04 1986-06-20 Showa Denko Kk Preparation of oxygen-enriched gas
JPS61133115A (en) * 1984-12-04 1986-06-20 Showa Denko Kk Preparation of oxygen-enriched gas
JPH0141084B2 (en) * 1984-12-04 1989-09-04 Showa Denko Kk

Also Published As

Publication number Publication date
DE3144012C2 (en) 1990-05-17
JPH02962B2 (en) 1990-01-10
GB2109266A (en) 1983-06-02
DE3144012A1 (en) 1983-05-19
GB2109266B (en) 1985-12-18

Similar Documents

Publication Publication Date Title
KR0130764B1 (en) Separation of gas mixtures by vacuum swing adsorption in two-adsorber system
KR930012040B1 (en) Pressure swing adsorption for dividing gas mixtures
US4566881A (en) Process and apparatus for producing oxygen with a low proportion of argon from air
RU1816229C (en) Helium enrichment method
JP2006239692A (en) Pressure swing adsorption process and apparatus
JPS6022965B2 (en) Method and device for increasing a given gas ratio in a gaseous mixture
JP2002143630A (en) Adsorption system whose air gap volume is small and its application
EP1219338A2 (en) Argon purification process
JPH1087302A (en) Single step secondary high purity oxygen concentrator
JPH0239294B2 (en)
JPH06339612A (en) Method of refining and its device
JPS5884020A (en) Pressure variation for separation of gas mixture due to adsorption
WO2002085496A1 (en) Method and system for separating gas
JPH0577604B2 (en)
JPH08168631A (en) Method of treating gas mixture by pressure change and adsorption
GB2342871A (en) Single bed pressure swing adsorption.
JPH10152305A (en) Oxygen gas production apparatus and production of oxygen gas
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
JPH0977502A (en) Oxygen enricher
JPH10272332A (en) Gas separation device and its operation method
WO2017184289A1 (en) Pressure swing adsorption for oxygen production
JPH10194708A (en) Oxygen enricher
CA1182765A (en) Repressurization for pressure swing adsorption system
CA1176994A (en) Repressurization for pressure swing adsorption system
JP3889125B2 (en) Gas separation method