JPS5883244A - Gas sensitive membrane - Google Patents

Gas sensitive membrane

Info

Publication number
JPS5883244A
JPS5883244A JP18207881A JP18207881A JPS5883244A JP S5883244 A JPS5883244 A JP S5883244A JP 18207881 A JP18207881 A JP 18207881A JP 18207881 A JP18207881 A JP 18207881A JP S5883244 A JPS5883244 A JP S5883244A
Authority
JP
Japan
Prior art keywords
film
thickness
increases
gas
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18207881A
Other languages
Japanese (ja)
Inventor
Kuni Ogawa
小川 久仁
Atsushi Abe
阿部 惇
Masahiro Nishikawa
雅博 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18207881A priority Critical patent/JPS5883244A/en
Publication of JPS5883244A publication Critical patent/JPS5883244A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a gas sensitive membrane which can detect the concns. of gases and alcohol with high sensitivity by optimizing the thickness of thin films. CONSTITUTION:On account of the O<-> ions adsorbed on a surface, carriers (electrons) cannot enter a thin film 2 for the distance delta from the surface thereof. In other words, the effective channel thickness Lc for carriers is D-2delta. When the ethyl alcohol existing on the film surface reacts with the adsorbed O<-> ions, the O<-> ions desorb as water from the film and applies carriers (e) into the film; at the same time, the effect as scattering centers annihilates; therefore, the effective channel thickness Lc is partially equal to D in the inside and with an increase in the concn. of the ethyl alcohol, mobility muH increases as well. If the thickness Lc is O while no ethyl alcohol exists, the change in muH attains maximum and as the Lc increases, that is, as the D increases, the muH decreases. If the thickness D is set within a range of 1-2 times the Debye length delta, the gas sensitivity is made higher by about >=80% than that in the case of the film thickness thickner than the same.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガス、アルコール等の外的作用因子に対して相
互作用を有し、ガス、アルコールの濃度を高感度に検出
しうるガス感応膜を提供するものである。 本発明は、ガス感応膜として用いる薄膜の膜厚の最適化
を図ることにより、ガスセンサの感度を上げることがで
きる事実を発見したことに基づいてな嘔れたものアある
。 21、− 一般に物質の電気伝導度σは、キャリ、ア濃度nおよび
キャリアの移動度μを用いて σ二n8μ          (1)(ここで嘗は単
位電荷である。) と表わされる。薄膜のガスセンサの動作機構を明確にす
るために、ホール効果の測定によりσをnとμとに分離
した。第1図にアルコール濃度[0)に対するσ、μ、
nの変化を示す。第1図(ILIは膜厚が4oλ程度の
酸化錫薄膜の場合であり、第1図(′b)は膜厚が10
0oλ程度の酸化錫薄膜の場合である。これらの薄膜は
いずれも錫をターゲットにした反応性RFススパーク法
より作製した。すなわち、ペルジャー内のアルゴンの圧
力を約0.6Pa  、酸素の圧力をc)、esPaに
して、表面研磨を施した無アルカリガラス基板を160
℃程度に加熱した状態で錫をスパッタする。この時のR
F電力を200Wにすると基板上には約60人/分の速
さで酸化錫薄膜が形成される。この後、空気中で360
℃−2時間の熱処理を施こし特性を安定化させる。第1
図(IL)の場合にはスノ(ツタ時間は37、−ミ 60秒、第1図(blの場合はスパッタ時間は20分で
ある。 アルコールガスに対する感度の測定は、いずれも試料の
動作温度を260℃とした。 いずれの試料もその導電率σはエチルアルコール濃度〔
C〕の増加に対して対数グラフ上で直線的に増加してゆ
く。すなわち σ=αCO〕N         @)(ここでα、N
は定数である。) と表わすことができる。第1図(IL)で示した膜厚が
40人程度の薄膜の場合はH;1であり、第1図(b)
に示した膜厚が1000人程度の薄膜の場合にはN:;
0.5である。 このホール効果の測定は、エチルアルコールの吸着によ
る導電率変化の機構が薄膜の膜厚で大きく異なっている
ことを非常に明確にした。 キャリア濃度nはエチルアルコール濃度〔C)の増加に
つれて増加する。そしてその傾きはC5である。すなわ
ち △(ioi n )/△(logcc〕)=o、5  
 p)である。ガス吸着により誘起するキャリア濃度の
増加は酸化錫という固体とエチルアルコールという気体
との化学反応によってのみ決定される。それゆえ、同一
条件(雰囲気温度、動作温度など)で測定するならば薄
膜の膜厚に無関係に△(logn/△(log[C] 
)の値が同一になるのは当然である。 通常の大気中では膜表面にはその膜の動作温度で決まる
型で酸素が吸着している。後で述べるようにこの酸素の
吸着状態は次式の平衡式によって表わされる。 02 (g1802 (ad )+! 02” (IL
(134:!O−(IL(1)1”’ 02−(ad)
 402− (lat) +4 ここでfl 、 &(1、latはそれぞれガス、吸着
。 格子の各状態を表わしeは伝導電子を表わす。 260℃の動作温度では酸素の吸着状態は〇−である。 この膜表面に吸着している0−とエチルアルコール分子
との反応は次のように表すことができる。 j 02H50H+ O−d 0T1sOHO+H20+ 
e      (@b 62.− すなわち、260°Cの動作温度では膜表面に一吸着し
たあるいは雰囲気中にあるエチルアルコール分子は膜表
面に吸着している酸素イオンにより酸化てれてアセトア
ルデヒドに変化する。この時、酸素イオンから遊離した
電子が膜中に戻りキャリア濃度が増加する。この反応の
妥当性は質量分析の測定で確かめられている。(6)式
で示した反応の平衡状態においては、質量作用の法則よ
りkf[C2H5OH]O−] =kb[CHsCHO
][HzO’)[e〕(@となる。エチルアルコール濃
度が表面吸着酸素イオン濃度に比べて低い場合には、(
6)式において酸素イオン濃度〔0−〕は一定と考える
ことができる。 そしてまた、水分子は空気中に十分多く存在しているの
で[H20]も一定と考える。(@式より〔0HsC;
HO〕= [e]          (7)である。 +61 ? (63t (7)式と前記仮定とから[e
l=[C2H5OH]捧        (@となる。 すなわちキャリア濃度の増加はエチルアルコール濃度の
平方根に比例して増加する。この解析結果は第1図の結
果とよく一致している。 一方、移動度μmのエチルアルコール濃度〔C〕依存性
は膜厚゛が4o人からなる薄膜の場合と、1000人か
らなる薄膜の場合とで大きく異っている。すなわち、膜
厚が40人の場合(第1図(a))では△C1ogtx
)/△(7!Og[(]):;0.61膜厚が1000
人の場合(第1図(b))では△(log/−m)/△
(log[c〕)−0である。この人(l o g t
t、VMlotf−C8)の値は薄膜の膜厚に大きく依
存している。 さて、上述の実験結果をここで整理すると、膜の導電率
σは(1)式で示した如く σ=n、%、μ       (1) で表現される。この(1)式の両辺をアルコール濃度〔
C〕で微分すると となる。(9)式の右辺第1項は膜の種類、その作製条
件に無関係であり膜の動作温度が250℃の場合には約
0.6である。(9)式の右辺第2項は膜の性質に強く
関係している。膜厚が40人程度の薄膜では約q6であ
るが1000人の薄膜の場合には71−ミ ○である。これらの理由により(91式の左辺は最適な
膜厚を有する薄膜の場合には1になり膜厚が最適値より
厚い場合には1より小さな値になる。すなわち、薄膜の
高いガス感度特性はガス吸着による膜の移動度の変化に
帰因しており、薄膜におけるこの移動度のガス吸着によ
る変化の量は膜厚と密接な関係がある。 第2図に膜動作温度が260℃の時の薄膜の△(log
tsi)/△(log
The present invention provides a gas-sensitive membrane that interacts with external agents such as gas and alcohol and can detect the concentration of gas and alcohol with high sensitivity. The present invention is based on the discovery that the sensitivity of a gas sensor can be increased by optimizing the thickness of a thin film used as a gas-sensitive film. 21, - In general, the electrical conductivity σ of a substance is expressed as σ2n8μ (1) (where 嗗 is unit charge) using carrier, a concentration n, and carrier mobility μ. In order to clarify the operating mechanism of the thin film gas sensor, σ was separated into n and μ by Hall effect measurements. Figure 1 shows σ, μ, and alcohol concentration [0].
It shows the change in n. Figure 1 (ILI is for a tin oxide thin film with a film thickness of about 4oλ, and Figure 1('b) is a film with a film thickness of 10
This is the case of a tin oxide thin film with a thickness of about 0oλ. These thin films were all produced by a reactive RF spark method using tin as a target. That is, the argon pressure in the Pelger was set to about 0.6 Pa, the oxygen pressure was set to c), and the alkali-free glass substrate with its surface polished was heated to 160 Pa.
Sputter tin while heated to about ℃. R at this time
When the F power is 200 W, a tin oxide thin film is formed on the substrate at a rate of about 60 per minute. After this, 360 in the air
Heat treatment for 2 hours at -°C is performed to stabilize the properties. 1st
In the case of Figure (IL), the sputtering time is 37 seconds, and the sputtering time is 60 seconds, and in the case of Figure 1 (BL), the sputtering time is 20 minutes. was set to 260°C.The conductivity σ of each sample was determined by the ethyl alcohol concentration [
C] increases linearly on a logarithmic graph. That is, σ=αCO]N @) (here α, N
is a constant. ) can be expressed as In the case of a thin film with a thickness of about 40 people as shown in Figure 1 (IL), H is 1, and Figure 1 (b)
In the case of a thin film with a film thickness of about 1000 people, N:;
It is 0.5. This Hall effect measurement made it very clear that the mechanism of conductivity change due to ethyl alcohol adsorption differs greatly depending on the thickness of the thin film. The carrier concentration n increases as the ethyl alcohol concentration [C) increases. And its slope is C5. That is, △(ioi n )/△(logcc])=o, 5
p). The increase in carrier concentration induced by gas adsorption is determined solely by the chemical reaction between the solid tin oxide and the gas ethyl alcohol. Therefore, if measured under the same conditions (ambient temperature, operating temperature, etc.), △(logn/△(log[C]
) are naturally the same. In normal air, oxygen is adsorbed on the membrane surface in a manner determined by the operating temperature of the membrane. As will be described later, this oxygen adsorption state is expressed by the following equilibrium equation. 02 (g1802 (ad)+! 02” (IL
(134:!O-(IL(1)1”' 02-(ad)
402- (lat) +4 where fl, &(1, lat are gas and adsorption, respectively. They represent each state of the lattice, and e represents a conduction electron. At an operating temperature of 260°C, the adsorption state of oxygen is 0-. The reaction between 0− adsorbed on the membrane surface and ethyl alcohol molecules can be expressed as follows: j 02H50H+ O−d 0T1sOHO+H20+
e (@b 62.- That is, at an operating temperature of 260°C, ethyl alcohol molecules adsorbed on the membrane surface or in the atmosphere are oxidized by oxygen ions adsorbed on the membrane surface and converted to acetaldehyde. At this time, the electrons released from the oxygen ions return to the membrane and the carrier concentration increases.The validity of this reaction has been confirmed by mass spectrometry measurements.In the equilibrium state of the reaction shown by equation (6), From the law of mass action, kf[C2H5OH]O-] = kb[CHsCHO
][HzO')[e](@.If the ethyl alcohol concentration is lower than the surface adsorbed oxygen ion concentration, (
In equation 6), the oxygen ion concentration [0-] can be considered to be constant. Furthermore, since there are enough water molecules in the air, [H20] is also considered to be constant. (From @formula [0HsC;
HO]=[e] (7). +61? (63t From equation (7) and the above assumption, [e
l = [C2H5OH] (@). In other words, the carrier concentration increases in proportion to the square root of the ethyl alcohol concentration. This analytical result is in good agreement with the results shown in Figure 1. On the other hand, the mobility μm The dependence on ethyl alcohol concentration [C] is significantly different between the case of a thin film consisting of 40 people and the case of a thin film of 1000 people.In other words, when the film thickness is 40 people (the first In figure (a), △C1ogtx
)/△(7!Og[(]):;0.61 film thickness is 1000
In the case of humans (Figure 1 (b)), △(log/-m)/△
(log[c])-0. This person (l o g t
t, VMlotf-C8) is largely dependent on the thickness of the thin film. Now, to summarize the above experimental results here, the electrical conductivity σ of the film is expressed as σ=n,%,μ (1) as shown in equation (1). Both sides of this equation (1) are expressed as alcohol concentration [
C], we get The first term on the right side of equation (9) is independent of the type of film and its manufacturing conditions, and is approximately 0.6 when the operating temperature of the film is 250°C. The second term on the right side of equation (9) is strongly related to the properties of the film. In the case of a thin film of about 40 people, the thickness is about q6, but in the case of a thin film of 1000 people, it is 71-mi○. For these reasons (the left side of Equation 91 is 1 for a thin film with an optimal film thickness, and becomes a value smaller than 1 when the film thickness is thicker than the optimal value. In other words, the high gas sensitivity characteristic of a thin film is This is due to changes in the mobility of the film due to gas adsorption, and the amount of change in mobility in a thin film due to gas adsorption is closely related to the film thickness. △(log
tsi)/△(log

〔0〕の値の膜厚依存性を示す。 膜厚が3C)〜40人のときに△(lOgJH)/△(
zogccp )の値は最大値を示し、膜厚が厚くなる
につれて急激に減少する。IooAll上の膜厚ではΔ
Ilog〜】/△(7!ogCC))Q値はほとんど0
である。 大気中では酸化錫薄膜の表面には酸素が負電荷吸着して
いる。Chanらは動作温度が150℃〜260℃の範
囲ではこの吸着酸素は〇−の形であジ、さらに高温にな
ると02−の形になると1cSRの測定カラ結論づけた
。CS、C6Chang:J、Vac。 SCJ&Techn07!、17(1980)3661
゜n形半導体である酸化錫薄膜の表面に吸着したこ00
″(オンは、膜中を移動するキャリア(電子)の散乱中
心になる。この叶 イオンがキャリアの動きに大きく影
響を与える距離は(1o)式に示すデバイ長で表わすこ
とができる。 ここでεは誘電率(’= 13.5X8.85X10”
η1にはボルツマン定数(=1.38×1σ23J10
K)シは動作温度 nは真のキャリア濃度である。 雰囲気中の酸素分圧が高くなり吸着0− イオンの数が
増加するにしたがいキャリアの移動が妨げられる領域が
増加し、ついには表面からδの厚さを有する連続的な帯
を構成するようになると考えられる。 この様子を模型的に第3図(&)に示す。図に示すよう
に、表面に吸着した0−イオンのため、薄膜表面からδ
の距離の間はキャリア(電子)が入り込む事ができない
。すなわち、キャリアにとっての実効的なチャンネルの
厚みLOは(11)式で表9、−二・ わす値になる。 Lc==D−2δ         (11)今、ホー
ル効果の測定結果から求まるキャリア濃度は2 X 1
0” (Im−’であるので膜を260”C(D動作温
iに作詩した場合、To==523°K 、n=。 2、OX 1 d 8crn−’を(10)式に代入す
るとδ:;4’0人と計算できる。 膜厚が40人程度の試料ではLcはほとんどOに近く非
常に狭くなる。 第3図(′b)は超微粒子膜表面あるいは雰囲気中に存
在するエチルアルコールが吸着0−イオンと反応した場
合を模型的に示している。同図(ILIの場合には、キ
ャリアが膜中を自由に移動できる実効的なチャンネル厚
みLcは Lc=n−26(11) である′が、同図fb)で示す如く、エチルアルコール
が存在しく6)式で示した如き反応が起こると薄膜表面
に吸着していたO−イオンは水になって膜から脱離して
ゆく。・この時には、キャリアを膜中に与えると同時に
、従来の散乱中心としての作用も消10、。 滅する。そのために実効的なチャンネル厚みLcは中で
部分的に LcりD             (12)Sなる。 エチルアルコール濃度の増加につれて、(3)式で示し
た如くキャリア濃度は ・ △(logl/△(jlog[c))=o、s    
(3)の割合で増加する。すなわち酸素イオン濃度中−
〕は △(60g[0−)3/△(Jog[C])=−o、t
s (13)の割合で減少する。このため、膜のチャン
ネル領域中で実効チャンネル厚みLcがLc:?Dとな
る部分ムは △(logム)/△(Jog [C) 3 = o、c
s  (14)の割合で増加する。この結果、移動度μ
Hも増加する。 上述の(13)、(14)式が成立するのはエチルアル
コールが存在しない状態、すなわち第3図(&)におい
て実効チャンネル厚みLcが0の場合である。この時に
、ガス吸着によるLcの変化すなわちμmの変化が最大
になる。Lcが大きくなるに11z’−: つれて、すなわちDが大きくなるにつれて△(7!og
 pH)/△(Jog[C)) o値は小す<fiル。 膜厚が4o人程度の薄膜ではδは250℃の動作温度で
は(10)式より40人であるのでLC:l:0になり
、△(JogμH)/△ClogC(])は第1図(a
)に示す如く約0.6となり最大の値を示す。 膜厚が1000人になってくると実効チャンネル厚みL
cはエチルアルコールの存在には無関係に Lc;D                  (4−
19)となるため、第1図tb+に示した如く△(lo
gμV△(lOgC,C〕)二〇となる。 すなわち、等2図において、△(140gpH)/△(
βogcc])の値が0.4以上になる(通常用いられ
ている数100A19上の薄膜の場合に比べてガス感度
が80%以上増加する)膜厚は、40Å以上、5oAl
i下であることがわかる。 以上述べた如く、薄膜ガス感応膜の膜厚を、デバイ長の
1〜2倍の範囲に設定する事により、それ以上の膜厚の
場合に比べて約80%以上、ガス感度を向上させること
ができることがわかった。 なおここでは酸化錫i[とエチルアルコールとの反応に
ついて述べたが、本モデルは酸化亜鉛や酸化銅などの他
の金属酸化物薄膜にもまた水素やイソブタンなどの他の
還元性ガスとの反応にも適用できるものであることは言
うまでもない。 以上のように本発明は感度が非常にすぐnたガス感応膜
を提供するものである。
The film thickness dependence of the value [0] is shown. When the film thickness is 3C) to 40 people, △(lOgJH)/△(
The value of zogccp ) shows the maximum value and rapidly decreases as the film thickness increases. The film thickness on IooAll is Δ
Ilog~]/△(7!ogCC)) Q value is almost 0
It is. In the atmosphere, oxygen is negatively charged and adsorbed on the surface of the tin oxide thin film. Chan et al. concluded based on 1cSR measurements that when the operating temperature is in the range of 150°C to 260°C, this adsorbed oxygen is in the form of 0-, and at higher temperatures it becomes 02-. CS, C6Chang: J, Vac. SCJ&Techn07! , 17 (1980) 3661
00
'' (on becomes the scattering center of carriers (electrons) moving in the film. The distance over which this ion greatly influences the movement of carriers can be expressed by the Debye length shown in equation (1o). Here, ε is the dielectric constant ('= 13.5X8.85X10"
η1 is Boltzmann constant (=1.38×1σ23J10
K) The operating temperature n is the true carrier concentration. As the oxygen partial pressure in the atmosphere increases and the number of adsorbed 0- ions increases, the area where carrier movement is hindered increases, and eventually a continuous band with a thickness of δ is formed from the surface. It is considered to be. This situation is schematically shown in FIG. 3 (&). As shown in the figure, due to the 0-ions adsorbed on the surface, δ
Carriers (electrons) cannot enter between a distance of . In other words, the effective channel thickness LO for the carrier is expressed by equation (11) as shown in Table 9. Lc==D-2δ (11) Now, the carrier concentration found from the measurement results of the Hall effect is 2 × 1
0"(Im-', so if the film is composed at 260"C (D operating temperature i, To = = 523 °K, n =. 2, OX 1 d 8 crn-' is substituted into equation (10). δ: ; can be calculated as 4'0 people. In a sample with a film thickness of about 40 people, Lc is almost O and is very narrow. Figure 3 ('b) shows the ethyl existing on the surface of the ultrafine particle film or in the atmosphere. This figure schematically shows the case where alcohol reacts with adsorbed 0- ions. In the case of ILI, the effective channel thickness Lc that allows carriers to move freely in the membrane is Lc = n-26 (11 ), but as shown in fb) in the same figure, when ethyl alcohol is present and the reaction shown in equation 6) occurs, the O- ions adsorbed on the thin film surface become water and desorb from the film. At this time, carriers are provided into the film and at the same time, the conventional effect as a scattering center also disappears.Therefore, the effective channel thickness Lc is partially reduced by D(12)S. As the ethyl alcohol concentration increases, as shown in equation (3), the carrier concentration becomes △(logl/△(jlog[c))=o,s
It increases at the rate of (3). In other words, in the oxygen ion concentration -
] is △(60g[0-)3/△(Jog[C])=-o, t
s (13). Therefore, the effective channel thickness Lc in the channel region of the membrane is Lc:? The partial sum that becomes D is △(logum)/△(Jog [C) 3 = o, c
s (14). As a result, the mobility μ
H also increases. The above equations (13) and (14) hold true in the absence of ethyl alcohol, that is, in the case where the effective channel thickness Lc is 0 in FIG. 3 (&). At this time, the change in Lc due to gas adsorption, that is, the change in μm, becomes maximum. As Lc increases, 11z'-: As D increases, △(7!og
pH)/△(Jog[C)) o value is small < fil. For a thin film with a film thickness of about 4 degrees, δ is 40 degrees from equation (10) at an operating temperature of 250°C, so LC:l:0, and △(JogμH)/△ClogC(]) is shown in Figure 1 ( a
) shows the maximum value of approximately 0.6. When the film thickness reaches 1000 layers, the effective channel thickness L
c is Lc;D (4-
19), so as shown in Figure 1 tb+, △(lo
gμV△(lOgC,C]) becomes 20. That is, in Figure 2, △(140gpH)/△(
βogcc]) is 0.4 or more (gas sensitivity increases by more than 80% compared to the normally used thin film of several hundred A19).
It can be seen that it is below i. As mentioned above, by setting the thickness of the thin gas-sensitive film in the range of 1 to 2 times the Debye length, gas sensitivity can be improved by about 80% or more compared to the case where the film thickness is greater. It turns out that it can be done. Although we have described the reaction between tin oxide and ethyl alcohol, this model also applies to the reaction of other metal oxide thin films such as zinc oxide and copper oxide with other reducing gases such as hydrogen and isobutane. Needless to say, it can also be applied to As described above, the present invention provides a gas-sensitive membrane with extremely high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(&) 、 (blはそれぞれ酸化錫薄膜よりな
るガス感応膜の電気伝導度、キャリア濃度、移動度のア
ルコール濃度に対する変化を示す図、第2図は前記ガス
感応膜の移動度のアルコール濃度に対する変化の大きさ
の膜厚依存性を示す図、第3図+ILI膜表面に吸着で
fて・いる酸累イオンに還元性ガスが反応している状態
を、それぞれ模型的に示す図である。 1・・・・・・ガラス基板、2−・・・−・酸化錫薄膜
、3・・・−・・13、、、 電極。 111図 (α)
Figure 1 (&) and (bl are diagrams showing the changes in electrical conductivity, carrier concentration, and mobility of a gas-sensitive film made of a thin tin oxide film, respectively, with respect to alcohol concentration. A diagram showing the film thickness dependence of the magnitude of change in alcohol concentration, Figure 3 + A diagram schematically showing the state in which a reducing gas reacts with acid accumulated ions adsorbed on the ILI membrane surface. 1...Glass substrate, 2-...Tin oxide thin film, 3...13... Electrode. Figure 111 (α)

Claims (2)

【特許請求の範囲】[Claims] (1)一方の面がガス雰囲気に接することによりその抵
抗値が変化する薄膜よりなり、前記薄膜の膜厚がデバイ
長の1から2倍の範囲に設定式れたことを特徴とするガ
ス感応膜。
(1) A gas sensitive sensor comprising a thin film whose resistance value changes when one surface comes into contact with a gas atmosphere, and the thickness of the thin film is set within a range of 1 to 2 times the Debye length. film.
(2)薄膜が還元性ガスに対してn形の導電性を示す金
属酸化物半導体からなることを特徴とする特許請求の範
囲第1項に記載のガス感応膜。
(2) The gas-sensitive film according to claim 1, wherein the thin film is made of a metal oxide semiconductor that exhibits n-type conductivity with respect to reducing gas.
JP18207881A 1981-11-12 1981-11-12 Gas sensitive membrane Pending JPS5883244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18207881A JPS5883244A (en) 1981-11-12 1981-11-12 Gas sensitive membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18207881A JPS5883244A (en) 1981-11-12 1981-11-12 Gas sensitive membrane

Publications (1)

Publication Number Publication Date
JPS5883244A true JPS5883244A (en) 1983-05-19

Family

ID=16111959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18207881A Pending JPS5883244A (en) 1981-11-12 1981-11-12 Gas sensitive membrane

Country Status (1)

Country Link
JP (1) JPS5883244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222153A (en) * 1984-09-29 1987-09-30 Hiroshi Komiyama Gas sensitive composite body containing metal and dielectric and manufacture thereof
CN114646419A (en) * 2022-03-23 2022-06-21 中山大学 Gas pressure sensor, preparation method thereof and gas pressure detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222153A (en) * 1984-09-29 1987-09-30 Hiroshi Komiyama Gas sensitive composite body containing metal and dielectric and manufacture thereof
JPH0479540B2 (en) * 1984-09-29 1992-12-16 Hiroshi Komyama
CN114646419A (en) * 2022-03-23 2022-06-21 中山大学 Gas pressure sensor, preparation method thereof and gas pressure detection method

Similar Documents

Publication Publication Date Title
Cai et al. Effect of oxygen gas pressure on the kinetics of alumina film growth during the oxidation of Al (111) at room temperature
Hollabaugh et al. ADSORPTION OF WATER AND POLAR PARAFFINIC COMPOUNDS ONTO RUTILE1
TWI603080B (en) Micro gas sensor and its manufacturing method
Marick Variation of resistance and structure of cobalt with temperature and a discussion of its photoelectric emission
CN106018490A (en) Palladium-silver nano-film hydrogen-sensitive element and manufacturing method
JPS5883244A (en) Gas sensitive membrane
Josepovits et al. Effect of gas adsorption on the surface structure of β-Ga2O3 studied by XPS and conductivity measurements
Wakamatsu et al. Effect of heating and cooling atmospheres on colors of glaze and glass containing copper
Krishnamoorthy et al. Formation of very thin oxide films on copper: Kinetics and mechanism
Badrinarayanan et al. Photoelectron spectroscopy study of surface oxidation of SnTe PbTe and PbSnTe
Suzuki et al. SIMS/XPS characterization of surface layers formed in 3 mass% Si‐steel by annealing in oxygen at low partial pressure
Nylund et al. Surface analysis of air exposed rapidly solidified aluminium powder
JPS5883245A (en) Ultrafine particle gas-sensitive membrane
TWI580971B (en) Chip structure for detecting carbon monoxide concentration and method of manufacturing the same
Zhaoxia et al. Characterization and gas sensing properties of copper-doped tin oxide thin films deposited by ultrasonic spray pyrolysis
CN113072062B (en) Graphene quantum dot/ZnO/chlorella composite film and preparation method and application thereof
Oku et al. Reversible temperature dependence of the surface defect structure of nickel oxide at an oxygen pressure of 10− 3 Pa studied by X-ray photoelectron spectroscopy
Qin et al. Surface oxide evolution on Al–Si bond wires for high-power RF applications
KR102535469B1 (en) Acetone Detecting Sensor
Godovski et al. Analysis of hydrogen fluoride with SnO2 gas sensors
RU2307346C1 (en) Method of manufacturing sensor for gas transducer
Tjong et al. AES and SIMS investigations of the oxide films on Fe-40Cr-Ru alloys
KR102278741B1 (en) Hydrogen sulfide sensor and preparation method of the same
Glass et al. Preparation of solid membrane chloride ion selective electrodes by ion implantation
Orlov et al. Activation energy for the formation of oxygen vacancies in undoped nonstoichiometric indium oxide films