JPS588245A - Control device of air-fuel ratio - Google Patents

Control device of air-fuel ratio

Info

Publication number
JPS588245A
JPS588245A JP10648481A JP10648481A JPS588245A JP S588245 A JPS588245 A JP S588245A JP 10648481 A JP10648481 A JP 10648481A JP 10648481 A JP10648481 A JP 10648481A JP S588245 A JPS588245 A JP S588245A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
negative pressure
control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10648481A
Other languages
Japanese (ja)
Other versions
JPH0251062B2 (en
Inventor
Shinichi Sato
信一 佐藤
Mitsuharu Taura
田浦 光晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10648481A priority Critical patent/JPS588245A/en
Publication of JPS588245A publication Critical patent/JPS588245A/en
Publication of JPH0251062B2 publication Critical patent/JPH0251062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0015Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
    • F02D35/0046Controlling fuel supply
    • F02D35/0053Controlling fuel supply by means of a carburettor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the deterioration of the fuel consumption by delaying the suction pipe negative pressure signal and providng to a circuit for deciding the executability of the feedback control. CONSTITUTION:The signals from a sensor 20 for detecting the cranking state of an engine, negative pressure switches 6, 16 fixed to the suction, exhaust pipes 2, 3 and a negative switch 18 fixed to the slow port 17 are provided while the control section 10 will control the slow and main solenoid valves 8, 10 thus to control the amount of air and the fuel supply. In the control section 10, the signal from the switches 6, 18 is provided through the delay circuits 32, 36 to AND gate 38 to drive the valves 8, 9 by means of the drive circuit 28. Consequently even when the negative pressure in the suction pipe 2 has dropped momentality in the low rotation area of the engine, the feedback control is not stopped thereby the deterioration of the fuel consumption, is prevented.

Description

【発明の詳細な説明】 本発明は空燃比制御装置に係シ、更に具体的に社排ガス
中の残留酸素機度を検出し、該検出信号に基づいて気化
器内の空燃比を理論空燃比近傍にフィートノ々ツク制御
する空燃比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device, and more specifically, detects the residual oxygen level in company exhaust gas, and adjusts the air-fuel ratio in the carburetor to the stoichiometric air-fuel ratio based on the detected signal. The present invention relates to an air-fuel ratio control device that performs foot knock control in the vicinity.

一般に内燃機関全般の特徴として、アクセルペダルに連
動するスロットル弁の開度(以下、スロットル開度と記
す。)が等しい場合にエンジン回転数が低い程、吸気管
負圧は低くなる。従来のフィートノキック制御方式の空
燃比制御装置にあってはスロットル弁の全開付近(ll
L気管負圧:小)でフィード/々ツク制御を停止し、気
化器内の9燃此をリッチにするように構成されている為
にエンジンの低回転領域においても容易にフィード/々
ツク制御を停止してしまうという欠点があった。
In general, as a general feature of internal combustion engines, when the opening degree of a throttle valve linked to an accelerator pedal (hereinafter referred to as throttle opening degree) is equal, the lower the engine speed, the lower the intake pipe negative pressure. In the conventional air-fuel ratio control device using the foot kick control method, the throttle valve is close to fully open (ll
Feed/per unit control is stopped at L tracheal negative pressure (small) and the 9 fuel in the carburetor is made rich, making it easy to control feed/per unit even in low engine speed ranges. The disadvantage was that it stopped.

例えば自動車の走行状態が発進→加速→停止のパターン
を繰シ返えす市街地走行では発進時にエンジンが低回転
である九めにスロットル開度としては大きくないKもか
かわらす吸気管負圧は容易に該負圧を検出する負圧スイ
ッチの設定値以下となル、その度に空燃比制御装置紘フ
ィードバック制−御を停止する。フィード/々ツク制御
停止期間において気化器内の空燃比紘フィード/々ツク
制御時に比してリッチをなるため燃費紘悪化する。
For example, when driving in an urban area where the driving state of a car repeats the pattern of starting → accelerating → stopping, the engine is running at a low rotation speed at the time of starting, and even though the throttle opening is not large (K), the intake pipe negative pressure easily increases. Whenever the negative pressure becomes less than the set value of the negative pressure switch that detects the negative pressure, the air-fuel ratio control device stops the feedback control. Since the air-fuel ratio in the carburetor becomes richer during the feed/multiply control stop period than during the feed/pump control, fuel efficiency deteriorates.

本発明の目的は自動車発進時における瞬間的な吸気管負
圧の低下に起因するフィートノセック制御の停止を回避
し、燃費悪化の防止を図った空燃比制御装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air-fuel ratio control device that avoids stoppage of foot nosec control caused by a momentary drop in intake pipe negative pressure when starting a vehicle, and prevents deterioration of fuel efficiency.

本発明の特徴は排ガス中の残留酸素ガス濃度を検出し、
該検出信号に基づいて気化器内の空燃比を理論空燃比近
傍にフィーPノ々ツク制御する空燃比制御装置において
、フィートノセック制御の実行の可否を判定する判定回
路の入力信号として吸気管負圧信号を用い且つ該吸気管
負圧信号を所定時間、遅延させるように構成した点にあ
る。
The feature of the present invention is to detect the concentration of residual oxygen gas in exhaust gas,
In an air-fuel ratio control device that performs foot control to control the air-fuel ratio in the carburetor to near the stoichiometric air-fuel ratio based on the detection signal, the air-fuel ratio in the intake pipe is used as an input signal to a determination circuit that determines whether foot nosec control can be performed. The present invention is configured to use a negative pressure signal and to delay the intake pipe negative pressure signal by a predetermined period of time.

以下、本発明の実施例を図面に基づいて具体的に説明す
る。第1図には本発明に係る空燃比制御装置の全体構成
が示されてお〕、同図においてlは気化器であシ、コは
吸気管、3は排気管である。
Embodiments of the present invention will be specifically described below based on the drawings. FIG. 1 shows the overall configuration of an air-fuel ratio control device according to the present invention. In the figure, l is a carburetor, C is an intake pipe, and 3 is an exhaust pipe.

さて、図示してないアクセルペダルを操作する仁とによ
シ気化器/内に設けられているスロットル弁jの開度が
制御され、図示してないエアクリーナからエンジンの各
シリンダに供給される空気量が制御される。
Now, the driver who operates the accelerator pedal (not shown) controls the opening of the throttle valve J installed in the carburetor, and the air is supplied to each cylinder of the engine from the air cleaner (not shown). Amount controlled.

また、吸気管−にはエンジンの負荷状態(吸気管負圧)
を検出する負圧スイッチ4が設けられておシ、該吸気管
負圧信号と後述する各種センナの検出出力に基づいて制
御部10から出力される制御信号によシソレノイドノ々
ルブt、りの開弁時間が制御される。
In addition, the engine load condition (intake pipe negative pressure) is shown in the intake pipe.
A negative pressure switch 4 is provided to detect the intake pipe negative pressure signal and a control signal outputted from a control section 10 based on the detection output of various sensors to be described later. Valve time is controlled.

一方、図示してない燃料ポンプから供給される燃料は燃
料管//を介して燃料室lコに蓄えられ、メインオリフ
ィスlコを経てスモールベンチュリl参内に設けられた
噴射ノズルl!から気化器lに供給される。
On the other hand, fuel supplied from a fuel pump (not shown) is stored in a fuel chamber through a fuel pipe, passes through a main orifice, and then goes to an injection nozzle installed in a small venturi. is supplied to the vaporizer l.

更に燃料は上記供給系とは別にメインンレノイドノ々ル
ブタを通ってメインオリフィスlλを迂回するようにし
て噴射ノズルitから気化器lに供給される。従って、
噴射ノズルl#から供給される燃料供給(は、メインソ
レノイドノ々ルブタの開弁時間によ多制御することがで
きる。
Further, the fuel is supplied to the carburetor l from the injection nozzle it by passing through the main nozzle nozzle separately from the above-mentioned supply system and bypassing the main orifice lλ. Therefore,
The fuel supply from injection nozzle l# can be controlled by the opening time of the main solenoid nozzle.

一方、気化器/内への供給空気量はスローソレノイP)
々ルブtの開弁時間を制御し、それによって空気取入口
からの空気流入量を制御することにより修正される。
On the other hand, the amount of air supplied to the carburetor/inside is the slow solenoid P)
This is corrected by controlling the opening time of the valve t, thereby controlling the amount of air flowing in from the air intake.

また/lは排ガスセンサであシ、該センサは排ガス中の
残留酸素後置を検出して気化器l内の空燃比を最適制御
するためのものである。itはスローポート77に設け
られている負圧スイッチであシ、との負圧スイッチはエ
ンジンがアイドル状態にあるか否かを検出するためのも
のである。
Further, /l is an exhaust gas sensor, and this sensor is for detecting residual oxygen in the exhaust gas to optimally control the air-fuel ratio in the carburetor l. It is a negative pressure switch provided at the slow port 77. The negative pressure switch ``it'' is for detecting whether or not the engine is in an idling state.

次に制御部10の具体的構成を第2図に示す。Next, a specific configuration of the control section 10 is shown in FIG.

同図において負圧スイッチ4は吸気管負圧が所定値以下
になった場合に論[111信号を出力する。またセンサ
コ0はエンジンがクランキング状態にあるか否かを検出
し、クランキング時に論理−01信号が出力される。更
に負圧スイッチitはエンジンがアイドル状11にない
場合に論理s1g信号が、それ以外の状態では論理10
・信号が出力される。
In the figure, the negative pressure switch 4 outputs a logic [111 signal] when the intake pipe negative pressure becomes less than a predetermined value. Further, sensor code 0 detects whether or not the engine is in a cranking state, and a logic -01 signal is output during cranking. Furthermore, the negative pressure switch it has a logic s1g signal when the engine is not at idle condition 11, and a logic 10 signal otherwise.
・Signal is output.

またaOは前記各種センナを取込みフィーr)々ツク制
御の実行の可否を判定する判定回路であシ、該判定回路
J−は負圧スイッチ4の検出出力を一定時間、遅延させ
る遅銚回路Jコ、センサーQの検出出力を反転させるイ
ンバータJIc、負圧スイッチ/1の検出出力を一定時
間、遅延させる遅延回路34及びこれらの出力の論理積
をとるアンド回路srから構成されている。更にλ事は
排ガスセンナ(本実施例ではOlセンナ)/4の検出出
力を取シ込み気化(至)/内の空燃比を理論空燃比近傍
に制御するための比例積分信号を出力する比例積分回路
、コロは該比例積分回路コ事の出力信号をデユーティパ
ルス列信号に変換するパルス変換回路、コlはメインソ
レノイドノ々ルブデ、スa −ソレノイr/々ルブtを
夫々、駆動するメインソレノイド81.スルーソレノイ
ド8禦に駆動信号を出力する駆動回路である。
Further, aO is a determination circuit that takes in the various sensors and determines whether or not the various pressure controls can be executed, and the determination circuit J- is a delay circuit J that delays the detection output of the negative pressure switch 4 for a certain period of time. It is composed of an inverter JIc that inverts the detection output of the sensor Q, a delay circuit 34 that delays the detection output of the negative pressure switch/1 for a certain period of time, and an AND circuit sr that takes the AND of these outputs. Additionally, the proportional integral signal inputs the detection output of the exhaust gas sensor (Ol sensor in this example)/4 and outputs a proportional integral signal for controlling the air-fuel ratio in the vaporizer (to) near the stoichiometric air-fuel ratio. The circuit is a pulse conversion circuit that converts the output signal of the proportional-integral circuit into a duty pulse train signal. 81. This is a drive circuit that outputs a drive signal to the through solenoid 8.

上記構成において通常は0重上ンtito検出出力に基
づいて比例積分回路J4cKよ)エンジンの運転状態に
応じた比例積分信号vrが出力され、該比例積分信号に
基づいて既述の如くデユーティパルス列信号がパルス変
換回路J4よ〉駆動回路コtを介してメインソレノイド
81.ス胃−ソレノイドS禦に出力される。この結果メ
インルノイドノ々ルブタ、スローンレノイド/々ルft
の開弁時間が制御され、気化器l内の空燃比は理論空燃
比近傍に制御される。
In the above configuration, normally, the proportional integral circuit J4cK outputs a proportional integral signal vr according to the operating state of the engine based on the 0-fold upper tito detection output, and a duty pulse train is generated based on the proportional integral signal as described above. The signal is sent to the main solenoid 81 via the pulse conversion circuit J4> drive circuit. The gas is output to the solenoid S. As a result, the main runoid Nonoru Buta, Sloan Renoid/Noru ft.
The opening time of the valve is controlled, and the air-fuel ratio in the carburetor I is controlled to be close to the stoichiometric air-fuel ratio.

一方、判定回路#Oでフィードバック制御を停止すると
判定された場合、即ちセンサ1.コ0゜/lのアンド条
件が成立した場合には比例積分回路コダに判定回路参〇
から制御停止信号10が出力され、空燃比制御状停止さ
れる。この場合に従来では吸気管負圧を検出する負圧ス
イッチ1の検出出力を遅延回路3コを介することなく直
接、アンド回路3rに入力するように構成していた為に
ニンジンの低回転領域において吸気管負圧が瞬間的に低
下した場合に容易にフィードバック制御が停止される結
果となシ、空燃比がリッチ側に移行し、燃費が悪化する
。この様子を第3図に基づき説明する。自動車の走行ノ
ぐターンを第3図(A)に示し、その時の負圧の変化特
性を同図(B)に示す。自動車がある一定速度で走行し
ている期間0≦t<T・ では吸気管負圧は一定値を示
し、加速開始時点(時刻t=+t’r・)で設定値P・
以下となり、時刻T1以降で設定値P・以上になり、更
にじた一定値に落ち着く。
On the other hand, if the determination circuit #O determines that the feedback control should be stopped, that is, the sensor 1. When the AND condition of 0°/l is satisfied, a control stop signal 10 is output from the determination circuit 〇 to the proportional-integral circuit KODA, and the air-fuel ratio control is stopped. In this case, in the past, the detection output of the negative pressure switch 1 that detects the intake pipe negative pressure was directly input to the AND circuit 3r without going through the delay circuits 3; If the intake pipe negative pressure drops momentarily, feedback control is easily stopped, and the air-fuel ratio shifts to the rich side, resulting in poor fuel efficiency. This situation will be explained based on FIG. FIG. 3(A) shows the turning of the automobile, and FIG. 3(B) shows the change characteristics of the negative pressure at that time. During the period when the car is running at a certain speed, 0≦t<T・, the intake pipe negative pressure shows a constant value, and at the start of acceleration (time t=+t'r・), the intake pipe negative pressure reaches the set value P・
From time T1 onwards, it becomes equal to or more than the set value P, and then settles down to a constant value.

従って従来の如く、遅延回路JJかない場合には比例積
分回路コダから出力される比例積分信号VFは同図(0
)の点線で示す如く時刻T・以前ではレベルvr、を中
心にして変化し、時刻t・でオープンループでのレベル
vr@ に落ち、時刻T、で直線的に上昇し、加速後の
車速マ廊に対応するレベルVν禽 k刺違する時刻T1
以降ではレベルVFI  を中心に変化する。
Therefore, as in the conventional case, when there is no delay circuit JJ, the proportional integral signal VF output from the proportional integral circuit Koda is (0
), as shown by the dotted line, before time T, it changes around the level vr, drops to the open loop level vr@ at time t, increases linearly at time T, and the vehicle speed after acceleration changes. Level Vν bird corresponding to the corridor k time of stabbing T1
From then on, it changes mainly around the level VFI.

この結果、気化器内の空燃比(A/F )は同図(D)
の点線で示す如く期間T・くt≦T、でリッチ側に変化
し、時刻Ts以降て理論空燃比(A/F=14.7)近
傍に落ち澹くむととなる。
As a result, the air-fuel ratio (A/F) in the carburetor is as shown in the figure (D).
As shown by the dotted line, it changes to the rich side during the period T·kut≦T, and after time Ts it drops to near the stoichiometric air-fuel ratio (A/F=14.7).

本発明では吸気管負圧信号を遅延回路JJを芥して所定
時間、例えばtd(sg+−TI−T・)だけ遅延させ
てアンド回路71に入力するので上記時間tdK訃いて
吸気管負圧信号はマスクされ、比例積分信号Vrは実線
の如く車速マの変化に応じて変化し、空燃比A/FFi
履論!2!燃比近傍(同図(D)実線で示す)に制御さ
れる。
In the present invention, the intake pipe negative pressure signal is passed through the delay circuit JJ, delayed by a predetermined time, for example, td(sg+-TI-T), and inputted to the AND circuit 71. is masked, and the proportional integral signal Vr changes according to the change in vehicle speed as shown by the solid line, and the air-fuel ratio A/FFi
Follow along! 2! The fuel ratio is controlled to be close to the fuel ratio (shown by the solid line in FIG. 6(D)).

以上に説明した如く本発明ではニンジンの負荷状態を示
す吸気管負圧信号をフィートノセック制御の実行の可否
を判定する判定回路の入力信号として用い且つ肢吸気管
員圧信号を所定時間、遅延させるように構成したので、
本発明によれば自動車発進時における瞬間的な吸気管負
圧の低下に起因するフィートノセック制御の停止を回避
でき、燃量悪化を防止し得る。
As explained above, in the present invention, the intake pipe negative pressure signal indicating the carrot load state is used as an input signal of the determination circuit that determines whether foot nosec control can be executed, and the limb intake pipe member pressure signal is delayed for a predetermined period of time. I configured it so that
According to the present invention, it is possible to avoid stopping the foot nosec control caused by a momentary drop in the intake pipe negative pressure when starting the vehicle, and it is possible to prevent fuel consumption from deteriorating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図祉本発明に係る空燃比制御装置の全体構成を示す
図、第2図は第1図の空燃比制御装置の制御部の構成を
示すブロック図、第3図は制御部の空燃比制御動作を従
来例との比較において示す動作特性図である。 4、/l・・・負圧スイッチ、10−・・制御部、コダ
・・・比例積分回路%コ4・・りぞルス変換回路、コト
・・!動回路、JJ、Jt・・・遅延回路、Jt・・・
アンド回路、81+81・・・ソレノイド。 第3図
Fig. 1 is a diagram showing the overall configuration of the air-fuel ratio control device according to the present invention, Fig. 2 is a block diagram showing the configuration of the control section of the air-fuel ratio control device of Fig. 1, and Fig. 3 is a diagram showing the air-fuel ratio of the control section. FIG. 3 is an operation characteristic diagram showing a control operation in comparison with a conventional example. 4, /l...Negative pressure switch, 10-...Control unit, Koda...Proportional integral circuit %Co4...Resolution conversion circuit, Koto...! Dynamic circuit, JJ, Jt...Delay circuit, Jt...
AND circuit, 81+81... solenoid. Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)排ガス中の残留酸素ガス機度を検出する排ガスセ
ンサと、該排ガスセンナの検出出力に基づいて気化器内
の空fistを理論!!燃比近傍に制御するための制御
信号を出力する空燃比制御回路と、各種センナの検出出
力を取)込み、これらの論理積結果によシフイードバッ
ク制御の実行の可否を判定・し前記空燃比制御回路に判
定信号を送出する判定回路とを含んで構成され、る空燃
比制御装置にシいて、吸気管負圧信号を遅延回路を介し
て前記判定回路に入力することを特徴とする空燃比制御
装置。     ・・
(1) Theory of empty fist in the carburetor based on the exhaust gas sensor that detects the residual oxygen gas level in the exhaust gas and the detection output of the exhaust gas sensor! ! The air-fuel ratio control circuit outputs a control signal for controlling the fuel ratio near the fuel ratio, and the detection outputs of various sensors are included, and based on the AND result of these, it is determined whether shift feedback control can be executed or not, and the air-fuel ratio control is performed. An air-fuel ratio control device comprising a determination circuit that sends a determination signal to the circuit, wherein an intake pipe negative pressure signal is input to the determination circuit via a delay circuit. Device.・・・
JP10648481A 1981-07-08 1981-07-08 Control device of air-fuel ratio Granted JPS588245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10648481A JPS588245A (en) 1981-07-08 1981-07-08 Control device of air-fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10648481A JPS588245A (en) 1981-07-08 1981-07-08 Control device of air-fuel ratio

Publications (2)

Publication Number Publication Date
JPS588245A true JPS588245A (en) 1983-01-18
JPH0251062B2 JPH0251062B2 (en) 1990-11-06

Family

ID=14434741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10648481A Granted JPS588245A (en) 1981-07-08 1981-07-08 Control device of air-fuel ratio

Country Status (1)

Country Link
JP (1) JPS588245A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538427A (en) * 1976-07-12 1978-01-25 Nippon Denso Co Ltd Air-to-fuel ratio feed-back control means for internal combustion engine
JPS5320024A (en) * 1976-08-08 1978-02-23 Nippon Denso Co Ltd Air-fuel ratio feedback type mixture controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538427A (en) * 1976-07-12 1978-01-25 Nippon Denso Co Ltd Air-to-fuel ratio feed-back control means for internal combustion engine
JPS5320024A (en) * 1976-08-08 1978-02-23 Nippon Denso Co Ltd Air-fuel ratio feedback type mixture controller

Also Published As

Publication number Publication date
JPH0251062B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
US4240389A (en) Air-fuel ratio control device for an internal combustion engine
US7472692B2 (en) Engine control apparatus
US6301882B1 (en) Exhaust gas purification control apparatus of engine
US4628883A (en) Air-fuel ratio control system
CN100412338C (en) Control device for internal combustion engine
US4483296A (en) System for controlling an air-fuel ratio
US20070012296A1 (en) Fuel supply control method and apparatus of internal combustion engine
US4430979A (en) Air-fuel ratio control system
JPH0396632A (en) Control device for engine
US4452209A (en) Air-fuel ratio control system for an internal combustion engine
US4569318A (en) Secondary intake air supply system for internal combustion engines
JPS588245A (en) Control device of air-fuel ratio
US5050563A (en) Mixture control system for an internal combustion engine
US4651699A (en) Air-fuel ratio control system
JPS59190450A (en) Air-fuel ratio controller for internal-combustion engine for car
WO2023181224A1 (en) Method and device for controlling stopping of engine
JP2596031B2 (en) Exhaust gas recirculation device
US4649882A (en) Air intake side secondary air supply system for an internal combustion engine equipped with a fuel increment control system
JPH04501155A (en) Emergency operation fuel setting method and device
JPH02267340A (en) Air-fuel ratio control device for internal combustion engine
JPH05106431A (en) Secondary air feeding control device for catalyst converter
JP2021139340A (en) Internal combustion engine control device
CN118871664A (en) Engine stop control method and device
JPH0221580Y2 (en)
JPH03100363A (en) Exhaust gas reflux controller of diesel engine