JPS5881421A - Ceramic honeycomb filter - Google Patents

Ceramic honeycomb filter

Info

Publication number
JPS5881421A
JPS5881421A JP18129881A JP18129881A JPS5881421A JP S5881421 A JPS5881421 A JP S5881421A JP 18129881 A JP18129881 A JP 18129881A JP 18129881 A JP18129881 A JP 18129881A JP S5881421 A JPS5881421 A JP S5881421A
Authority
JP
Japan
Prior art keywords
coated
honeycomb
porous ceramic
filter
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18129881A
Other languages
Japanese (ja)
Inventor
Tatsumi Maeda
前田 辰己
Shoji Kosaka
祥二 高坂
Satoshi Tanaka
智 田中
Shohei Iwamoto
岩本 昌平
Chikashi Kanamaru
金丸 親志
Takeshi Matsumoto
武志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18129881A priority Critical patent/JPS5881421A/en
Publication of JPS5881421A publication Critical patent/JPS5881421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To enable the collection of fine particles in a high filtering ratio as well as to easily regenerated and restore a filter, by a method wherein a metal resistance film is coated to a honeycomb structure comprising porous ceramic and the coated honeycomb structure is simultaneously heated by passing current through said resistance film. CONSTITUTION:A honeycomb structure H comprising porous ceramic is molded by baking an extrusion molded honeycomb like ceramic pattern at a temp. slightly lower than a sintering temp. or baking a stock material having an org. substance mixed therein and, to inner walls and side surfaces of each piercing holes J of this structure H, a metal resistance film R comprising Ni, Cr or Ni-Cr is coated by electroless plating or vapor deposition. Because this film R is coated to the surfaces of grid parts of the porous ceramic, fine pores of partition walls F are not clogged. In addition, to the end surface of the structure H, metal closure plate P having plural pores K formed by punching is contacted under pressure so as to close the openings of piercing holes J every other one and a lead wire L is connected thereto to carry out heating during regeneration of a filter by passing current through the metal resistance film R.

Description

【発明の詳細な説明】 本発明は自動車のエンジンからの排気ガス、工場からの
排出ガスなどに含まれているカーボン粒子、未燃焼ミス
ト、粉塵等を捕集し、燃焼せしめるようにしたセラミフ
タハニカムフィルタに関するものである。
Detailed Description of the Invention The present invention is a ceramic lid that collects and burns carbon particles, unburned mist, dust, etc. contained in exhaust gas from automobile engines, exhaust gas from factories, etc. This relates to honeycomb filters.

従来から気体中のカーボン粒子、粉塵等をJll集する
目的で、多孔買上ラミックを所定の7IlijI状に成
形したものをフィルタとして使用することが試みられた
ことがあるが、濾過作用をする部分が小さいこと、圧力
損失が大きいこと、機械的強度が小さいこと、目詰りし
た場合に再び開孔させて濾過作用を回復させることがで
きないことなど、多くの欠点があるため、自動車のエン
ジンからの排気ガス、工場からの排出ガス中のカーボン
粒子、未燃焼きストなどを補集するフィルタとして広く
利用されるに至っていない、特に排気ガス中のカーボン
粒子、未燃@iミストを捕集し、フィルタの細孔が目詰
りしたような一合には圧力損失が大となり、エンジンな
どでは出力の大巾低下や燃費の悪化を招くことになる。
In the past, attempts have been made to use porous lamic molded into a predetermined shape as a filter for the purpose of collecting carbon particles, dust, etc. in the gas, but the part that acts as a filtration Due to many disadvantages, such as small size, high pressure loss, low mechanical strength, and inability to reopen the pores to restore the filtration effect if they become clogged, It has not yet been widely used as a filter to collect carbon particles, unburned dust, etc. in exhaust gas from gases and factories. If the pores of the engine become clogged, the pressure loss will be large, leading to a significant drop in output and deterioration of fuel efficiency in engines.

そのため、これら目詰を解消するため、カーボン粒子、
未燃焼ミスト等を再燃焼させることが考えられる。その
手段とし′c酸化触緘を配備したり、バーナーを併設す
るなどがある。ところが、触媒を用いて再燃焼させる場
合には、ナルフェイトリン酸塩等が生成され、しかも気
体反応の場合と異なり、カーボン粒子は面体であるため
燃焼開始温度が高く、燃焼し難く、またバーナーを前置
する方式のものでは、フィルタの外部から加熱するため
、熱勾配によるヒートショックやカーボンの燃焼熱浴融
などによって、フィルタを破線する恐れが大きいことや
バーナーに燃料を供給したり、点火する装置も必要で、
しかも加熱閂なコントロールする場合には機構が壷雑二
こな)たり、困難さを伴うなど多くの欠点がある。
Therefore, in order to eliminate these clogging, carbon particles,
It is possible to reburn unburned mist, etc. Possible ways to do this include deploying oxidizing probes and installing burners. However, when reburning using a catalyst, nalphate phosphate, etc. are produced, and unlike in the case of a gas reaction, carbon particles are faceted, so the combustion start temperature is high, making it difficult to burn, and the burner In the case of the type in which the filter is heated from the outside, there is a high risk of the filter becoming broken due to heat shock due to the thermal gradient or carbon combustion heat bath melting. You also need equipment to
Moreover, there are many drawbacks such as the complicated mechanism and the difficulty in controlling the heated bolt.

本発明は上述の如き事情C鑑み、多孔質セラミックのす
ぐれた濾過特性と、蚊多孔質セラミックの表面に形成せ
しめた金属抵抗膜からの発熱によって捕集したカーボン
粒子等を燃焼せしめ除去することによって目詰りを解消
し、フィルタ特性を再度回復せしめるようにしたもので
ある。
In view of the above-mentioned situation C, the present invention utilizes the excellent filtration properties of porous ceramics and uses heat generated from the metal resistance film formed on the surface of the porous ceramic to burn and remove carbon particles collected. This is to eliminate clogging and restore filter characteristics again.

本発明によるセラミックフィルタはシ孔質セラiツクよ
り成るハニカム構造体で構成される。この多孔質セラミ
ックの材料としては、アルミナ(Al2O3)、コージ
ライト(2Mg0−2AI203・!1si02)A 
5 () (3A1203.2810! ) is k
 化’dX (81c) −窒化珪素(8i3N4 )
なとて構成するが、その製法としては、各原料粉末にわ
ずかな他の元素粉末や有aim剤及び結合剤を共に混練
した後、所定の金型を用い押出成@1cよりハニカム状
に成し、酸化性雰囲気中あるいはアルゴン雰囲気、真空
雰囲気などの非酸化性雰囲気のもとて各々セラミックに
適合した温度で焼結されるが、本発明を構成するハニカ
ム構造体は微細孔な有する多孔質のセラミック体である
必要性から、焼結編成よりも若干低いU度で焼成するこ
とによって多孔質セラミックより成るハニカム構造体を
製作する。また、他の方法としては前記原料中に有機質
粉末な予じめ適量混合しておくことによって該有機質粉
末が焼成時に焼失してしまうことを利用して多孔質セラ
ばツクより成るハニカム構造体を製作してもよい。
The ceramic filter according to the invention consists of a honeycomb structure made of porous ceramic. Materials for this porous ceramic include alumina (Al2O3), cordierite (2Mg0-2AI203・!1si02)A
5 () (3A1203.2810!) is k
'dX (81c) -Silicon nitride (8i3N4)
However, the manufacturing method is to knead each raw material powder with a small amount of other elemental powder, an aiming agent, and a binder, and then extrude it into a honeycomb shape using a specified mold. The honeycomb structure constituting the present invention is sintered in an oxidizing atmosphere or in a non-oxidizing atmosphere such as an argon atmosphere or a vacuum atmosphere at a temperature suitable for the ceramic. Because of the need for a ceramic body, a honeycomb structure made of porous ceramic is manufactured by firing at a slightly lower U degree than that of the sintered structure. Another method is to mix an appropriate amount of organic powder into the raw materials in advance and take advantage of the fact that the organic powder is burned away during firing to form a honeycomb structure made of porous ceramic blocks. May be manufactured.

このように得られたハニカム構造体を、例、ttf第1
図のエンジンEからの排気管路途中における排気ガス浄
化装置Cを構成するフィルタとして使用する多孔質セラ
ミックより成るハニカム構造体(以下、単に−I・ニカ
ムと略称する)Hは、第2図にて一方の端面な示すよう
に該ハニカムHの有スる通孔J/)M口を一つおきに閉
塞する如く、複数−〇打抜孔Kをあけた閉轟板Pか、同
じく第2図−)のように打抜孔Kが数多く並び列毎に開
口、閉塞せしめるような閉烏板p+をs3図にて示すよ
うにハニカムHの両端sc、各々ロウ付けしたり、ある
いは図示しない゛機構によって圧接保持しである。
For example, the honeycomb structure obtained in this way is
A honeycomb structure H made of porous ceramic (hereinafter simply referred to as -I-nicum) used as a filter constituting the exhaust gas purification device C in the middle of the exhaust pipe from the engine E shown in the figure is shown in FIG. As shown in FIG. 2, one end face is a closing plate P with a plurality of punched holes K so as to close every other through hole J/)M of the honeycomb H, as shown in FIG. -) A closing plate p+ in which a large number of punched holes K are lined up and opened and closed in each row is soldered to both ends sc of the honeycomb H, as shown in figure s3, or by a mechanism (not shown). It is held by pressure contact.

この場合、所定の位置に打抜孔Kをあけた閉塞& P 
(PIは、ハニカムHの一方の端面部で通孔Jが開口し
、I!Ij−の通孔Jが他方の端面部では閉朧した状態
にある如(取付けられる。
In this case, a blockage &P with a punched hole K at a predetermined position is used.
(The PI is installed in such a way that the through hole J is open at one end face of the honeycomb H, and the through hole J of I!Ij- is closed at the other end face.

このような閉塞板P、P・は、ハニカムHで通孔Jを形
成する隔壁Fの表面に、以下に述べる金属抵抗膜8に通
電する電極としても用いるため、高耐熱性を有するニッ
ケル(Ni)、ニクロム(Ni−Cr)等の金属板を用
い、該金属板に打抜孔Kを穿設するが、打抜孔にの形状
としては、ハニカム1llc設けた通孔の形状に合せた
大月形、四角形、三周形などの打抜孔Kをあけておけば
よい。
These closing plates P, P・ are made of nickel (Ni ), a metal plate such as nichrome (Ni-Cr) is used, and a punched hole K is bored in the metal plate.The shape of the punched hole is a large moon shape that matches the shape of the hole formed in the honeycomb 1llc. , square, tricircular, etc. punched holes K may be punched.

またRは金属抵抗膜で、ハニカAHを成す多孔質セラミ
ック体の表面に一被矯され、通電されることにより発熱
するようC設けたものである。この 5− 金属抵抗1iKRはニッケル(Ni)、クロム(Or)
、二クロA(Ni−Cr)などが適しており、かかる電
気絶縁体の多孔質セラζツク表面に被着する方法として
はスパッタリング法、蒸着法、無電解メッキ法などがあ
るが、ハニカムHの奥まった細い通孔Jの隔IIFの表
面にも均等に金属抵抗#IRを形成するためには無電解
メッキ法によるのが最良である。たとえばこのニッケル
無電解メッキ法によれば、多孔買上うiツタ体より成る
ハニカムHを塩化第二錫(8nCl * )Ja塩化バ
ラシ?*(PdC1りS液で活性化処理した後、ホク醗
系又はリン酸系のメッキ液中に浸せばメッキ液中で次の
化学反応にもとづぎ金属抵抗@nとするニッケル膜が生
成被着される。
Further, R is a metal resistance film which is hardened on the surface of the porous ceramic body forming the honeycomb AH, and C is provided so as to generate heat when energized. This 5-metal resistor 1iKR is nickel (Ni), chromium (Or)
, Nichrome A (Ni-Cr), etc. are suitable.Methods for adhering to the porous ceramic surface of such electrical insulators include sputtering, vapor deposition, and electroless plating. In order to uniformly form the metal resistor #IR on the surface of the gap IIF of the deep narrow through hole J, it is best to use an electroless plating method. For example, according to this nickel electroless plating method, a honeycomb H consisting of a porous ivy body is coated with stannic chloride (8nCl*), Ja chloride, etc. *(After activation treatment with PdC1 or S solution, if it is immersed in a plating solution based on hot or phosphoric acid, a nickel film with metal resistance @n is generated based on the following chemical reaction in the plating solution. be coated.

(H*POz)−+ 120  →H(HPOa)−+
 zHNi2”  +  2H−+Ni + tH”被
着する金属抵抗@Bf’)膜厚はニッケル、クロムなど
金属・の有する固有抵抗や電極間の長さ、印加電圧、発
熱させる場合の必要上昇温度等によりて異なるため、a
抗値、すなわち膜厚を適宜設定−〇− する必要がある。また、場合によっては温度処垣な必要
とする時もある。なお、金属抵抗膜8はハニカムHを成
す多孔質セラミックの格子部表−区被着され、微細孔の
平均孔径な若干縮小する結果にはなるものの微細孔を目
詰りさせるものではない。
(H*POz)−+ 120 →H(HPOa)−+
zHNi2" + 2H-+Ni + tH" Deposited metal resistance@Bf') The film thickness depends on the specific resistance of metals such as nickel and chromium, the length between the electrodes, the applied voltage, the required temperature rise when generating heat, etc. Since it is different, a
It is necessary to appropriately set the resistance value, that is, the film thickness. Also, depending on the case, there are times when it is necessary to control the temperature. The metal resistive film 8 is deposited on the surface of the porous ceramic lattice forming the honeycomb H, and although the average pore diameter of the micropores is slightly reduced, it does not clog the micropores.

以上のようにハニカムHが有する数多くの通孔Jはr方
の端部で開口しているものは他II&!部で−されてお
り、そのためc隣接した通孔Jcおいては、交互に開口
、閉塞している端部が異なるように構成しであることか
ら、図中矢印で気体の流れセ を示す如(、一方の端部の打抜孔かも入った気体は隣接
した通孔から各通孔Jを形成している隔壁Fの微細孔を
通過して他方の端部が開口状態にある通孔Jc流入し打
抜孔Kを経て流出する。このように一方が開口した通孔
Jより、隔壁Fの微細孔を通過する4C#L、、気体中
に含まれているカー11’、i++ ダン粒子、未燃焼ばストなどが傭獲され、流通気。
As mentioned above, the many through holes J that the honeycomb H has are those that are open at the r end. Therefore, the adjacent through holes Jc are configured so that the ends are alternately opened and closed, so that the gas flow is indicated by the arrows in the figure. (The gas that entered the punched hole at one end passes through the fine holes in the partition wall F forming each through hole J from the adjacent through hole, and flows into the through hole Jc whose other end is open. The gas flows out through the punched hole K. In this way, through the through hole J with one side open, the 4C #L, , car 11', i++ Dan particles, and non-carrying particles contained in the gas pass through the fine holes in the partition wall F. Combustion busts and the like have been captured and are now in circulation.

体を濾過し、浄化する。Filter and purify the body.

このような濾過作用を継続すると隔壁Fcはカーポジ粒
子や未燥焼電ストが次第C堆積して、濾過作用に支障な
tたすようになり、圧力損失が増大する。
If such a filtration action is continued, carposi particles and unburned electrolyte particles will gradually accumulate on the partition wall Fc, which will impede the filtration action and increase the pressure loss.

このような場合、導電体より成り電極板として冶−をも
果す閉塞板p、p’c各々接続した導−LX。
In such a case, the conductors LX are connected to blocking plates p and p'c, which are made of a conductor and also serve as electrode plates.

L2が第1g区示したようにスイッチ8を介して111
区接続されており、該スイッチ83閉路することにより
ハエカムEの通孔Jを構成する隔IIFの表面に被着し
てあ・る金属抵抗膜Rc通電され。
L2 is connected to 111 via switch 8 as shown in section 1g.
When the switch 83 is closed, the metal resistive film Rc attached to the surface of the gap IIF constituting the through hole J of the fly cam E is energized.

該金1I4Ik抗W4翼の斃熱でもって隔壁Fは高温度
に加熱される。このため、隔壁Fが結果し、該隔壁FC
堆積したカーボン粒子や未燃焼ミスト等は高Iicよっ
て運動され排出されてしまいハニカム■の有する濾過作
用能力は再度回復する。このようニ濾過されたカーメジ
粒子等の堆積によって濾過能力が低下した場合でもスイ
ッチ8を閉路とすることによって多孔質セラミックより
成るハニカムHで構成したアイ>pは容易に濾過能力を
回復させることがで参る。な―、スイット80代りに圧
力損失が所定以上になると自動的に閉路する圧力し%m
−機能を回復させるようにしてもよい。
The partition wall F is heated to a high temperature by the heat generated by the gold 1I4Ik anti-W4 blade. Therefore, the partition wall F results, and the partition wall FC
The accumulated carbon particles, unburned mist, etc. are moved and discharged by the high Iic, and the filtration ability of the honeycomb (2) is restored again. Even if the filtration capacity decreases due to the accumulation of filtered Carmage particles, etc., the eye>p made of the honeycomb H made of porous ceramic can easily restore the filtration capacity by closing the switch 8. I'll come. Yes, the switch is set to 80% pressure, which automatically closes the circuit when the pressure loss exceeds a certain level.
- The function may be restored.

次にフィルタとして用いるハニカムn’s威する多孔質
セラミックの気孔率、金槁抵抗展を被着した倣゛細孔の
平均孔径と、カーボン粒子などを補集する濾過率、圧力
損失の関係を、ジーゼルエンジンの排気ガス浄化に適用
した場合の固定結果を第1表に示す、なお、ジーゼルエ
ンジンの回転数′ は2ooo rp町7負荷であり、
フィルタとしてのハニカム構造体の外径144m、長さ
l505mで濾過有効向槍は約2..2tllvものを
使用した。
Next, we investigated the relationship between the porosity of the porous ceramic used as a filter, the average pore diameter of the pores coated with the honeycomb, the filtration rate for collecting carbon particles, and the pressure loss. Table 1 shows the fixed results when applied to the exhaust gas purification of a diesel engine.The rotation speed of the diesel engine is 2 ooo rp town 7 load,
The outer diameter of the honeycomb structure used as a filter is 144 m, the length is 1505 m, and the effective direction of filtration is approximately 2. .. 2tllv was used.

−〇− −この測定結果から明らかなようにフィルタを構成する
ハニカムを−成す孟多孔買上うtツタの気孔率としては
少くとも10〜’Is%  の範囲内にあることが必要
で、この気孔率が10%以下であると一力損失、すなわ
ち流通抵抗がきわめて大きくなり、フィルタとしての実
用性が低下することが判る1反面、気孔率がio1以上
になると圧力損は微細孔の平均孔径もそれに伴なって大
きくなる傾向にあることから、ジーゼルエンジンの排気
ガス中【含まれる黴細なカーボン粒子、未燃焼ミスト等
を捕集する濾過率が半分以下となり、良好な区なるにも
かかわらず圧力損失が極めて大きなものとなることから
、実用、的なアイ々りとして使用できない。
-〇- -As is clear from this measurement result, the porosity of the porous ivy that makes up the honeycomb that constitutes the filter must be within the range of at least 10 to 10%. When the porosity is less than 10%, the force loss, that is, the flow resistance, becomes extremely large, and the practicality of the filter decreases.On the other hand, when the porosity is more than io1, the pressure loss is reduced by the average pore diameter of the micropores. As a result, the filtration rate for collecting moldy carbon particles, unburned mist, etc. contained in the exhaust gas of diesel engines is less than half, despite the good performance. Since the pressure loss is extremely large, it cannot be used for practical purposes.

次に、第111aC挙げたナンプルEで気孔率47−平
均孔価xsP、圧力損失・? mHHの−1にカ1Cは
多孔質セラ電フタの全表両区厚さ0.4μのニッケル1
0− 金属抵抗膜が被着されてノ・二カムの諸元が外径144
■、長さ1sO■で導線L1%L3間の抵抗値がall
、Qを有するフィルタを゛ジーゼルエンジンの排気ガス
浄化に使用し、初期の圧力損失61鱈場がカーボン粒子
等の捕集により約70−に上昇した際、上記導線t、t
、t、zより12Vで約雪SOムの電流を流したところ
、・・二カム構造体中の温度はは鐘SaO℃に達した。
Next, with the number E listed in No. 111aC, the porosity is 47, the average pore value is xsP, the pressure loss is ? -1 of mHH is nickel 1 with a thickness of 0.4μ on both sides of the porous ceramic electric lid.
0- Metal resistive film is attached and the specifications of the two cams are outer diameter 144
■、Length 1sO■The resistance value between conductor L1%L3 is all
, Q is used to purify the exhaust gas of a diesel engine, and when the initial pressure loss of 61-0 rises to about 70- due to the collection of carbon particles, etc., the above-mentioned conductors t, t
, t, and z, a current of approximately 12 V and SOm was applied, and the temperature inside the two-cam structure reached SaO°C.

この状態を6秒間保持し、濾過作用を為すハニカム通孔
の隔壁に堆積したカーボン粒子や未燃焼iストを焼失せ
しめる。この結果、フィルタとしての微細孔の目詰はほ
ば解消され%当初の圧力損に近い66 wiklg C
回復させることができた。
This state is maintained for 6 seconds to burn off the carbon particles and unburned particles deposited on the partition walls of the honeycomb holes that perform the filtering action. As a result, the clogging of the micropores as a filter is almost eliminated and the pressure drop is close to the original pressure loss.
I was able to recover it.

かかるカーボン粒子、ミストの堆積とそれらを一失せし
めるという回復作動を数次にわたって(り返したが圧力
^66あるいは63鱈Hg程度ci1復させることが可
能であった。
Although the recovery operation of accumulating carbon particles and mist and completely dissipating them was repeated several times, it was possible to restore the pressure to about 66 or 63 cod Hg.

ところで、ハニカム構造体の通孔形状及び咳通:1・i
  ”1 孔を形成し、濾過作用を行う多孔質セラミックより成る
隔壁の厚さ轡が濾過率、圧力損に太い区閤係するが、上
記実験に用いたものは通孔の形状がt4am X 1.
−の方形状で、隔壁の厚さがOl−である。
By the way, the shape of the holes in the honeycomb structure and the cough passage: 1・i
1. The thickness of the partition wall made of porous ceramic that forms the pores and performs the filtration action has a large influence on the filtration rate and pressure loss, but the shape of the through hole in the one used in the above experiment was t4am x 1 ..
It has a rectangular shape of -, and the thickness of the partition wall is Ol-.

この場合隔壁の厚さが大きなものであるに従いI・二カ
ム柳遺体の機械的強度及び濾過率は大1(なるが、とり
わけ圧力損失が大き′(なるため、必要な濾過率、強度
等を備えたフィルタ特性をもた甘るには所定の厚さで、
かつ通孔の大館さ、つまり1インチ当りの通孔数等を適
当に設定する必要があり、またハニカム構造体の金属抵
抗膜に通電して必要な温度にまで発熱させるためには被
着させる金属抵抗膜の抵抗値や印加する電源電圧、加熱
時間等な適轟区予しめ設定しておく必要がある。
In this case, as the thickness of the partition wall is large, the mechanical strength and filtration rate of I. Nikam Yanagi's corpse will be large (1), but the pressure loss will be especially large ('), so the necessary filtration rate, strength, etc. At a certain thickness, it has filter characteristics.
In addition, it is necessary to appropriately set the size of the through holes, that is, the number of through holes per inch, etc., and in order to apply electricity to the metal resistive film of the honeycomb structure and generate heat to the required temperature, it is necessary to coat it. It is necessary to set in advance suitable ranges such as the resistance value of the metal resistive film, the applied power supply voltage, and the heating time.

なお1本発明実施例として第3図Cおいて打抜孔Kをあ
けた閉塞g p f雪を通電用の電極として併用する場
合を示したが、これ紀隈らず第4図に示したようCI’
 =カムHの両端部において各通孔を互い違いに七うi
y夕材麗で封止した/にカ為端thiC金属な連射、−
付、メタライズ等の手段でも111 って電極Wを形成り、通電用の導線Lt、Llを取付け
たものであってもよい。
1. As an embodiment of the present invention, FIG. 3C shows a case in which a closed gp snow with a punched hole K is used as an electrode for energizing. CI'
= Each through hole is alternately opened at both ends of the cam H.
Sealed with y Yuuga Rei / ni Kame end thiC metal rapid fire, -
The electrodes W may be formed by means such as bonding or metallization, and conductive wires Lt and Ll for conducting electricity may be attached.

以上のように本発@7・イルタは多孔質セラミックより
成るハニカム構造体に金属抵抗膜を被着しく、かつ大き
な濾過率で捕獲することができ、捕獲した粒子、ミスト
などが堆積し、フィルタ特性が低下した場合でも、ハニ
カム構造体の金属抵抗lIc通電して加熱すること区よ
ってそれら粒子。
As mentioned above, this @7 Iruta has a metal resistive film coated on a honeycomb structure made of porous ceramic, and can be captured with a high filtration rate. Even if the properties of the honeycomb structure deteriorate, the metal resistance of the honeycomb structure can be heated by energizing the particles.

電ストを燃焼、焼失させ得ることによって再度嵐好なる
フィルタ特性をもったセラミックフィルタとしてくり返
し再生回復させ、使用することができる。しかも高II
C耐え得る七うきツIで構成されているため、エンジン
や燃焼装置等からの高温排出ガスを効率的に、かつ永続
的に浄化することが可能である。
By burning out the electrolytic strike, it can be repeatedly regenerated and used as a ceramic filter with excellent filter characteristics. Moreover, high II
Since it is constructed of C-resistant seven vessels, it is possible to efficiently and permanently purify high-temperature exhaust gas from engines, combustion equipment, etc.

なお、上記Cおいては気体を濾過する場合のみを記述し
たが、液体の濾過にも適用し得るものであることは当然
である。
Incidentally, in C above, only the case where gas is filtered is described, but it goes without saying that the method can also be applied to the filtering of liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明フィルタをエンジンの排気ガス浄化シス
テムに適用した例を示す概略I!l1%第3図1s− 0)(ロ)は各々本発明実施例のフィルタO一端面を示
す図、第3図、第4図は各々第3図Cお汁るY−Yli
K−おける一部断面図を示す図である。 E8エンジン    B!電源 Ll、L2 s導線   H!ノ1ニカム構造体F;隔
壁      18通孔 R1金属抵抗展 出願人  京都セラ電ツク株式会社 代表書稲盛和夫 14−
FIG. 1 schematically shows an example in which the filter of the present invention is applied to an engine exhaust gas purification system. 1s-0) (b) is a diagram showing one end surface of the filter O of the embodiment of the present invention, and FIGS. 3 and 4 are respectively diagrams showing FIG.
It is a figure showing a partial sectional view at K-. E8 engine B! Power supply Ll, L2 s conductor H! No. 1 Nikam Structure F; Partition Wall 18 Through Holes R1 Metal Resistance Exhibition Applicant: Kyoto Cera Electric Co., Ltd. Representative: Kazuo Inamori 14-

Claims (1)

【特許請求の範囲】 多孔質セラミックでハニカム構造体を形成し。 該ハニカム構造体の有する各通孔の内壁面及び側表[C
金礪抵抗換を被着し、かつ各通孔を互い違いに一方端部
な開口状態とし、他端部では閉塞状態とするとともにこ
れら端ll1C電慟を設け、金属抵抗1ilIc通電し
、加熱するようにしたことをIF#黴とする七う・iツ
クハニカムフィルタ。
[Claims] A honeycomb structure is formed from porous ceramic. The inner wall surface and side surface of each through hole of the honeycomb structure [C
A metal resistor was applied, and each through hole was alternately opened at one end and closed at the other end, and an electrical conductor was provided at each end, and the metal resistor was energized and heated. Seven u-i Tsuku honeycomb filter that uses IF # mold.
JP18129881A 1981-11-11 1981-11-11 Ceramic honeycomb filter Pending JPS5881421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18129881A JPS5881421A (en) 1981-11-11 1981-11-11 Ceramic honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18129881A JPS5881421A (en) 1981-11-11 1981-11-11 Ceramic honeycomb filter

Publications (1)

Publication Number Publication Date
JPS5881421A true JPS5881421A (en) 1983-05-16

Family

ID=16098229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18129881A Pending JPS5881421A (en) 1981-11-11 1981-11-11 Ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JPS5881421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755772A (en) * 2012-07-17 2012-10-31 靳国良 Metal microwire filter
CN103874536A (en) * 2011-10-11 2014-06-18 日本碍子株式会社 Ceramic filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874536A (en) * 2011-10-11 2014-06-18 日本碍子株式会社 Ceramic filter
CN103874536B (en) * 2011-10-11 2016-12-21 日本碍子株式会社 Ceramic filter
CN102755772A (en) * 2012-07-17 2012-10-31 靳国良 Metal microwire filter

Similar Documents

Publication Publication Date Title
US5423904A (en) Exhaust gas filter
US5405422A (en) Self-heating filter
KR100890419B1 (en) Particulate matter removal apparatus
JP3727550B2 (en) Exhaust gas purification filter and manufacturing method thereof
US20020076523A1 (en) Diesel particulate filters
JPS636723B2 (en)
KR100747088B1 (en) Dpf with improving heat durability
JP2005501991A (en) Honeycombs with various passage sizes and dies for their manufacture
EP0585432A1 (en) Filtering system for removing soot particles from the exhaust gas of a combustion engine.
JPH0211287B2 (en)
Merkel et al. Effects of microstructure and cell geometry on performance of cordierite diesel particulate filters
JP2002349234A (en) Diesel exhaust emission control filter
JPS5881421A (en) Ceramic honeycomb filter
JP3677328B2 (en) Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle device using the same
JPH1181983A (en) Particulate filter
JPS6356814B2 (en)
JP3561950B2 (en) Porous ceramic and method for producing the same
JP2002242655A (en) Filter for collecting particulate in exhaust gas
JPH07328360A (en) Porous silicon carbide heater
JPH08100630A (en) Spherical electric conductor charging type particulate collecting filter
JPH0214711A (en) Exhaust gas cleaning device
JP2003155911A (en) Exhaust gas treatment device and exhaust gas treatment method
JPH10272325A (en) Apparatus for treating fine particles
JPH0610649A (en) Filter for exhaust gas emission control
JPH0742532A (en) Diesel particulate filter made of electric ally conductive ceramics and manufacture thereof