JPS5879590A - Removing method for dissolved oxygen - Google Patents
Removing method for dissolved oxygenInfo
- Publication number
- JPS5879590A JPS5879590A JP17776581A JP17776581A JPS5879590A JP S5879590 A JPS5879590 A JP S5879590A JP 17776581 A JP17776581 A JP 17776581A JP 17776581 A JP17776581 A JP 17776581A JP S5879590 A JPS5879590 A JP S5879590A
- Authority
- JP
- Japan
- Prior art keywords
- dissolved oxygen
- water
- treated
- liquid
- palladium catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Removal Of Specific Substances (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は水中の溶存酸素の除去方法Kllするもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for removing dissolved oxygen in water.
今日、大量の水がボイラー用水や冷却水として用いられ
ている。とζろが、これらの水中に溶存酸素が存在する
と、ボイラー水系や冷却水系に溶存酸素に起因する腐食
問題が生じる。このため、使用に際しては、化学的方法
或いは物理的方法などによって水中の溶存酸素を除去し
なければならない・
従来、化学的方法としてヒドラジンや亜硫酸塩をこれら
の被処理液に添加する方法が用いられてき友。しかし、
この方法では脱rlI素速度が遅かったり、被処理液に
多量の非蒸発性固形分を持ち込んだりする結果、ボイラ
ー給水の場合でれ、ボイラーの運転に支障をき九すなど
の欠点があり友。Today, large amounts of water are used as boiler water and cooling water. However, if dissolved oxygen exists in these waters, corrosion problems due to dissolved oxygen will occur in the boiler water system and cooling water system. Therefore, before use, dissolved oxygen in water must be removed by chemical or physical methods. Conventionally, chemical methods such as adding hydrazine or sulfite to these liquids have been used. Dear friend. but,
This method has drawbacks such as slow derlI removal rate and a large amount of non-evaporable solids being introduced into the liquid to be treated, which can cause problems in boiler operation when water is being fed to the boiler. .
この発明は、これらの従来技術の欠点を克服する丸めに
成されたもので6って、被処理液中の溶存酸素を効率良
く除去することができる方法上提供する奄のでおる。The present invention has been developed to overcome these drawbacks of the prior art and provides a method that can efficiently remove dissolved oxygen from a liquid to be treated.
すなわち、この発明は水溶性水素貯蔵化合一の存在下に
パラジウム触媒に溶存陵素會含む被処理液とを接触させ
ることを特徴とする溶存11累の除去方法である。That is, the present invention is a method for removing dissolved hydrogen, which is characterized by bringing a palladium catalyst into contact with a liquid to be treated containing dissolved hydrogen in the presence of a water-soluble hydrogen storage compound.
水溶性水素貯蔵化合一は水中に添加されたとき、2− 水素を発生することができる化合物のことである。Water-soluble hydrogen storage compound 1, when added to water, 2- A compound that can generate hydrogen.
例えば、Na BH4,L i BH4,KBH4,C
a (B H4)!#CCHs)aNBH4m A#
(BH4)3pS r (BHa )g、 NaZn(
BH4)s、 (C5kk )me e BHJ’挙f
f ’) レル2>”、jれらは、濃厚液として保存さ
れているときには水素を発生することはないが、pat
変化させたり、希釈し九Vすると迅速に水素を発生する
。なかで−NaBH,は比較的安価であり、濃厚原液の
取り扱いが極めて容易で、しかも被処理液に添加するだ
けで迅速に理論量の水素を発生するなどの点で、発明て
用いられる水溶性水素貯蔵化合物の好ましい例でおる。For example, Na BH4, Li BH4, KBH4, C
a (B H4)! #CCHs) aNBH4m A#
(BH4)3pS r (BHa )g, NaZn(
BH4)s, (C5kk) me e BHJ' risef
f') Rel 2>", jThey do not generate hydrogen when stored as concentrated liquids, but pat
When it is changed or diluted to 9V, it quickly generates hydrogen. Among them, -NaBH is a water-soluble material used in the invention because it is relatively inexpensive, the concentrated stock solution is extremely easy to handle, and it can quickly generate the theoretical amount of hydrogen just by adding it to the liquid to be treated. This is a preferred example of a hydrogen storage compound.
ヒドラジン扛そのままではほとんど水素を発生しないが
、適当な触媒、例えばパラジウム化合物が共存すると、
水素上発生する。Hydrazine hardly generates hydrogen as it is, but when a suitable catalyst, such as a palladium compound, coexists with it,
Occurs on hydrogen.
また、NaBH4とヒドラジンを配合して使用すると、
少ない添加量でより優れ九効来が得られる。In addition, when NaBH4 and hydrazine are used in combination,
More excellent effects can be obtained with a small amount added.
これらの水溶性水素貯蔵化合物社水中に均一に溶解して
いるので、水素も均一に発生し、その分溶存鈑嵩との接
触が迅速に起こり、パラジウム触媒によって水となり、
その結果、被処理液中から溶存酸素が除去される。Since these water-soluble hydrogen storage compounds are uniformly dissolved in water, hydrogen is also generated uniformly, and as a result, contact with dissolved steel occurs quickly, and it is converted to water by the palladium catalyst.
As a result, dissolved oxygen is removed from the liquid to be treated.
パラジウム触媒存在下の溶存酸素と水素との接触反応は
極めて迅速なので、水溶性水素貯蔵化合物からの水素の
発生は通常目視するこくはできず、水素の発生直後に溶
存酸素との反応が完了する。Since the contact reaction between dissolved oxygen and hydrogen in the presence of a palladium catalyst is extremely rapid, the evolution of hydrogen from water-soluble hydrogen storage compounds is usually invisible and the reaction with dissolved oxygen is completed immediately after hydrogen generation. .
水溶性水素貯蔵化合物の添加量は被処理液中の溶存酸素
量の等モル〜1.7倍モル程度で充分である。 イリレ
叶うノ/坪←りら侘1−・工 ψ〜tO←旨t・しi斥
≠やフが。It is sufficient that the amount of the water-soluble hydrogen storage compound added is about 1 molar to 1.7 times the amount of dissolved oxygen in the liquid to be treated. Irile comes true/tsubo ← Rira Wabi 1-・工 ψ〜tO ← Ut・shii ≠ Yafuga.
パラジウム触媒は、金属パラジウム、II化パラジウム
、水散化パラジウムなどのバーラジウム化合物のほか、
イオン交換樹脂やアルミナ、活性縦。Palladium catalysts include palladium compounds such as metallic palladium, palladium II, and aqueous palladium, as well as
Ion exchange resin, alumina, activated vertical.
ゼオライトなどの担体にパラジウムを担持させた触媒も
用いることができる。担持tは通常0.1〜te11!
度である。とくに、アニオン交換樹脂を用いると、少な
いパラジウム担持量で優れ九効果を発揮するので好まし
い。A catalyst in which palladium is supported on a carrier such as zeolite can also be used. The loading t is usually 0.1 to te11!
degree. In particular, it is preferable to use an anion exchange resin because excellent effects can be achieved with a small amount of palladium supported.
ナオ、アニオン交換樹脂にパラジウム會担持すせるには
、アニオン交換樹脂tカラムに元項し、次いで塩化パラ
ジウムの酸性溶液に通水すればよい。もし金属パラツウ
上として担持するならば、上述にさらにホルマリンなど
會加えて還元すればよい。In order to support palladium on an anion exchange resin, it is sufficient to apply the anion exchange resin to a t-column and then pass water through an acidic solution of palladium chloride. If it is to be supported on a metal plate, formalin or the like may be further added to the above for reduction.
パラジウム触媒の形状は粉末状1粒状、ベレット状など
いずれの形状でも使用できる。粉末状のもの全使用する
ときには反応槽を設けて、この反応槽に適当量添加する
。粒状、ペレット状のものはカラムなどに充填し、連続
的に被処理液を通液するときに有利である。もちろん、
粉末状のものでもカラムに充填して流動床で運転する一
tとができる。The palladium catalyst can be used in any shape, such as a powder, a single grain, or a pellet. When using all of the powder, a reaction tank is provided and an appropriate amount is added to the reaction tank. Granules and pellets are advantageous when packed in a column or the like and the liquid to be treated is continuously passed therethrough. of course,
Even if it is in powder form, it can be packed into a column and operated in a fluidized bed.
カラムに充填して通液する方法では、通液速度社50〜
50017br程度とすることができる。この発明の対
象とする被処理液は、ボイラー給水。In the method of filling a column and passing the liquid, the liquid passing speed company 50~
It can be about 50017br. The liquid to be treated in this invention is boiler feed water.
冷却水などの工業用水があけられる。また、海水のよう
に塩類製産の高い水に対しても適用できる。Can be used for industrial water such as cooling water. It can also be applied to waters with high salt production, such as seawater.
被処理液のpHは4〜12程度では特に改めてpH調整
など、特別の前処理は豊せず、直接、この発明方法が適
用される。通常の工業用水はこのpH範囲内にあり、好
ましい。ま友、特に加温するなどの操作も心機としない
。When the pH of the liquid to be treated is about 4 to 12, special pretreatment such as pH adjustment is not necessary, and the method of the present invention is directly applied. Normal industrial water is within this pH range and is preferred. Please do not take any precautions, especially such as heating.
この発明社前述の通り、被処理水と水溶性水素貯蔵化合
物とをパラジウム触媒の存在下で接触させることにより
、水溶性水素貯蔵化合物から発生する水素と溶存酸素と
を迅速に反応させて脱酸素するものであるが、この発明
で用いられる水溶性水素貯蔵化合物の代わりに直接水素
ガスを用いた場合には、先ず水素ガスが爆発性であるな
ど極めて塩9扱いが難し仏という理由に加えて、被処理
液への溶解も極めて困難で、ひつきょう必費以上の大過
剰量を添加しなければならず、さらに用水として使う前
に用水中の水素ガスを分離しなければならないという、
めんどうな操作會必徴とする。As mentioned above, by bringing the water to be treated and the water-soluble hydrogen storage compound into contact in the presence of a palladium catalyst, the hydrogen generated from the water-soluble hydrogen storage compound and dissolved oxygen are rapidly reacted to remove oxygen. However, if hydrogen gas is used directly instead of the water-soluble hydrogen storage compound used in this invention, first of all, hydrogen gas is explosive and is extremely difficult to handle as a salt. It is extremely difficult to dissolve it in the liquid to be treated, and it is necessary to add it in a large excess amount, which is more than necessary, and furthermore, the hydrogen gas in the water must be separated before it can be used as water.
A tedious operation is required.
以上に述べたように、この発明に取りI&いの極めて容
易な水溶性水素針鼠化合−と溶存ll素とをパラジウム
触媒の共存下に反応させるという非常に簡単な方法で溶
存*累1−迅速に、安全に、かつ効率良(除去すること
ができる。また、反応速度が早いので接触時間も短かく
て良く、大量の被処理液を短時間で処理することができ
る。また、装置自体も小型化することができる。特に、
パラジウム触媒の充填塔を用いれは、被処理液に水溶性
水嵩貯蔵化合物を適量添加し死後、単に充填塔に通水す
るだけで、溶存II!素量の極めて低い処理水が得られ
る。As mentioned above, this invention utilizes a very simple method of reacting an extremely easy water-soluble hydrogen compound with dissolved hydrogen in the coexistence of a palladium catalyst. It can be removed safely and efficiently (in addition, since the reaction speed is fast, the contact time is short, and a large amount of liquid to be treated can be treated in a short time.In addition, the equipment itself It can be made smaller.In particular,
When a palladium catalyst packed column is used, an appropriate amount of a water-soluble water bulk storage compound is added to the liquid to be treated, and after death, the water is simply passed through the packed column, and dissolved II. Treated water with extremely low elemental content can be obtained.
実施例1
溶存a12素tl−8■/l 含む脱塩水に表−1に示
す各種の脱WR累剤會所定量添加した後、パラジウム触
媒(塩化パラジウム酸性溶液をアニオン通水し、カラム
出口にて処理水中の溶存I!素量會5Ilj定した。Example 1 After adding a predetermined amount of various WR removal additives shown in Table 1 to demineralized water containing dissolved A12 tl-8/l, a palladium catalyst (an acidic solution of palladium chloride was passed through anionic water, and anion was added to the demineralized water at the column outlet. The amount of dissolved I in the treated water was determined.
結果を表−1に示す。The results are shown in Table-1.
表 −1
なお、比較例として水加ヒドラジンもしくは亜硫酸ナト
IJウムを所定量添加してから約暴分関攪拌し、次いで
処理水中の溶存酸素vm定した結果もあわせて表示する
。Table 1 In addition, as a comparative example, the results of adding a predetermined amount of hydrazine hydrate or sodium sulfite, stirring roughly, and then determining the dissolved oxygen vm in the treated water are also shown.
これかられかるように、ナトリウムボロハイドライドで
は理論量の1.1〜1.6倍量を添加するだけで、5v
so〜500の実施全範囲において処理水中の溶存酸素
量は0.1〜0.5■/!となった。As you will see, in the case of sodium borohydride, by simply adding 1.1 to 1.6 times the theoretical amount, 5v
The amount of dissolved oxygen in the treated water is 0.1 to 0.5 ■/! It became.
一方、水加ヒドラジンの場合には、パラジウム触媒管共
存させない水加ヒドラジン単独では、はとんど効果がな
いのに対し、この発明の場合には、添加量は理論量の4
.8〜97倍であるが、溶存酸素量は0.4〜0.1で
あり、しかも反応は瞬時に完了するので十分実用的であ
る(ヒドラジンは蒸発性なので、多量添加しても固形物
として残留しない)。On the other hand, in the case of hydrated hydrazine, hydrated hydrazine alone without coexistence with a palladium catalyst tube has almost no effect, whereas in the case of this invention, the amount added is 40% of the theoretical amount.
.. Although the amount of dissolved oxygen is 8 to 97 times, the amount of dissolved oxygen is 0.4 to 0.1, and the reaction is completed instantly, making it sufficiently practical (hydrazine is volatile, so even if a large amount is added, it will not form as a solid substance. (no residue).
ナトリウムボロハイドライドで得られた処理水中の溶存
酸素0.1ダ/、eを亜硫酸ナトリウムを用いて得るに
は、亜@酸ナトリウムf65η/!程度添加する必要が
あった。この添加量は全量非蒸発性固形物となって水系
に残留することになる。To obtain 0.1 da/, e of dissolved oxygen in the treated water obtained with sodium borohydride using sodium sulfite, sodium sulfite f65η/! It was necessary to add some amount. The entire amount added becomes a non-evaporable solid and remains in the aqueous system.
実施例2
水溶性水素貯蔵化合物としてナトリウムボロハイドライ
ドと水加ヒドラジンを配合して使用した以外は実施例1
と同様の方法で脱酸素反応をさせた。Example 2 Example 1 except that a combination of sodium borohydride and hydrazine hydrate was used as the water-soluble hydrogen storage compound.
The deoxygenation reaction was carried out in the same manner.
結果を表−2に示す。The results are shown in Table-2.
表−2 表−1と表−21−見比べると、同じgys 。Table-2 Comparing Table-1 and Table-21, they are the same gys.
でも、処理水中の溶存酸素量t−0,1■/1とするに
は、?’JIBHa単独では6ダ/!、N雪H4単独で
は、殆んど不可能であり九のに対して、両者を配合する
と、N!IBH4を20%強削減でき、しかも−NIH
4の添加量も僅か7.8■/!て済む。However, how to set the amount of dissolved oxygen in the treated water to t-0,1■/1? 'JIBHa alone is 6 da/! , N Snow H4 alone is almost impossible, but when both are combined, N! IBH4 can be reduced by over 20%, and -NIH
The amount of addition of 4 is only 7.8■/! It's done.
このように、両者を配合すると、添加量自体も大巾に削
減できるので好ましり。In this way, it is preferable to mix both of them because the amount added can be greatly reduced.
特許出願人 栗田工業株式会社Patent applicant Kurita Industries Co., Ltd.
Claims (1)
と溶存ll!素【含む被処!11i[と【接触させるこ
とt特許とする溶存酸素の除去方法 L 水溶性水素貯蔵化合一はナトVりムボロハイドライ
ド(lJIBHa)である特許請求の範囲第1積紀幀の
溶存酸素の除去方法 龜 水溶性水素貯蔵化合一扛ヒドラジンもしくは水加ヒ
ドラジンである特許請求の範1[11!l記載の溶存酸
素の除去方法 4、 パラジウム触媒はアニオン交換樹脂管担体とする
ものである特許請求の範囲第1項ないし第3項のいずれ
かに記載の溶存酸素の除去方法[Claims] 1. Palladium catalyst and dissolved in the presence of a water-soluble hydrogen storage compound! [Including subject! Patented method for removing dissolved oxygen L The water-soluble hydrogen storage compound is sodium borohydride (lJIBHa) Claim 1 Method for removing dissolved oxygen Claim 1 [11!] The water-soluble hydrogen storage compound is hydrazine or hydrated hydrazine. Dissolved oxygen removal method 4 according to I. The method for removing dissolved oxygen according to any one of claims 1 to 3, wherein the palladium catalyst is an anion exchange resin tube carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17776581A JPS5932195B2 (en) | 1981-11-05 | 1981-11-05 | How to remove dissolved oxygen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17776581A JPS5932195B2 (en) | 1981-11-05 | 1981-11-05 | How to remove dissolved oxygen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5879590A true JPS5879590A (en) | 1983-05-13 |
JPS5932195B2 JPS5932195B2 (en) | 1984-08-07 |
Family
ID=16036732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17776581A Expired JPS5932195B2 (en) | 1981-11-05 | 1981-11-05 | How to remove dissolved oxygen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5932195B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097092A (en) * | 1983-09-30 | 1985-05-30 | ウエスチングハウス・エレクトリツク・コーポレーシヨン | Method of removing dissolved oxygen from aqueous medium |
US4789488A (en) * | 1983-11-10 | 1988-12-06 | Westinghouse Electric Corp. | Catalyzed oxygen removal with hydrogen for steam generator systems |
JPH02265604A (en) * | 1989-04-06 | 1990-10-30 | Kurita Water Ind Ltd | Removing equipment for dissolved oxygen in water |
WO1997005944A1 (en) * | 1995-08-04 | 1997-02-20 | Ifn Gmbh | Oxygen sorbent and process for producing it |
EP0816294A3 (en) * | 1996-07-03 | 1998-06-10 | Bayer Ag | Process for destroying oxidizing substances in aqueous liquids |
FR2784981A1 (en) * | 1998-10-27 | 2000-04-28 | Ate Antipollution Tech Entrepr | Destruction of organochlorine pollutants in water comprises using a catalyst comprising palladium on a zeolite |
US6417318B1 (en) | 2000-02-10 | 2002-07-09 | Bayer Aktiengesellschaft | Process for the removal of dissolved oxygen from phenol |
KR100941176B1 (en) | 2007-06-12 | 2010-02-10 | 한국화학연구원 | Palladium-doped anion-exchange resin and Preparation method thereof and process for removing dissolved oxygen using them |
CN109433265A (en) * | 2018-11-09 | 2019-03-08 | 上海核工程研究设计院有限公司 | A kind of palladium supported solid catalyst and preparation method thereof |
-
1981
- 1981-11-05 JP JP17776581A patent/JPS5932195B2/en not_active Expired
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097092A (en) * | 1983-09-30 | 1985-05-30 | ウエスチングハウス・エレクトリツク・コーポレーシヨン | Method of removing dissolved oxygen from aqueous medium |
JPH0559795B2 (en) * | 1983-09-30 | 1993-08-31 | Westinghouse Electric Corp | |
US4789488A (en) * | 1983-11-10 | 1988-12-06 | Westinghouse Electric Corp. | Catalyzed oxygen removal with hydrogen for steam generator systems |
JPH02265604A (en) * | 1989-04-06 | 1990-10-30 | Kurita Water Ind Ltd | Removing equipment for dissolved oxygen in water |
WO1997005944A1 (en) * | 1995-08-04 | 1997-02-20 | Ifn Gmbh | Oxygen sorbent and process for producing it |
EP0816294A3 (en) * | 1996-07-03 | 1998-06-10 | Bayer Ag | Process for destroying oxidizing substances in aqueous liquids |
FR2784981A1 (en) * | 1998-10-27 | 2000-04-28 | Ate Antipollution Tech Entrepr | Destruction of organochlorine pollutants in water comprises using a catalyst comprising palladium on a zeolite |
US6417318B1 (en) | 2000-02-10 | 2002-07-09 | Bayer Aktiengesellschaft | Process for the removal of dissolved oxygen from phenol |
KR100941176B1 (en) | 2007-06-12 | 2010-02-10 | 한국화학연구원 | Palladium-doped anion-exchange resin and Preparation method thereof and process for removing dissolved oxygen using them |
CN109433265A (en) * | 2018-11-09 | 2019-03-08 | 上海核工程研究设计院有限公司 | A kind of palladium supported solid catalyst and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS5932195B2 (en) | 1984-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3664870A (en) | Removal and separation of metallic oxide scale | |
JPS5879590A (en) | Removing method for dissolved oxygen | |
JP2005500234A (en) | Pressure difference driven borohydride generator | |
KR920002057B1 (en) | Catalyzed oxygen removal with hydrogen for steam generator systems | |
US3969244A (en) | Method of adsorbing heavy metals | |
US3984314A (en) | Process for selective removal and recovery of cyanide values by ion exchange | |
US3928192A (en) | Buffered, weak ion-exchange water demineralization process | |
JP2001098019A (en) | Process for preparing monodisperse anion exchanger | |
US4096090A (en) | Catalyzed hydrazine compositions and methods of their use | |
Sussman et al. | Metal Recovery by Anion Exchange. | |
US6829319B2 (en) | Condensate demineralization | |
US3663163A (en) | Regeneration of cation exchange resins and recovery of salts | |
US4789488A (en) | Catalyzed oxygen removal with hydrogen for steam generator systems | |
Mills et al. | Oxygen removal from water by ammine exchange resins | |
US4532068A (en) | Method for improving the initial activity of activated hydrazine | |
US3067007A (en) | Separation of strong polybasic acids from their salts | |
CN116323693A (en) | Novel chelating resins | |
RU2594420C2 (en) | Method of removing boron-containing concentrate at nuclear power stations | |
US4188292A (en) | Inexpensive purification of urea waste streams | |
US4834915A (en) | Process for the immobilization of ion exchange resins originating from the secondary circuits of pressurized water nuclear reactors and gas-cooled graphite-moderated reactors | |
IL137647A (en) | Method for producing aqueous hydroxylamine solutions which are substantially free of metal ions | |
US3359199A (en) | Process for demineralization of polar liquids, especially water | |
US3494881A (en) | Regeneration of strong acid cation exchange resins with sulfuric acid containing a halide compound | |
JPS6137261B2 (en) | ||
KR910009159B1 (en) | Process for removing dissolved oxygen from water using hydrazine |