JPS587942B2 - Kokuenkaseihanteihouhou - Google Patents

Kokuenkaseihanteihouhou

Info

Publication number
JPS587942B2
JPS587942B2 JP7209675A JP7209675A JPS587942B2 JP S587942 B2 JPS587942 B2 JP S587942B2 JP 7209675 A JP7209675 A JP 7209675A JP 7209675 A JP7209675 A JP 7209675A JP S587942 B2 JPS587942 B2 JP S587942B2
Authority
JP
Japan
Prior art keywords
sample
carbon
temperature
change
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7209675A
Other languages
Japanese (ja)
Other versions
JPS51148493A (en
Inventor
菱山幸宥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gotoh Educational Corp
Original Assignee
Gotoh Educational Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gotoh Educational Corp filed Critical Gotoh Educational Corp
Priority to JP7209675A priority Critical patent/JPS587942B2/en
Publication of JPS51148493A publication Critical patent/JPS51148493A/en
Publication of JPS587942B2 publication Critical patent/JPS587942B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は900〜1300°の温度で熱処理した炭素(
以下低温処理炭素と記す)の黒鉛化性を判定する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides carbon (
The present invention relates to a method for determining the graphitizability of carbon (hereinafter referred to as low-temperature treated carbon).

高温加熱処理を受けていない炭素は、黒鉛材料の原料と
して、アーク炉用電極、電気製鋼用電極、電解用陽極、
抵抗発熱体、耐火レンガ、構造用材料その他多くの用途
を有する。
Carbon that has not undergone high-temperature heat treatment is used as a raw material for graphite materials, such as electrodes for arc furnaces, electrodes for electric steel manufacturing, anodes for electrolysis,
It has many uses, including resistance heating elements, firebricks, structural materials, and more.

黒鉛は石油コークス、ピッチコークスなどの無定形炭素
を酸化を抑制した状態で加熱処理することにより製造さ
れている。
Graphite is produced by heat-treating amorphous carbon such as petroleum coke or pitch coke in a state where oxidation is suppressed.

例えば石油コークスの場合には重質油を炭化してコーク
スを得、これを粉砕し、ピッチ等のバインダーを加えて
成型し、焼成後、加熱処理して黒鉛材料とするが、加熱
湿度を出発温度から順次高めていくと、水素、チッ素、
酸素およびその他の低炭素化合物、その他を遊離減量し
ながら、しだいに炭素比率の高い安定な結合を有する構
造へと移行する。
For example, in the case of petroleum coke, heavy oil is carbonized to obtain coke, which is crushed, molded with a binder such as pitch added, fired, and then heat treated to produce graphite material. As the temperature is gradually increased, hydrogen, nitrogen,
As oxygen and other low-carbon compounds are liberated and reduced, the structure gradually shifts to a structure with stable bonds with a high carbon ratio.

加熱温度の上昇を続けると、この炭素は結晶化し、その
結晶構造は黒鉛結晶に漸近する。
As the heating temperature continues to rise, this carbon crystallizes and its crystal structure approaches a graphite crystal.

このことを黒鉛化といい、黒鉛化の進行状況を黒鉛化度
と呼んでいる。
This is called graphitization, and the progress of graphitization is called the degree of graphitization.

また黒鉛化のし易さを黒鉛化性という。The ease with which a material can be graphitized is called graphitizability.

炭素の黒鉛化度の判定は工業上重要であり、例えば黒鉛
化工程自体の制御、黒鉛を特定目的に応用する場合の製
品の品質の予測、品質管理、その他において極めて重要
である。
Determination of the degree of graphitization of carbon is industrially important, for example, extremely important in controlling the graphitization process itself, predicting the quality of products when graphite is applied for specific purposes, quality control, and others.

一般に黒鉛化度は処理温度に依存し、高温で処理するほ
ど高い黒鉛化度を有する。
Generally, the degree of graphitization depends on the treatment temperature, and the higher the treatment temperature, the higher the degree of graphitization.

しかむながら処理温度を黒鉛化度の指標として採用する
ことはできない。
However, treatment temperature cannot be used as an indicator of the degree of graphitization.

何故なら黒鉛は出発原料の種類、処理時の非酸化雰囲気
、その他の処理条件によって変化するからである。
This is because graphite varies depending on the type of starting material, non-oxidizing atmosphere during processing, and other processing conditions.

例えば芳香族化合物を含む出発原料から得た炭素は比較
的容易に黒鉛化し得るが、セルローズや熱硬化性樹脂な
どを炭化して得た炭素は炭化時に低分子の溶融状態を保
たないために芳香族平面の成長および層状化が妨げられ
、黒鉛化が進行し難い。
For example, carbon obtained from starting materials containing aromatic compounds can be graphitized relatively easily, but carbon obtained by carbonizing cellulose or thermosetting resins does not maintain the molten state of low molecules during carbonization. Growth and stratification of aromatic planes are hindered, making it difficult for graphitization to proceed.

このように炭素の黒鉛化は出発原料有機物に大きく依存
するものであるが、黒鉛化性は試料炭素を高温加熱処理
をおこなわない限り、後述するような従来の方法によっ
ては判定し難い。
As described above, graphitization of carbon largely depends on the starting organic material, but graphitization is difficult to determine by conventional methods such as those described below unless the sample carbon is subjected to high-temperature heat treatment.

黒鉛製品を製造するための原料炭素がどのような黒鉛化
性を持つかは工業的に重要であることは云うまでもない
が、それを原料炭素の段階で判定することができれば工
業的に非常に有益である。
It goes without saying that the graphitizability of the raw carbon used to manufacture graphite products is industrially important, but if it can be determined at the raw carbon stage, it will be extremely important industrially. It is beneficial for

黒鉛化度の測定技術としては、従来、X線回折、真密度
、電磁気的性質、電気抵抗、熱膨脹係数等を利用し、あ
るいはこれらを組合せて利用していいる。
As techniques for measuring the degree of graphitization, X-ray diffraction, true density, electromagnetic properties, electrical resistance, coefficient of thermal expansion, etc. have been conventionally used, or a combination of these has been used.

上述したように、これらの測定技術を黒鉛材料の原料で
ある低温処理炭素に適用して、将来の加熱処理による黒
鉛化性を予想、判定することは通常の方法によっては不
可能である。
As mentioned above, it is impossible to apply these measurement techniques to low-temperature treated carbon, which is a raw material for graphite materials, to predict and determine graphitization properties due to future heat treatment using normal methods.

本発明は極低温における低温処理炭素の黒鉛化性の判定
方法に関する。
The present invention relates to a method for determining the graphitizability of low temperature treated carbon at extremely low temperatures.

本発明はX線回折法による方法によってはなし得ない低
温処理炭素、いわゆる原料炭素、の黒鉛化性の判定を精
度良くおこなうが、それにも拘らず簡単かつ迅速である
The present invention accurately determines the graphitizability of low-temperature treated carbon, so-called raw material carbon, which cannot be determined by the X-ray diffraction method, but it is nevertheless simple and quick.

本発明者は炭素の黒鉛化度と磁気抵抗効果の関連につい
て研究してきた。
The present inventor has been studying the relationship between the degree of graphitization of carbon and the magnetoresistive effect.

磁気抵抗効果に基づく抵抗率の変化率△ρ/ρは測定試
料に磁界を加えない場合の抵抗率ρと磁界を印加したと
きの抵抗率の変化△ρとの比で定義される量であるが、
実際には試料に一定電流を流しておき、磁界を加えない
ときの電圧降下Vと磁界を加えたときの電圧降下の変化
△Vとの比を求めることによって得られる。
The rate of change in resistivity △ρ/ρ based on the magnetoresistive effect is a quantity defined as the ratio of the resistivity ρ when no magnetic field is applied to the measurement sample and the change in resistivity △ρ when a magnetic field is applied. but,
In practice, it is obtained by flowing a constant current through the sample and determining the ratio of the voltage drop V when no magnetic field is applied to the change in voltage drop ΔV when a magnetic field is applied.

従って、△ρ/ρは形状因子を何ら含まず炭素材料特有
の気孔率等はまったく考慮する必要はない。
Therefore, Δρ/ρ does not include any form factor, and there is no need to consider the porosity or the like specific to carbon materials.

本発明者の最近の研究結果によると、低温処理炭素の磁
気抵抗効果に基づく抵抗の変化率は約2K以下の極低温
において将来の黒鉛化性の指標を与える異方性のある磁
気抵抗効果に基づく正の抵抗率の変化率を示す。
According to the inventor's recent research results, the rate of change in resistance based on the magnetoresistive effect of low-temperature treated carbon is due to the anisotropic magnetoresistive effect that provides an index of future graphitizability at extremely low temperatures of about 2K or less. shows the rate of change in positive resistivity based on

また本発明者の研究によると低温処理炭素の磁気抵抗効
果に基づく抵抗率の変化率は約2K以上の温度では微弱
である。
Further, according to research by the present inventors, the rate of change in resistivity due to the magnetoresistive effect of low-temperature treated carbon is weak at temperatures of about 2K or higher.

この現象は従来まったく知られていない。This phenomenon was previously completely unknown.

またこの極低温における磁気抵抗効果に基づく抵抗率の
変化率は当該試料の黒鉛化性の高いものほど鋭い異方性
を示し、かつ黒鉛化性の低いものほど異方性の低い比較
的大きな磁気抵抗効果に基づく抵抗率の変化率を示すこ
とと、測定が容易であることを見出した。
Furthermore, the rate of change in resistivity based on the magnetoresistance effect at extremely low temperatures shows that the higher the graphitizability of the sample, the sharper the anisotropy, and the lower the graphitizability of the sample, the lower the anisotropy. It has been found that the rate of change in resistivity based on the resistive effect can be shown and that measurement is easy.

本発明は上記の知見に基いている。本発明は低温処理炭
素試料の小片を約2K以下の極低温に冷却し、該試料と
磁界とを相対的に回転しながらその磁気抵抗効果に基づ
く抵抗率の変化率を測定し、該材料の黒鉛化性と関連づ
けることを特徴とする黒鉛化性判定方法を提供する。
The present invention is based on the above findings. The present invention cools a small piece of a low-temperature treated carbon sample to an extremely low temperature of about 2 K or less, and measures the rate of change in resistivity based on the magnetoresistance effect while rotating the sample and a magnetic field relative to each other. A method for determining graphitizability is provided, which is characterized in that it is associated with graphitizability.

本発明によると炭素材料が黒鉛製品となる前の原料炭素
の段階で該原料の黒鉛化性が容易かつ正確に判定でき、
また測定が迅速に実施できる利益が得られる。
According to the present invention, the graphitizability of a carbon material can be easily and accurately determined at the raw material carbon stage before the carbon material becomes a graphite product.
There is also the advantage that measurements can be carried out quickly.

以下本発明の測定方法について詳述する。The measuring method of the present invention will be explained in detail below.

先ず測定装置の概要を述べておく。First, an overview of the measuring device will be described.

第1図はその概要を示し、1は超伝導マグネット、2は
試料、3は磁束計の磁界強度検出素子、4は磁束計、5
はポテンシオメータ、6は直流増幅器、7はX−Yレコ
ーダ、8は磁界発生用電流源、および9は試料に電流を
流すための定電流源である。
Figure 1 shows the outline of the system, where 1 is a superconducting magnet, 2 is a sample, 3 is a magnetic field strength detection element of a magnetometer, 4 is a magnetometer, and 5 is a magnetometer.
6 is a potentiometer, 6 is a DC amplifier, 7 is an XY recorder, 8 is a current source for generating a magnetic field, and 9 is a constant current source for passing a current through the sample.

図には示してないが試料2は試料回転装置の回転部片上
に固定され、自由度20回転ができるようにしてある。
Although not shown in the figure, the sample 2 is fixed on a rotating part of a sample rotating device, and is allowed to rotate through 20 degrees of freedom.

また試料2は回転部片ともども液体ヘリウムで2K以下
に冷却される。
Further, the sample 2 and the rotating part are cooled to 2 K or less with liquid helium.

一定電流を試料2に流しながらポテンシオメータ5によ
り電圧降下を平衡させ、この零電位を直流増幅器6に入
力させる。
While a constant current is flowing through the sample 2, the voltage drop is balanced by the potentiometer 5, and this zero potential is input to the DC amplifier 6.

この零電位は基準電位である。試料に流れる電流を一定
にするには例えば水銀電池や高安定定電流電源を用い、
測定中に例えば0.001%の精度で10mAの電流を
試料に流す。
This zero potential is a reference potential. To keep the current flowing through the sample constant, use a mercury battery or a highly stable constant current power supply, for example.
During the measurement, a current of 10 mA is applied to the sample with an accuracy of, for example, 0.001%.

極低温における磁気抵抗効果に基づく抵抗率の変化率の
異方性の測定には適当な大きさの磁界例えば50kGを
採用する。
To measure the anisotropy of the rate of change in resistivity based on the magnetoresistance effect at extremely low temperatures, a magnetic field of an appropriate magnitude, for example 50 kG, is employed.

次に試料の調製を説明するに、測定しようとする低温処
理炭素材料から試料を切り出す。
Next, to explain sample preparation, a sample is cut out from the low-temperature treated carbon material to be measured.

このような試料においても電流は縮合ベンゼン環系の網
面に沿って流れるから、任意に切出すと、どうしても見
掛けの抵抗率の増加をきたし、結果の再現性を悪くする
Even in such a sample, the current flows along the network plane of the condensed benzene ring system, so if the sample is arbitrarily cut out, the apparent resistivity inevitably increases and the reproducibility of the results deteriorates.

従って抵抗率が最小となるように試料を切出すことが好
ましい。
Therefore, it is preferable to cut out the sample so that the resistivity is minimized.

試料に一定の磁界をかげ、△ρ/ρの最大値が観測にが
がる磁界方向をMとし、Mを含みかつ互に直交する二つ
の平面内で磁界の方を変え、それぞれにおいて最小値が
観測される方向をm1、m2とする。
A constant magnetic field is applied to the sample, and the direction of the magnetic field in which the maximum value of △ρ/ρ is observed is M, and the direction of the magnetic field is changed in two planes that include M and are orthogonal to each other, and the minimum value in each is determined. Let m1 and m2 be the directions in which are observed.

ここで試料の電流の方向に近い方向をm2 ときめる。Here, the direction close to the direction of the current in the sample is defined as m2.

次で磁界をM方向〜m1方向(仮りにT方式とする)、
およびM方向〜m2方向(仮りにTL方式とする)に回
転しながら加える(実際には試料を回転する)。
Next, change the magnetic field in the M direction to m1 direction (temporarily assume T method),
and the M direction to the m2 direction (assuming the TL method) while rotating (actually, the sample is rotated).

そうすると一般に は同一試料で一定であることが確認できた。Then generally was confirmed to be constant for the same sample.

本発明者の研究によると磁気抵抗効果に基づく抵抗率の
変化率の異方性の測定結果から縮合ベンゼン環網面の配
向状況を次のようにして判定することができる。
According to research by the present inventors, the orientation status of the condensed benzene ring network plane can be determined as follows from the measurement results of the anisotropy of the rate of change in resistivity based on the magnetoresistive effect.

先ず、網面の理想的配向状況は三つの場合があるが、そ
れぞれにおける(△ρ/ρ)M、(△ρ/ρ)Tmin
、(△ρ/ρ)TLminの間の関係は次のようになる
First, there are three ideal orientation situations of the mesh plane, and (△ρ/ρ)M and (△ρ/ρ)Tmin in each case.
, (Δρ/ρ)TLmin is as follows.

(1)網面が平行に並んでいる場合 (△ρ/ρ) Tmin 一(△ρ/ρ) TLmin
= 0(11)網面が1軸的に配向している場合(△
ρ/ρ)Tmin 一(△ρ/ρ)M、(△ρ/ρ)
TLmin = 0 網面が無秩序に分布している場合 従って二つの異方性比(△ρ/ρ) Tmin /(△
ρ/ρ)M1 (△ρ/ρ)TLmin/(△ρ/ρ)
Mをとれば、該試料の網面の配向状況が(i)、(i1
)、(iii)のどれに近いかを判定することができる
(1) When the mesh planes are arranged in parallel (△ρ/ρ) Tmin - (△ρ/ρ) TLmin
= 0 (11) When the mesh plane is uniaxially oriented (△
ρ/ρ) Tmin - (△ρ/ρ) M, (△ρ/ρ)
TLmin = 0 If the mesh plane is randomly distributed, the two anisotropy ratios (△ρ/ρ) Tmin / (△
ρ/ρ) M1 (△ρ/ρ) TLmin/(△ρ/ρ)
If M is taken, the orientation status of the network surface of the sample is (i), (i1
), (iii).

さて、本発明の方法を具体的に述べるに、先ず試料A,
B,C,Dを調製した。
Now, to specifically describe the method of the present invention, first, sample A,
B, C, and D were prepared.

これらの試料は種類の異なる重質油より作製した4種類
の生コークスをチッ素気流中で1100℃、30分間の
加熱処理を施したものであり、前述のようにして切り出
した。
These samples were made by heat-treating four types of raw coke made from different types of heavy oil at 1100° C. for 30 minutes in a nitrogen stream, and were cut out as described above.

第1図の装置を用いてこれらの試料についてのシTおよ
びTL方式の測定をおこなった。
These samples were measured using the T and TL methods using the apparatus shown in FIG.

試料に直接接続する電流および電圧用端子の導線には0
.08mmφの金線を用い、金線と試料との接続は金ペ
イントによった。
0 for current and voltage terminal conductors that connect directly to the sample.
.. A gold wire with a diameter of 0.08 mm was used, and the connection between the gold wire and the sample was made with gold paint.

第2図A−Dは測定結果を示す。Figures 2A-D show the measurement results.

横軸は磁気抵抗効果に基づく抵抗率の変化率が最小値と
なる磁界方向を基線とする磁界の方位角を示し、縦軸は
該変化率△ρ/ρ(%)を示す。
The horizontal axis indicates the azimuth of the magnetic field with the base line being the magnetic field direction in which the rate of change in resistivity due to the magnetoresistive effect is the minimum value, and the vertical axis indicates the rate of change Δρ/ρ (%).

測定条件は1.7Kの測定温度、5 0 kGの一定磁
場を用いた。
The measurement conditions were a measurement temperature of 1.7K and a constant magnetic field of 50 kG.

第2図A−Dに示した測定結果から次表(第1表)を得
た。
The following table (Table 1) was obtained from the measurement results shown in FIGS. 2A to 2D.

上述したように低温処理炭素の段階でも電流は縮合ベン
ゼン環網面に沿って流れるから、△ρ/ρの異方性の高
いものほど網面はより平行に配向していることになる。
As mentioned above, even in the stage of low-temperature treated carbon, the current flows along the condensed benzene ring network plane, so the higher the anisotropy of Δρ/ρ, the more parallel the network planes are.

黒鉛化は高温加熱処理によってこれらの網面を平面状に
連結し、連結面内の欠陥を取り除き、更に面相互間の積
層を黒鉛結晶と同様な積層となるようにする効果である
から、縮合ベンゼン環網面の低温処理の段階でより平行
に並んでいるものほど黒鉛化しやすい。
Graphitization is the effect of connecting these mesh surfaces into a planar shape through high-temperature heat treatment, removing defects within the connecting surfaces, and further layering the layers between the surfaces into a layer similar to that of graphite crystals. The more parallel the benzene ring networks are during the low-temperature treatment, the easier it is to graphitize.

すなわち、黒鉛化性がすぐれている。That is, it has excellent graphitization properties.

上述した異方性の検討方法によると、試料A,Bは網面
が平行になるように配向しており、試料Cは1軸状に、
試料Dは無秩序に配向しているとの判定がつく。
According to the anisotropy study method described above, samples A and B are oriented so that their mesh planes are parallel, and sample C is oriented uniaxially.
It can be determined that sample D is randomly oriented.

異方性比の結果値から黒鉛化性はD,C,B,Aの順に
高いことが判定される。
From the resultant values of the anisotropy ratio, it is determined that the graphitizability is higher in the order of D, C, B, and A.

この判定結果の妥当性を検討するために上記試料A,B
,C,Dを微粉砕し、バインダーピッチを加えて成型し
、焼成後2630℃、30分間の加熱処理を施すことに
よって製した人造黒鉛丸棒の黒鉛化性を磁気抵抗効果に
基づく抵抗率の変化率を測定温度77K、磁界10kG
の測定条件で上述の方法に準じて測定した。
In order to examine the validity of this judgment result, the above samples A and B
. Measure the rate of change at a temperature of 77K and a magnetic field of 10kG.
The measurement was performed according to the method described above under the measurement conditions.

本発明者の研究によると77Kにおける黒鉛の磁気抵抗
効果に基づく抵抗率の変化率は該試料の黒鉛化度と密接
な関係にあり( J apanese J ourn
alof Applied Physics、Vol
1 0 、A 4、pp416〜420)、黒鉛化の進
んでいる試料ほど〉該変化率が大きいことが実験的にも
(前出資料ならびにJ apanes J ourn
al of Appl iedPhysics ,
Vol. 7、Jl6.4 pp 9 5 8〜9 6
3 )、理論的にも(学振資料1 1 7−1 3
2−c−1、Carbon, Vol 1 3、A3、
244)示されている。
According to research by the present inventor, the rate of change in resistivity based on the magnetoresistance effect of graphite at 77K is closely related to the degree of graphitization of the sample (Japanese Journal
alof Applied Physics, Vol.
10, A4, pp416-420), and it has been experimentally shown that the rate of change is larger in samples with more advanced graphitization (the above materials and Japan Journal
al of Applied Physics,
Vol. 7, Jl6.4 pp 9 5 8-9 6
3), theoretically (JSPS Materials 1 1 7-1 3
2-c-1, Carbon, Vol 1 3, A3,
244) Shown.

結果を下表(第2表)に示す。下表のA′、B’、C′
、びはそれぞれ原料がA,B,C,Dであることを表わ
す。
The results are shown in the table below (Table 2). A', B', C' in the table below
, and represent raw materials A, B, C, and D, respectively.

本発明者の研究によるとA′、B′、C′、D′の程度
に黒鉛化してしまうとX線回折法によって黒鉛化度の差
異を求めることはむずかしいことが見出されているので
、A′、B′、C′、αの黒鉛化度の判定を77Kにお
ける磁気抵抗効果に基づく抵抗率の変化率によった。
According to the research conducted by the present inventor, it has been found that it is difficult to determine the difference in the degree of graphitization by X-ray diffraction when graphitization occurs to the degree of A', B', C', and D'. The degree of graphitization of A', B', C', and α was determined based on the rate of change in resistivity based on the magnetoresistive effect at 77K.

黒鉛化度はD′、C′、B′、A′の順に高くなってい
ることかわかる。
It can be seen that the degree of graphitization increases in the order of D', C', B', and A'.

従って第1表に基く低温処理炭素試料A,B,C,Dの
黒鉛化性の判定は極めて妥当なものであることがわかる
Therefore, it can be seen that the graphitization properties of the low-temperature treated carbon samples A, B, C, and D based on Table 1 are extremely appropriate.

なお試料D’に生じた異方性は高温処理後の異方性であ
るので、試料Dの異方性とは稍々異なる。
Note that the anisotropy generated in sample D' is the anisotropy after high-temperature treatment, so it is slightly different from the anisotropy of sample D.

2K以上の温度における低温処理炭素の磁気抵抗効果に
基づく抵抗率の変化率は微弱であることを上述したが、
対比のため、試料Cについて42Kおよび1.7Kの温
度で測定した磁気抵抗効果に基づく抵抗率の変化率を第
3図に示す。
As mentioned above, the rate of change in resistivity due to the magnetoresistive effect of low-temperature treated carbon at temperatures of 2K or higher is weak;
For comparison, FIG. 3 shows the rate of change in resistivity based on the magnetoresistive effect measured at temperatures of 42 K and 1.7 K for Sample C.

明らかに4.2Kでの測定条件では磁界によって磁気抵
抗効果に基づく正、負の抵抗率の変化率が観測され、し
かもその値は非常に小さい。
Obviously, under the measurement conditions of 4.2 K, positive and negative rates of change in resistivity due to the magnetoresistive effect are observed due to the magnetic field, and the values are very small.

従って、磁気抵抗効果に基づく負、正混合の抵抗率の変
化率が測定にかかるような温度における該変化率を黒鉛
化性の指標として採用することはできない。
Therefore, the rate of change in mixed negative and positive resistivity due to the magnetoresistive effect at a temperature at which the rate of change is measured cannot be used as an index of graphitizability.

以上まとめると、本発明の黒鉛化性判定方法は低温処理
炭素試料を2.OK以下の極低温に冷却し、これを種々
の方法から磁界を加支つつ磁気抵抗効果に基づく抵抗率
の変化率を測定し、その結果値を適正に処理して該試料
の黒鉛化性の指標を得るものである。
To summarize the above, the graphitizability determination method of the present invention uses low temperature treated carbon samples in 2. The sample is cooled to an extremely low temperature below OK, and the rate of change in resistivity based on the magnetoresistive effect is measured while applying a magnetic field using various methods.The resulting values are processed appropriately to determine the graphitizability of the sample. It is used to obtain indicators.

本発明の方法の利点は、極低温における低温処理炭素試
料の磁気抵抗効果に基づく抵抗率の変化率の異方性を利
用しているため測定値が処理しやすく、また異方性の大
きさが該試料を原料とする黒鉛製品の黒鉛化性と高い相
関関係にあるために該試料の黒鉛化性の指標を正確に得
る測定が可能となることであり、既述の如き他の利益が
得られる。
The advantage of the method of the present invention is that it utilizes the anisotropy of the rate of change in resistivity based on the magnetoresistive effect of the low-temperature treated carbon sample at extremely low temperatures, so the measured values are easy to process, and the magnitude of the anisotropy is Since this has a high correlation with the graphitizability of graphite products made from the sample, it is possible to accurately obtain an index of the graphitizability of the sample, and there are other benefits as mentioned above. can get.

以上により本発明を説明したが、当業者が本発明の範囲
内で種々の変形をなし得ることが明らかであろう。
Having thus described the invention, it will be apparent to those skilled in the art that various modifications may be made within the scope of the invention.

例えば磁気抵抗効果に基づく抵抗率の変化率の異方性の
測定値を処理する方法として、前述の実施例では異方性
測定値の比をとることを行ったが他の任意の手段を採用
してよい。
For example, as a method for processing the measured value of the anisotropy of the rate of change of resistivity based on the magnetoresistive effect, in the above embodiment, the ratio of the measured anisotropy values was taken, but any other method may be used. You may do so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の1例を示す概略
図、第2図A,B,C,Dは極低温における低温処理炭
素試料の磁気抵抗効果に基づく抵抗率の変化率の異方性
を示すグラフ、および第3図は1.7Kおよび4. 2
Kにおける該変化率の対比を示すグラフである。
Fig. 1 is a schematic diagram showing an example of an apparatus for implementing the method of the present invention, and Fig. 2 A, B, C, and D show the rate of change in resistivity based on the magnetoresistive effect of a low-temperature treated carbon sample at an extremely low temperature. The graph showing the anisotropy and FIG. 3 are 1.7K and 4. 2
It is a graph showing a comparison of the rate of change in K.

Claims (1)

【特許請求の範囲】[Claims] 1 判定せんとする900〜1300℃の温度で熱処理
した炭素(以下低温処理炭素試料と記す)を2K以下の
極低温に冷却し、該試料に種々の方向から磁界を加えつ
つ磁気抵抗効果に基づく抵抗率の変化率の異方性を測定
し、得られた異方性の値を相互に関連ずけることにより
、該試料の黒鉛化性の指標を得ることを特徴とする低温
処理炭素試料の黒鉛化性判定方法。
1 Carbon heat-treated at a temperature of 900 to 1300°C to be determined (hereinafter referred to as low-temperature treated carbon sample) is cooled to an extremely low temperature of 2K or less, and magnetic fields are applied to the sample from various directions based on the magnetoresistive effect. A low-temperature treated carbon sample characterized in that an index of the graphitizability of the sample is obtained by measuring the anisotropy of the rate of change in resistivity and correlating the obtained anisotropy values. Graphitizability determination method.
JP7209675A 1975-06-16 1975-06-16 Kokuenkaseihanteihouhou Expired JPS587942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7209675A JPS587942B2 (en) 1975-06-16 1975-06-16 Kokuenkaseihanteihouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7209675A JPS587942B2 (en) 1975-06-16 1975-06-16 Kokuenkaseihanteihouhou

Publications (2)

Publication Number Publication Date
JPS51148493A JPS51148493A (en) 1976-12-20
JPS587942B2 true JPS587942B2 (en) 1983-02-14

Family

ID=13479526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7209675A Expired JPS587942B2 (en) 1975-06-16 1975-06-16 Kokuenkaseihanteihouhou

Country Status (1)

Country Link
JP (1) JPS587942B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145638U (en) * 1984-03-09 1985-09-27 豊生ブレ−キ工業株式会社 Engine mount
JPS6246841U (en) * 1985-09-12 1987-03-23
JPH0240660Y2 (en) * 1984-03-09 1990-10-30
JPH0338512Y2 (en) * 1985-04-17 1991-08-14

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229320B2 (en) * 2012-06-13 2017-11-15 三菱ケミカル株式会社 Sample structure classification method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145638U (en) * 1984-03-09 1985-09-27 豊生ブレ−キ工業株式会社 Engine mount
JPH0240660Y2 (en) * 1984-03-09 1990-10-30
JPH0338512Y2 (en) * 1985-04-17 1991-08-14
JPS6246841U (en) * 1985-09-12 1987-03-23

Also Published As

Publication number Publication date
JPS51148493A (en) 1976-12-20

Similar Documents

Publication Publication Date Title
Dresselhaus et al. Intercalation compounds of graphite
Wu et al. Thermopower measurement of cation distribution in magnetite
Murani et al. Critical concentration for the onset of ferromagnetism in Pd-Ni alloys
Piraux et al. The temperature variation of the thermal conductivity of benzene-derived carbon fibers
Hishiyama et al. Characterization of structure and microtexture of carbon materials by magnetoresistance technique
CN108398456B (en) Method and device for testing thermal conductivity of nanoscale material
Issi et al. Electronic and lattice contributions to the thermal conductivity of graphite intercalation compounds
Chieu et al. High-field magnetoresistance measurements on highly ordered graphite fibers
Shacklette et al. Influence of order-disorder transformations on the electrical resistivity of vanadium carbide
Hishiyama Negative magnetoresistance in soft carbons and graphite
Bierstedt Electrical Resistivity and Hall Effect of Cr-Modified Mn 2 Sb
Pinnick Magnetic susceptibility of carbons and polycrystalline graphites. I
Williams et al. Magnetic domains in α− Fe2O3
Bartholin et al. Magnetic ordering temperatures of the single crystals of rare earth metals at high pressures: Gadolinium-terbium-dysprosium
JPS587942B2 (en) Kokuenkaseihanteihouhou
Peysson et al. High magnetic field study of the specific heat of CeB6 and LaB6
Wutting et al. Magnetic relaxation studies of low symmetry defects in quenched nickel
Iye et al. Effect of impurities on the electronic phase transition in graphite in the magnetic quantum limit
Robson et al. Electronic properties of high-temperature carbon fibres and their correlations
Rush et al. Transport $ J_ {{c}} $ in Bulk Superconductors: A Practical Approach?
Rigo et al. On the phase transition (s) of magnetite at low temperatures
Hishiyama et al. Resistivity, Hall coefficient, magnetoresistance, and microtexture of cellulose carbon films
Kaburagi et al. Microtexture of highly crystallized graphite as studied by galvanomagnetic properties and electron channeling contrast effect
Ohana et al. Raman and X-Ray study of AsF5/vapor-grown graphite fibers
Behr et al. High-temperature tensile cell for in situ real-time investigation of carbon fibre carbonization and graphitization processes