JPS5879302A - Resistive terminator - Google Patents

Resistive terminator

Info

Publication number
JPS5879302A
JPS5879302A JP56177520A JP17752081A JPS5879302A JP S5879302 A JPS5879302 A JP S5879302A JP 56177520 A JP56177520 A JP 56177520A JP 17752081 A JP17752081 A JP 17752081A JP S5879302 A JPS5879302 A JP S5879302A
Authority
JP
Japan
Prior art keywords
oxide
ferrite
cobalt
terminator
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56177520A
Other languages
Japanese (ja)
Other versions
JPH0227805B2 (en
Inventor
Hideo Takamizawa
秀男 高見沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56177520A priority Critical patent/JPS5879302A/en
Publication of JPS5879302A publication Critical patent/JPS5879302A/en
Publication of JPH0227805B2 publication Critical patent/JPH0227805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/24Terminating devices
    • H01P1/26Dissipative terminations

Landscapes

  • Soft Magnetic Materials (AREA)
  • Non-Reversible Transmitting Devices (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To obtain a resistive terminator having a great reflection loss and excellent heat resistance, by using a sintered body adding bismuth oxide to cobalt. zinc ferrite. CONSTITUTION:Cobalt.zinc ferrite consisting of cobalt oxide, oxide iron oxide and zinc generally has a great magnetic loss, but many holes and is subject to water absorption and in using the material as a resistive terminator, the characteristics have a large dispersion depending on the adsorbed water content. In adding a little of bismuth oxide to this ferrite, however, the ferrite can very deusely be sintered, allowing to offer a high heat resistance and reflection loss to a resistive terminator using this ferrite. The characteristics of examples of execution of this invention are listed in table.

Description

【発明の詳細な説明】 本発明はマイクロ波、きり#LWIで用いられる無反射
終m器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-reflection terminator used in microwave and #LWI.

マイクロ波、ミリ波回路中では一部の反射された電磁波
は入射波と互いに干渉して定在波が生じる場合がある。
In microwave and millimeter wave circuits, some reflected electromagnetic waves may interfere with the incident waves, resulting in standing waves.

マイクロ波回路装置はこれら定在波管なくすため短絡板
の前に入射電磁波を完全に吸収するための無反射終端器
を用いるのが普通である0小電力のものは抵抗皮膜等が
用いられたり、あるいは鉄粉をスチロール樹脂、エポキ
シ樹脂で同めた絶縁性があり、かつ強度のある無反射終
端器が用いられている。
In order to eliminate these standing wave tubes, microwave circuit devices usually use a non-reflection terminator in front of the shorting plate to completely absorb the incident electromagnetic waves.For low-power devices, a resistive film or the like is used. Alternatively, a non-reflective terminator, which has the same insulating properties and strength, is made by combining iron powder with styrene resin or epoxy resin.

しかしこれら無反射終端器Fi吸収した電磁波を熱に変
擬するものでToI、昨今の多重通信装置の場合、電力
の大きい電磁波が入射する場合が多くなり、変換されえ
熱により従来の無反射終端器は樹脂が化学分解し、劣化
する0 例えば15W以上の電力のマイクロ波を1収させ九場合
#1200℃以上に達するので前述の無反射終端器は使
え表い場合が多い。したがって耐熱性があり反射損失の
大きい優れた無反射終端器が1!饋される0本発明扛耐
熱性に優れ反射損失の大きい無反射終端器を提供するこ
とを目的とするものである。
However, these non-reflective terminators (Fi) convert the absorbed electromagnetic waves into heat. The resin in the container deteriorates due to chemical decomposition.For example, if a microwave with a power of 15W or more is applied, the temperature reaches 1200°C or more, so the above-mentioned non-reflection terminator cannot be used in many cases. Therefore, an excellent non-reflection terminator that is heat resistant and has large reflection loss is the best choice! SUMMARY OF THE INVENTION An object of the present invention is to provide a non-reflective terminator that has excellent heat resistance and large reflection loss.

すな−わち、本発明は酸化コバルト、酸化亜鉛、酸化鉄
からなるコバルト・亜鉛フェライトに酸化ビスミス管添
加し九焼結体によって作られるととtW黴とする無反射
終端器である。
That is, the present invention is a non-reflective terminator made of a sintered body of cobalt-zinc ferrite made of cobalt oxide, zinc oxide, and iron oxide, with the addition of an oxidized bissmith tube.

酸化物磁性材料、フェライトは一般的にはコイル、トラ
ンス等の部品材料として広く囲いらねているがそれらは
いづれも低損失であることが要求される。又、マイクロ
波帯では非可逆素子材料としてイットリクム・鉄系ガー
ネット、マンガンマグネシウム7エライト等が用いられ
ているが、これらもやは9低損失であることが要求され
ゐ。しかし逆に無反射終端器としては損失の大きい材料
が望まれる。無反射終端器に要求される材料特性として
は誘電損失が大きく且つ磁気卸損失が大きいものが要求
され、装置としての無反射終端器は反射損失の大きい特
性が要求されるとと1Ic1にる。
Oxide magnetic materials and ferrite are generally used widely as component materials for coils, transformers, etc., but they are all required to have low loss. Furthermore, in the microwave band, yttricum/iron-based garnet, manganese magnesium 7-elite, etc. are used as non-reciprocal element materials, but these are also required to have low loss. However, on the contrary, a material with high loss is desired for a non-reflection terminator. The material properties required for a non-reflection terminator include large dielectric loss and large magnetic wholesale loss, and the non-reflection terminator as a device is required to have characteristics such as large reflection loss.

樟々の7エライトの中でもコバルト7エライトハ一般的
なマンガンフェライト、二y ケ)k 7 gライトに
比べ結晶磁気異方性が大きく磁気的損失が大きい〇 しかしながら、コバルト7エ2イトは緻密に焼結させる
ことが困難であり、空孔の多い焼結体しか得られない0
このような空孔の多い焼結体は吸水しやすく、これを無
反射終端器として用いる場合、TIk着された水分量に
よって特性の大きなバラツキを生じる〇 本発明者はコバルトフェライ)K一部亜鉛を置換させ、
さらに酸化ビスマスを添加すると緻密に焼結でき、これ
を用いて無反射終端器全作製した場合に大きな反射損失
が得られることを見い出した〇 以下、実施例に基いて説明する◎ 実施例−1 酸化コバルト、酸化鉄、酸化亜鉛管jlll&。
Cobalt 7elite is a common manganese ferrite among the camphorite 7elites. It is difficult to sinter, and only a sintered body with many pores can be obtained.
Such a sintered body with many pores easily absorbs water, and when it is used as a non-reflection terminator, the characteristics will vary greatly depending on the amount of water deposited. and replace
Furthermore, we found that adding bismuth oxide allows for dense sintering, and that a large reflection loss can be obtained when all non-reflection terminators are manufactured using this 〇 The following is an explanation based on an example ◎ Example-1 Cobalt oxide, iron oxide, zinc oxide pipe jllll&.

第2表に示す成分比に応じて秤量後、ボールミル混合し
、 SOO℃で予備焼jEを行ない、バインダー混入の
後、27鱈角×7■to大きさのIIttIJ1体を作
成した0この成製体管1250℃−5時間で焼成し九結
果を1s1表に、 1300℃−5時間で焼成した結果
を第2表に示した・ なお、特性一定方法は 測定回路の末端に、WRJ−611短絡導波管を接続し
、その管壁面の中央に蕗igec示す抵抗体をセットし
、周波数5.9〜6.4GHzでスイープさせた発信器
よりの!イクawLを末端導波管に@送し、オシロスコ
ープで反射損失を調定したO また吸水率は試料を1時間水中で煮沸し、所定の時間乾
燥させた彼、重量を調定し、煮沸前0重蓋を比較し求め
た。
After weighing according to the component ratio shown in Table 2, they were mixed in a ball mill, pre-calcined at SOO℃, and after mixing with a binder, one IIttIJ body with a size of 27 cod horns x 7 cm was created. The results of firing the body tube at 1250℃ for 5 hours are shown in Table 1s1, and the results of firing at 1300℃ for 5 hours are shown in Table 2.In addition, in the constant characteristic method, short-circuit WRJ-611 at the end of the measurement circuit. A waveguide was connected, a resistor was set in the center of the tube wall, and the oscillator was swept at a frequency of 5.9 to 6.4 GHz. The water absorption rate was determined by boiling the sample in water for 1 hour and drying it for a specified time. It was determined by comparing 0-layer lids.

第  ill! !11牽、菖2表で示したようにコバルト・亜鉛7&ラ
イトを用いて作製した無反射終端器の反射損失は他の7
翼ライトを用いた場合に比べか′&9大きいoしかし前
記焼成条件では緻密に焼結していないのでや中機水率が
大きく、特性のバラツキが目立りた0第1表、第2表に
示した試料の絶縁抵抗は3×1♂Ω国 から8810’
Ω備であり、と(に試料L OF@lOa成分の多い組
成の絶縁抵抗が小さい・ 次に菖1表に示した組成のうちの試料d%、に対して酸
化ビスマスを添加し前記の条件で試料を作製し、これを
用いた無反射終端器の反射特性と1水率の測定結果tP
第3表に示す。
No. ill! ! As shown in Table 11 and Table 2, the reflection loss of the non-reflection terminator made using cobalt/zinc 7 & light is the same as that of other 7.
Compared to the case where wing lights were used, it was larger by 9&9. However, because the sintering conditions were not dense under the above firing conditions, the medium water content was large and the variation in properties was noticeable.0 Tables 1 and 2 The insulation resistance of the sample shown in is 8810' from 3×1♂Ω country.
The insulation resistance of the sample LOF@lOa-rich composition is small.Next, bismuth oxide was added to d% of the sample of the composition shown in Table 1 under the above conditions. A sample was made using
It is shown in Table 3.

菖  3  表 以上のようにコバルト・亜鉛7エ2イトに酸化ビスマス
を添加した焼結体管用いると反射損失特性にすぐれ且つ
第1表%菖2表の値に比べ吸水率の小さい無反射終端器
が得られる。尚焼結促進等のため他の添加物を添加する
事も可能である。
As shown in Table 3, using a sintered tube made of cobalt-zinc 7E2ite with bismuth oxide added results in a non-reflective termination with excellent reflection loss characteristics and a lower water absorption rate than the values in Table 1, %, and Table 2. A vessel is obtained. It is also possible to add other additives to promote sintering.

【図面の簡単な説明】[Brief explanation of the drawing]

本発明の測定に用いた無反射終端器の形状を示す。 第 1 図 7 The shape of the non-reflection terminator used in the measurements of the present invention is shown. Figure 1 7

Claims (1)

【特許請求の範囲】[Claims] 酸化コバルト、酸化鉄、酸化亜鉛からなる7へライトに
酸化ビヌマスを添加した焼結体からなること全特徴とす
る無反射終端器。
A non-reflective terminator characterized in that it is made of a sintered body made of cobalt oxide, iron oxide, zinc oxide, and vinylite added with binumuth oxide.
JP56177520A 1981-11-05 1981-11-05 Resistive terminator Granted JPS5879302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56177520A JPS5879302A (en) 1981-11-05 1981-11-05 Resistive terminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177520A JPS5879302A (en) 1981-11-05 1981-11-05 Resistive terminator

Publications (2)

Publication Number Publication Date
JPS5879302A true JPS5879302A (en) 1983-05-13
JPH0227805B2 JPH0227805B2 (en) 1990-06-20

Family

ID=16032347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177520A Granted JPS5879302A (en) 1981-11-05 1981-11-05 Resistive terminator

Country Status (1)

Country Link
JP (1) JPS5879302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218353A (en) * 1988-07-05 1990-01-22 Nec Corp Microwave resistor and production thereof
JP2005029426A (en) * 2003-07-14 2005-02-03 Matsushita Electric Ind Co Ltd Magnetic ferrite and magnetic element using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218353A (en) * 1988-07-05 1990-01-22 Nec Corp Microwave resistor and production thereof
JP2005029426A (en) * 2003-07-14 2005-02-03 Matsushita Electric Ind Co Ltd Magnetic ferrite and magnetic element using the same

Also Published As

Publication number Publication date
JPH0227805B2 (en) 1990-06-20

Similar Documents

Publication Publication Date Title
US6114940A (en) BALUN transformer core material, BALUN transformer core and BALUN transformer
Abbas et al. Electromagnetic and microwave absorption properties of (Co2+–Si4+) substituted barium hexaferrites and its polymer composite
Lim et al. Electromagnetic wave absorption properties of amorphous alloy-ferrite-epoxy composites in quasi-microwave band
Verma et al. Microwave studies on strontium ferrite based absorbers
JPH0982528A (en) Noise suppressing inductor element
KR20010070171A (en) Composite magnetic material and inductor element
Gairola et al. Synthesis and electromagnetic shielding behaviour of poly (o‐toluidine)/red mud composite
JPS5879302A (en) Resistive terminator
Joon An et al. Microwave absorber properties of magnetic and dielectric composite materials
US5838215A (en) RF choke with a low Q core formed by sintering ferrous and ferric oxides
JP2729486B2 (en) Nickel-zinc ferrite material for radio wave absorber
US2994045A (en) Electrical transmission devices utilizing gyromagnetic ferrites
Ou et al. An analysis of annular, annular sector, and circular sector microstrip antennas
JP2696954B2 (en) Microwave resistor and method of manufacturing the same
Park et al. Electromagnetic properties of dielectric and magnetic composite material for antenna
CN112538254A (en) Magnetic dielectric resin composition, laminated board containing same and printed circuit board containing laminated board
KR100258789B1 (en) Board for absorbing electron wave
JP2504273B2 (en) Microwave / millimeter wave magnetic composition
JP3396958B2 (en) High frequency magnetic composition
JPS59172701A (en) Method of producing microwave resistor
JP2958800B2 (en) Microwave / millimeter wave magnetic composition
JP2504192B2 (en) Microwave / millimeter wave magnetic composition
KR940005137B1 (en) Electric wave absorber
JP2893447B1 (en) Microwave shielding fired product and method for producing the same
Sroussi et al. Interesting microwave ferrites of polycrystalline Y Gd I G's with both octahedral and tetrahedral substitutions