JPS5878725A - Molding device for inflation film - Google Patents

Molding device for inflation film

Info

Publication number
JPS5878725A
JPS5878725A JP56176924A JP17692481A JPS5878725A JP S5878725 A JPS5878725 A JP S5878725A JP 56176924 A JP56176924 A JP 56176924A JP 17692481 A JP17692481 A JP 17692481A JP S5878725 A JPS5878725 A JP S5878725A
Authority
JP
Japan
Prior art keywords
light
resin tube
cooling air
inflation
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56176924A
Other languages
Japanese (ja)
Inventor
Tamio Kawachi
河内 民男
Kazuo Minato
湊 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP56176924A priority Critical patent/JPS5878725A/en
Publication of JPS5878725A publication Critical patent/JPS5878725A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To maintain a frost line at a constant position and thereby to obtain an inflation film of high and prescribed quality, by adjusting the quantity of discharged cooling air by an air ring according to a signal of a photoelectric detector which detects the diameter of a resin tube. CONSTITUTION:A light projected from a projector 12 falls on a prescribed point in the inflation region A-B of a resin tube and is diffused partially. When the light reaches a light-receiver 13 thereafter, a fixed quantity of cooling air is discharged from an air ring 8. When a frost line F rises due to the rise in temperature of melted resin supplied to a die 1 and to the rise in temperature of molding envieonment, etc., the degree of inflation in the inflation region of the resin tube is decreased, or the level of the inflation region thereof is raised, and thus the light from the pojector 12 falls on the light-receiver 13 without contacting with the outer periphery of the inflation region of the resin tube.Accodingly, the quantity of light received by the light-receiver 13 is increased. A control unit 14, to which this increase is transmitted as an electric signal, adjusts an adjusting valve 9. As the result, the quantity of cooling air from the airring 8 is increased, and thereby the frost line F is lowered.

Description

【発明の詳細な説明】 本発明はインフレーションフィルムの成形装置に係シ、
特に冷却空気の吐出量が調整されるエアーリングを備え
九成形装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blown film forming apparatus.
In particular, the present invention relates to a molding device equipped with an air ring in which the amount of cooling air discharged is adjusted.

熱可塑性樹脂素材よりフィルム中シートを製造するイン
フレーションフィルム成形加工においては、成形フィル
ムを高品質かつ一定品質にするため、樹脂バルブのフロ
ストラインを一定位置に保つ必要がある。しかしながら
このフロストラインは、押出される溶融樹脂の温度や成
形室温度などの成形加工条件の周期的あるいは一時的な
変動に伴い変動され易いものである。
In the blown film molding process in which the inner sheet of the film is manufactured from a thermoplastic resin material, it is necessary to maintain the frost line of the resin valve at a constant position in order to make the molded film of high and constant quality. However, this frost line is susceptible to fluctuations due to periodic or temporary fluctuations in molding conditions such as the temperature of the molten resin to be extruded and the temperature of the molding chamber.

従来、70ストラインを一定位置に保つためには、専ら
作業者が手動によりエアーリングの冷却空気吐出量管調
整する方法が採られていた。しかし熟練した作業者にあ
ってもこの調整畔困難であシフロストラインの一定化は
必らずしも期待し得ないものであシ、特に作業者が複数
の成形装置を調整しなければならない場合にはその困難
性を一層増していた。
Conventionally, in order to maintain the 70-stroke line at a constant position, a method has been adopted in which an operator manually adjusts the cooling air discharge volume of the air ring. However, this adjustment is difficult even for experienced workers, and it is not always possible to maintain a constant shrift line, especially when workers have to adjust multiple molding devices. In some cases, the difficulty was even greater.

そこで、ダイより押出された樹脂チューブの径を光学的
手段により検出するとともに、その検知信号によって樹
脂チューブ内に圧入される圧縮空気量を自動的に調整す
る方法が知られている。しかしながらこのような方法に
あっては樹脂チューブのブローアツプ比を単母に一定化
しようとするだけのものであシ、種々の成形加工条件の
変動に対処してフロストラインを一定にするという要請
には必らずしも応えられないものであった。
Therefore, a method is known in which the diameter of a resin tube extruded from a die is detected by optical means, and the amount of compressed air pressurized into the resin tube is automatically adjusted based on the detection signal. However, such a method merely attempts to make the blow-up ratio of the resin tube constant to a single value, and it is not necessary to deal with variations in various molding processing conditions and to make the frost line constant. could not necessarily be answered.

また、樹脂チューブの表面温度を検出して、それに基づ
きエアーリングの冷却空気量を調整する方法も考えられ
るが、チューブ表面は冷却空気流に晒されていることや
部分的温度差があるために有効な温度を測定すること・
が困難であり採用することができないものである。
Another option is to detect the surface temperature of the resin tube and adjust the amount of cooling air in the air ring based on that, but since the tube surface is exposed to the cooling air flow and there are local temperature differences, Measuring the effective temperature
is difficult and cannot be adopted.

本発明の目的は、70ストラインを自動的に一定位置に
保ち、高品質かつ一定品質のインフレーションフィルム
(シート)を成形することのできるインフレーションフ
ィルム成形装置と提供するにあり、本発明は、ダイよシ
押出された溶融樹脂チューブの膨張開始部から始まる樹
脂チューブ膨張領域における所定の位置に光電検出器を
配置し、との光電検出器により樹脂チューブの径を検出
するとともに、充電検出器からの信号により冷却空気吐
出量が調整されるエアーリングを備えることによシ前記
目的を達成しようとするものである。
An object of the present invention is to provide a blown film forming apparatus that can automatically maintain a 70-string line at a fixed position and form a high-quality blown film (sheet). A photoelectric detector is placed at a predetermined position in the resin tube expansion region starting from the expansion start point of the extruded molten resin tube, and the diameter of the resin tube is detected by the photoelectric detector. The above object is achieved by providing an air ring in which the amount of cooling air discharged is adjusted in response to a signal.

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図には本発明によるインフレーションフィルム成形
装置の一実施例の全体構成が示されている。
FIG. 1 shows the overall structure of an embodiment of a blown film forming apparatus according to the present invention.

この図において、環状の押出リップを有するダイIKは
押出機2が連結され、押出機2のホッパー3から投入さ
れた樹脂素材は押出機2によシ溶融された後、ダイ1よ
り樹脂チューブ4としてチューブ状に押出される。
In this figure, an extruder 2 is connected to a die IK having an annular extrusion lip, and a resin material introduced from a hopper 3 of the extruder 2 is melted by the extruder 2, and then passed through the die 1 into a resin tube 4. It is extruded into a tube shape.

前記樹脂チューブ4内には圧縮空気が封入されており、
樹脂チューブ4は膨張開始部Aで始tb膨張の終了する
膨張終了部8に至るまでの樹脂チューブ膨張領域にて膨
張された後、樹脂パルプ5となり、案内板6およびニッ
プロール7によって折畳まれていく。
Compressed air is sealed in the resin tube 4,
After the resin tube 4 is expanded in the resin tube expansion region from the expansion start part A to the expansion end part 8 where the expansion ends, it becomes resin pulp 5 and is folded by the guide plate 6 and the nip roll 7. go.

ダイ1の上面側にはエアーリング8が設けられ、このエ
アーリング8には、調整弁9を介してブロアー10が連
結されており、調整弁9にょシェアーリング8より吐出
される冷却空気の量は調整され得るようKなっている。
An air ring 8 is provided on the upper surface side of the die 1 , and a blower 10 is connected to the air ring 8 via a regulating valve 9 . is K so that it can be adjusted.

また、エアーリング8から吐出される冷(p空気によシ
樹脂チューブ4は強制的に冷却され、前記樹脂チューブ
膨張禰斌より上方のバルブ50所定の位置にはフロスト
ラインFが形成される。
Further, the resin tube 4 is forcibly cooled by cold air discharged from the air ring 8, and a frost line F is formed at a predetermined position of the valve 50 above the resin tube expansion rod.

膨張開始部Aおよび膨張路3郁B間の樹脂チューブ膨張
領域における所定の位置には光電検出器11が設けられ
ている。光電検出器11は、互いに同一高さに配置され
た投光器12と受光器13とにより構成され、投光器1
2から樹脂チューブ膨張領域A−8の外周面上の所定の
点に接線方向から接した後に門光器13に至るよう投光
され、また受光器13は、光導電セル、フォトダイオー
ド、フォトトランジスター、フォトレジスター郷よシな
シ、投光器12からの光量の変化を検出するようになっ
ている。
A photoelectric detector 11 is provided at a predetermined position in the resin tube expansion region between the expansion start part A and the expansion path 3B. The photoelectric detector 11 is composed of a light emitter 12 and a light receiver 13 that are arranged at the same height.
2 to a predetermined point on the outer circumferential surface of the resin tube expansion region A-8 from a tangential direction, and then reaches a portal light device 13, and the light receiver 13 includes a photoconductive cell, a photodiode, a phototransistor, etc. , the photoresistor is designed to detect changes in the amount of light from the projector 12.

受光器13における光量変化に基づく信号は、制御部1
4へ送られ、また制御部14は調整弁9に連結されてお
り、前記信号に基づいて制御部14によシ調整弁9が調
整されてエアーりング8の冷却空気吐出量が調整される
よう構成されている。なお、調整弁9は、受光器13に
お轄る光量変化に比例して開口度が調整されるものであ
ることが望ましい。
A signal based on a change in the amount of light in the light receiver 13 is sent to the control unit 1
The control unit 14 is also connected to the adjustment valve 9, and the control unit 14 adjusts the adjustment valve 9 based on the signal to adjust the amount of cooling air discharged from the air ring 8. It is configured like this. Note that it is desirable that the opening degree of the regulating valve 9 be adjusted in proportion to the change in the amount of light applied to the light receiver 13.

次に本実施例の作用につき説明する。Next, the operation of this embodiment will be explained.

投光器12から投光された光が樹脂チューブ彰張領斌A
−BKおける所定の点(接して一部散乱された後、受光
器13に至る場合はエアーリング8からは一定の冷却空
気が吐出されているが、ダイIK供給される溶融樹脂の
温度上昇や成形環境の温度上昇等によってフロストライ
ンFが上昇すると前記樹脂チ゛ユーブ彰張領域における
膨張度合が減少され、あるいは樹脂チューブ膨張領域が
上昇し、投光器12からの光が樹脂チューブ膨張領域の
外周面に接することなく受光器13に入光されることと
なる。したがって受光器13における受光量が増加され
、その増加は電気的信号として制御部14に伝えられ、
制御部14は調整弁9をより開放、する方向に調整し、
その結果エアーリング8かもの冷却空気量が増すので7
0ストラ′インFは下降する。
The light emitted from the floodlight 12 is transmitted through the resin tube Changzhang Lingbin A.
- A certain amount of cooling air is discharged from the air ring 8 at a predetermined point in the BK (after contacting and partially scattering and reaching the receiver 13, a certain amount of cooling air is discharged from the air ring 8, but the temperature rise of the molten resin supplied to the die IK When the frost line F rises due to an increase in the temperature of the molding environment, etc., the degree of expansion in the resin tube expansion region decreases, or the resin tube expansion region rises, and the light from the projector 12 comes into contact with the outer peripheral surface of the resin tube expansion region. Therefore, the amount of light received by the light receiver 13 is increased, and the increase is transmitted to the control unit 14 as an electrical signal.
The control unit 14 adjusts the regulating valve 9 in the direction of opening it more,
As a result, the amount of cooling air for air ring 8 increases, so 7
0 Strain F descends.

一方溶融樹脂の温度下降や成形環境の温度下降等によっ
てフロストラインFが下降すると、前記樹脂チューブ膨
張領域A−8における膨張度合が増加され、あるいは樹
脂チューブ−張領域が下降し、投光器12からの光は樹
脂チューブ膨張領域に連ぎられて受光器13には到達し
なくなる。したがって受光器13における受光量が極端
に減少され、その減少は電気的信号として制御部14に
伝えられ、制御部14は調整弁9をより閉塞する方向に
調整し、その結果エアーリング8からの冷却空気量が減
るのでフロストラインFは上昇する。
On the other hand, when the frost line F decreases due to a decrease in the temperature of the molten resin or a decrease in the temperature of the molding environment, the degree of expansion in the resin tube expansion region A-8 increases, or the resin tube tension region decreases, causing the light emitted from the projector 12 to decrease. The light is connected to the resin tube expansion region and does not reach the light receiver 13. Therefore, the amount of light received by the light receiver 13 is extremely reduced, and this reduction is transmitted as an electrical signal to the control section 14, which adjusts the regulating valve 9 in the direction of closing it more, and as a result, the amount of light received from the air ring 8 is reduced. Since the amount of cooling air decreases, the frost line F rises.

このようにしてグイ1に供給される溶融樹脂の温度や成
形環境の温度等の変動が周期的あるいは一時的に生じて
もフロストラインFは常に一定位置に維持されることと
なる。
In this way, even if the temperature of the molten resin supplied to the gooey 1 or the temperature of the molding environment changes periodically or temporarily, the frost line F is always maintained at a constant position.

このような本実施例によれば次のような効果がある。This embodiment has the following effects.

自動的に70ストラインFの位置が一定化されるため、
作業者が手動で調整する必要がなくなり、作業性が向上
され省力化が果される。
Since the position of the 70th line F is automatically fixed,
The operator no longer needs to make manual adjustments, improving work efficiency and saving labor.

また、冷却空気流に晒されながら樹脂チューブ膨張領域
の表面温度を検出しようとする場合と異なシ、前記膨張
領域の径の変動を把えてエアーリング8の冷却空気吐出
量を、調整するものであるため、検出値に信頼性があり
、フロストラインFの変動要因に対する対応も遂次迅速
且適確になされるという効果がある。したがって、極め
て安定した連続成形、特に高速連続成形を安定して行う
ことができる。
Moreover, unlike the case where the surface temperature of the resin tube expansion region is detected while being exposed to a cooling air flow, the cooling air discharge amount of the air ring 8 is adjusted by grasping the fluctuation in the diameter of the expansion region. Therefore, the detected value is reliable, and countermeasures against the fluctuation factors of the frost line F can be quickly and accurately performed. Therefore, extremely stable continuous molding, especially high-speed continuous molding, can be stably performed.

また、成形フィルムの折中の一定化が容易に果され、厚
みひらが無く、耐衝撃強度などの機械的強度に優れ友高
品質かつ一定品質のフィルムを成形することができる。
Further, the folding of the formed film can be easily made uniform, and a film of uniform quality and high quality can be formed without any thickness fluctuation and excellent mechanical strength such as impact strength.

さらに、バブル5の70ストラインFの高さを光学的に
検知する方法ではポリマーの種類や結晶性の違いなどに
よって信頼性ある検出が全く望めないものであったが、
上述の実施例にあっては光電検出器11が樹脂チューブ
膨張領域に設けられているため、樹脂の種類、性質に関
係なく適用できるという効果がある。
Furthermore, with the method of optically detecting the height of the 70th line F of bubble 5, reliable detection could not be expected at all due to differences in polymer type and crystallinity.
In the above-mentioned embodiment, since the photoelectric detector 11 is provided in the resin tube expansion region, there is an advantage that it can be applied regardless of the type and properties of the resin.

なお、上述の実施例においては、投光!12および受光
器13はそれぞれ1つづつ設けられ、投光器により投光
される一条の光が受光器13に至るよう構成されていた
が、第2図に示される他の実施例のように樹脂チューブ
4の吐出方向と平行方向に沿って、投光器12および受
光513がそれぞれ列んで複数配置され、複数の投光器
12から複数の互いに平行な光が投光されてそれぞれ対
応する受光器13へと至るよう構成されていてもよい。
In addition, in the above-mentioned embodiment, light projection! 12 and one light receiver 13 were provided, and the configuration was such that a ray of light projected by the light emitter would reach the light receiver 13, but as in the other embodiment shown in FIG. A plurality of light emitters 12 and light receivers 513 are arranged in a row along a direction parallel to the ejection direction of 4, so that a plurality of mutually parallel lights are projected from the plurality of light emitters 12 and reach the corresponding light receivers 13. may be configured.

このような場合は、樹脂チューブ膨張領域自体の形状、
例えば急激に膨らんだ形状とか緩やかに膨らんだ形状と
か、その形状自体の変動についても検出され得るもので
ある九め、エアーリング8の冷却空気吐出量をより適確
に調整することができる。
In such cases, the shape of the resin tube expansion area itself,
For example, variations in the shape itself, such as a sharply swollen shape or a gently swollen shape, can also be detected.9) The amount of cooling air discharged from the air ring 8 can be adjusted more accurately.

また、投入器12および受光器13を、第3図に示され
るように、樹脂チューブ膨張領域における所定の高さの
同一仮想平面上にそれぞれ複数配置し、前記同一仮想平
面上において互いに平行な複数条の光線中に樹脂チュー
ブ膨張領域の外周面が位置されるよう構成されているも
のでもよい。
Further, as shown in FIG. 3, a plurality of injectors 12 and a plurality of light receivers 13 are arranged on the same virtual plane at a predetermined height in the resin tube expansion region, and a plurality of them are arranged parallel to each other on the same virtual plane. The outer circumferential surface of the resin tube expansion region may be located in the beam of light.

この場合、前記配置個所における径の微小な変化も確実
に検出されるという効果がある。
In this case, there is an effect that even minute changes in the diameter at the location are reliably detected.

上述のように本発明によれば、フロストラインを自動的
に一定位置に保ち、高品質かつ一定品質のインフレーシ
ョンフィルム(シート)を成形することのできるインフ
レーションフィルム成形装置を提供できる。
As described above, according to the present invention, it is possible to provide a blown film forming apparatus that can automatically maintain a frost line at a constant position and form a blown film (sheet) of high quality and constant quality.

次に本発明を実施例によシ更に詳細に説明する。Next, the present invention will be explained in more detail using examples.

実施例 55鶴φの押出機に70wφのスパイラ′ルダイ(リッ
プ巾12 Kl ) 1に取り付け、さらにグイから5
00髄の高さに80tsφのバブル安定体を取り付け、
高密度ポリエチレン(密fO,955、メルトインデッ
クスα05)を用いて、樹脂温度200℃にて、折中4
50m、肉厚30μmのフィルムを引取速度40m/分
でインフレーション成形を行うに際し、樹脂チューブ膨
張領域の中間点に光電検出器を配置し、70ストライン
の位置がグイより400ssの高さく安定維持されるよ
うにエアーリングからの冷却空気吐出量を自動調整させ
た。
Example 55 A 70wφ spiral die (lip width 12Kl) was attached to a Tsuruφ extruder, and further
Attach a bubble stabilizer of 80tsφ to the height of 00 marrow,
Using high-density polyethylene (density fO, 955, melt index α05), at a resin temperature of 200°C,
When performing inflation molding on a film with a length of 50 m and a wall thickness of 30 μm at a take-up speed of 40 m/min, a photoelectric detector was placed at the midpoint of the resin tube expansion area, and the position of the 70 string was stably maintained at a height of 400 ss above the guide. The amount of cooling air discharged from the air ring is automatically adjusted so that

その結果、不良成形率0で均一で高い品質のフィルムを
得た。
As a result, a uniform and high quality film was obtained with a defective molding rate of 0.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるインフレーシ璽ンフイルム成形装
置〇一実施例の全体構成を示す正面図、第2図および第
3図はそれぞれ前記以外の実施例の要部を示す正面図お
よび断面図である。 A・・・膨張開始部、B・・・膨張終了部、F・・・フ
ロストライン、1・・・グイ、4・・・樹脂チューブ、
5・・・樹脂バブル、8・・・エアーリング、9・・・
調整弁、11・・・光電検出器、12・・・投光器、1
3・・・受光器、14・・・制御部。 代理人 弁理士 木 下 實 三 第1図
FIG. 1 is a front view showing the overall configuration of an inflatable film forming apparatus according to one embodiment of the present invention, and FIGS. 2 and 3 are a front view and a sectional view showing the main parts of other embodiments, respectively. . A... Inflation start part, B... Inflation end part, F... Frost line, 1... Gui, 4... Resin tube,
5... Resin bubble, 8... Air ring, 9...
Regulating valve, 11... Photoelectric detector, 12... Floodlight, 1
3... Light receiver, 14... Control unit. Agent Patent Attorney Minoru Kinoshita Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)  ダイよシ押出された溶融樹脂チューブの膨張
開始部から始まる樹脂チューブ膨張領域における所定の
位置に配置され且帥記位置における樹脂チューブの径を
検出する光電検出器と、この光電検出器からの信号によ
り冷却空気吐出量が調整されるエアーリングとが備えら
れているととを特徴とするインフレーションフィルム成
形装置。
(1) A photoelectric detector that is arranged at a predetermined position in the resin tube expansion region starting from the expansion start point of the molten resin tube extruded through the die and detects the diameter of the resin tube at the indicated position, and this photoelectric detector 1. A blown film forming apparatus comprising: an air ring whose cooling air discharge amount is adjusted according to a signal from the blown film forming apparatus.
JP56176924A 1981-11-04 1981-11-04 Molding device for inflation film Pending JPS5878725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56176924A JPS5878725A (en) 1981-11-04 1981-11-04 Molding device for inflation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56176924A JPS5878725A (en) 1981-11-04 1981-11-04 Molding device for inflation film

Publications (1)

Publication Number Publication Date
JPS5878725A true JPS5878725A (en) 1983-05-12

Family

ID=16022132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56176924A Pending JPS5878725A (en) 1981-11-04 1981-11-04 Molding device for inflation film

Country Status (1)

Country Link
JP (1) JPS5878725A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256212A (en) * 1985-05-10 1986-11-13 Seisan Nipponsha Kk Automatic controller for inflation tube diameter
JPH01317743A (en) * 1988-06-17 1989-12-22 Chiyuugai Boeki Kk Production of inflation film
JPH03106636A (en) * 1989-09-20 1991-05-07 Tomy Kikai Kogyo Kk Resin molding apparatus
JPH03211035A (en) * 1990-01-15 1991-09-13 Shikoku Maruyasu Kk Frost control device for blow molded product
JPH04135734A (en) * 1990-09-27 1992-05-11 Sekisui Chem Co Ltd Apparatus for controlling frost line in inflation molding line
US5258148A (en) * 1991-06-03 1993-11-02 Windmoller & Holscher Process for controlling the degree of orientation of tubular films
US5470216A (en) * 1993-04-05 1995-11-28 Nippon Petrochmicals Company, Limited Film manufacturing apparatus with bubble controlling sensor
CN107209195A (en) * 2015-02-25 2017-09-26 株式会社日立高新技术 Automatic analysing apparatus
WO2020088876A1 (en) * 2018-10-31 2020-05-07 Windmöller & Hölscher Kg Monitoring method and monitoring device for monitoring a film bubble in an exit region of a blown-film device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515021A (en) * 1974-07-01 1976-01-16 Ricoh Kk RENZOKUYOSHIOKURISOCHINO HITSUPARIROORASOCHI
JPS54139670A (en) * 1978-04-17 1979-10-30 Windmoeller & Hoelscher Optimum adjustment of blow film extrusion output by use of process computer and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515021A (en) * 1974-07-01 1976-01-16 Ricoh Kk RENZOKUYOSHIOKURISOCHINO HITSUPARIROORASOCHI
JPS54139670A (en) * 1978-04-17 1979-10-30 Windmoeller & Hoelscher Optimum adjustment of blow film extrusion output by use of process computer and apparatus therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256212A (en) * 1985-05-10 1986-11-13 Seisan Nipponsha Kk Automatic controller for inflation tube diameter
JPH01317743A (en) * 1988-06-17 1989-12-22 Chiyuugai Boeki Kk Production of inflation film
JPH03106636A (en) * 1989-09-20 1991-05-07 Tomy Kikai Kogyo Kk Resin molding apparatus
JPH0575574B2 (en) * 1989-09-20 1993-10-20 Tomi Kikai Kogyo Kk
JPH03211035A (en) * 1990-01-15 1991-09-13 Shikoku Maruyasu Kk Frost control device for blow molded product
JPH04135734A (en) * 1990-09-27 1992-05-11 Sekisui Chem Co Ltd Apparatus for controlling frost line in inflation molding line
US5258148A (en) * 1991-06-03 1993-11-02 Windmoller & Holscher Process for controlling the degree of orientation of tubular films
US5470216A (en) * 1993-04-05 1995-11-28 Nippon Petrochmicals Company, Limited Film manufacturing apparatus with bubble controlling sensor
CN107209195A (en) * 2015-02-25 2017-09-26 株式会社日立高新技术 Automatic analysing apparatus
CN107209195B (en) * 2015-02-25 2018-10-16 株式会社日立高新技术 Automatic analysing apparatus
WO2020088876A1 (en) * 2018-10-31 2020-05-07 Windmöller & Hölscher Kg Monitoring method and monitoring device for monitoring a film bubble in an exit region of a blown-film device

Similar Documents

Publication Publication Date Title
US3568252A (en) Annular cooling device for manufacture of tubular film
US2720680A (en) Methods and machines for producing tubing and sheeting
US3400184A (en) Process and apparatus for preparing film from thermoplastic resins
US2832642A (en) Crinkling device
JPS5878725A (en) Molding device for inflation film
US4472343A (en) Tubular film process
JPS647576B2 (en)
US3959425A (en) Method for extruding tubular thermoplastic film
US3725519A (en) Process for the continuous production of multiaxially stretched tubular films of linear polyesters
US4201741A (en) Blown film process
US4259047A (en) Air ring for the production of blown film
US4938903A (en) Highly intensive cooling process and apparatus for the production of biaxially oriented films of high- and medium-molecular-weight thermoplastics
CA1109216A (en) Air ring for the production of blown film
CA1223412A (en) Cooling apparatus for tubular plastics films extruded from a film blow head
ITMI20001937A1 (en) PROCEDURE AND DEVICE TO COMMAND AND ADJUST THE THICKNESS PROFILE IN THE PRODUCTION OF BLOWN FILM
US3499064A (en) Process and apparatus for producing biaxially oriented thermoplastic tubular films
US2952874A (en) Air ring for use in the manufacture of thermoplastic tubing
US4929162A (en) Air rings for production of blown plastic film
US20030201557A1 (en) Internal bubble cooling control system and method
US6273699B1 (en) Device for manufacturing plastic film
CN117681429B (en) Film blowing device and film blowing method capable of automatically detecting and adjusting thickness
US3207823A (en) Production of flattened tubular plastic film
US5403539A (en) Method and apparatus for molding inflation film
US5470216A (en) Film manufacturing apparatus with bubble controlling sensor
CA1097862A (en) Tubular extrusion apparatus