JPS5878650A - Permeated x-ray detecting apparatus of ct apparatus - Google Patents

Permeated x-ray detecting apparatus of ct apparatus

Info

Publication number
JPS5878650A
JPS5878650A JP56175778A JP17577881A JPS5878650A JP S5878650 A JPS5878650 A JP S5878650A JP 56175778 A JP56175778 A JP 56175778A JP 17577881 A JP17577881 A JP 17577881A JP S5878650 A JPS5878650 A JP S5878650A
Authority
JP
Japan
Prior art keywords
output
ray
preprocessing
preprocessing system
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56175778A
Other languages
Japanese (ja)
Inventor
寛 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP56175778A priority Critical patent/JPS5878650A/en
Publication of JPS5878650A publication Critical patent/JPS5878650A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はCT装置の透過X線検出装置に関する。[Detailed description of the invention] The present invention relates to a transmission X-ray detection device for a CT apparatus.

CT装置の透過X線検出装置は、透過X線を取込み検出
を行い、波形整形の処理、AD変俟処理を行い、AD変
換出力を計算機に出力する機能を持つ。透過X線の取込
みからAD変換出力までの処理時間を短絡するために、
及び画像再構成処理の時間を短縮するために、透過X線
を検出するX線検出器を複数個(例えば6個)設けるや
り万がある。このやり方では、上記複数個の検出器を2
つの群に分け、各群毎に専用の増巾器及びAD変換器よ
構成る前処理系を設け、該AD変換手段からAD変換出
力を計算機に出力するようにしている。然るに、各群毎
の増巾器の性能の不平衡1.各AD変換器の性能の不平
衡か存在すると、両群の出力に有害な差が現われ、画像
再構成の精度が低下したり、リングアーチファクトが発
生したシする欠点を持つ。
The transmitted X-ray detection device of the CT apparatus has the function of taking in transmitted X-rays, detecting them, performing waveform shaping processing, AD modification processing, and outputting AD conversion output to a computer. In order to shorten the processing time from capturing transmitted X-rays to AD conversion output,
In order to shorten the time for image reconstruction processing, it is possible to provide a plurality of (for example, six) X-ray detectors for detecting transmitted X-rays. In this method, the plurality of detectors described above are
They are divided into two groups, and each group is provided with a preprocessing system consisting of a dedicated amplifier and an AD converter, and the AD conversion output is output from the AD conversion means to a computer. However, there is an imbalance in the performance of the amplifiers for each group.1. If there is an unbalance in the performance of each AD converter, a harmful difference will appear in the outputs of the two groups, resulting in disadvantages such as lowering the accuracy of image reconstruction and generating ring artifacts.

本発明の目的は、各群毎の増巾器及びAD変換器よ構成
る前処理系の性能の不平衡の影響を除去可能にし九〇T
装置の透過X線検出装置を提供することにある。
An object of the present invention is to make it possible to eliminate the influence of unbalanced performance of the preprocessing system composed of amplifiers and AD converters for each group, and to achieve 90T.
An object of the present invention is to provide a transmission X-ray detection device.

本発明の要旨は、同一検出器からの出方を各群毎の前処
理系に入力させ、該各群毎の前処理系のそれぞれの出力
を計算機に取込ませ、前処理系相互間の誤差値を求めて
おく。該誤差値をその後の実際OCTデータに補正値と
して反映させる。これによって、前処理系の不平衡によ
る誤差を除去させている。以下、図面により本発明を詳
述する。
The gist of the present invention is to input the output from the same detector into the preprocessing system for each group, to input the respective outputs of the preprocessing system for each group into a computer, and to communicate between the preprocessing systems. Find the error value. The error value is reflected in subsequent actual OCT data as a correction value. This eliminates errors caused by imbalance in the preprocessing system. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の実施例図であるOXX線検出器群上複
数のX線検出器よりib、該検出器群1は2群に分けら
れている。X線検出器の数は、例えば6個であシ、32
個毎に2分されている。各群の出力側には、各検出器対
応に積分回路PAII〜PA1n l 、スイッチ81
1−8in が設けられている。
FIG. 1 is a diagram showing an embodiment of the present invention. OXX-ray detector group ib The detector group 1 is divided into two groups from a plurality of X-ray detectors. The number of X-ray detectors is, for example, 6 or 32.
Each item is divided into two parts. On the output side of each group, there are integrating circuits PAII to PA1n l corresponding to each detector, and a switch 81.
1-8in.

互いに対応するX線検出器、積分回路、スイッチは1個
の検出器系を構成している。2A、2Bは各群毎の積分
回路群、3A、3Bは各群毎のスイッチ群を示している
The X-ray detector, integrating circuit, and switch that correspond to each other constitute one detector system. 2A and 2B indicate an integrating circuit group for each group, and 3A and 3B indicate a switch group for each group.

スイッチStt〜slnの出力は共通に接続され第1群
の前処理系4Aに入力する。スイッチ5al−sunの
出力は共通に接続され第2群の前処理系4Bに入力する
◎前処理系4Aは増巾器41とAD変換器51とよ構成
り、前処理系4Bは増巾器42とAD変換器52とよ構
成る。計算機6は前処理系4Aと4BとのAD変換出力
を時分割で取込み画像再構成処理を行う。
The outputs of the switches Stt to sln are connected in common and input to the first group preprocessing system 4A. The outputs of the switches 5al-sun are commonly connected and input to the second group preprocessing system 4B. The preprocessing system 4A is composed of an amplifier 41 and an AD converter 51, and the preprocessing system 4B is an amplifier. 42 and an AD converter 52. The computer 6 takes in the AD conversion outputs of the preprocessing systems 4A and 4B in a time-sharing manner and performs image reconstruction processing.

積分回路PAmは前処理系誤差検出用に設けられた積分
回路であシ、前処理系誤差検出用のX線検出器からの検
出信号を受取9積分を行う0スイッチamは積分回路P
Amの出力を第1の前処理系4Aに送出するための送出
選択用スイッチ、スイッチSm+1 は積分回路PAm
の出力を第2の前処理系4Bに送出するための送出選択
用スイッチである。
The integration circuit PAm is an integration circuit provided for detecting errors in the preprocessing system, and the 0 switch am, which receives the detection signal from the X-ray detector for detecting errors in the preprocessing system and performs integration, is the integration circuit P.
The switch Sm+1, which is a transmission selection switch for transmitting the output of Am to the first preprocessing system 4A, is an integral circuit PAm.
This is a transmission selection switch for transmitting the output of 1 to the second preprocessing system 4B.

計算機6は、前処理系4A、4BからOCTデータの取
込みによる画像再構成処理の他に、誤差検出時の前処理
系4A、4Bからの誤差検出用データの取込み処理、こ
の取込んだ誤差検出用データをもとにした誤差及び補正
値算出処理、この算出した補正値をメモリに格納してお
く処理、メ七りに格納した補正値を読出し前処理系4A
、4BからOCTデータを補正する処理を行う前処理用
ゾログラムを持つ。
In addition to image reconstruction processing by importing OCT data from the preprocessing systems 4A and 4B, the computer 6 also processes error detection data from the preprocessing systems 4A and 4B at the time of error detection, and processes the imported error detection. Error and correction value calculation processing based on the data for processing, processing for storing the calculated correction value in memory, reading out the correction value stored in the memory, and preprocessing system 4A.
, 4B has a preprocessing zologram that performs processing to correct OCT data.

次に、動作を説明する6本実施例では、実際OCTデー
タを得る被検体検査モードと前処理系の誤差検出モード
とを持つ。被検体検査モードが主操作モードであシ、被
検体検査モードに先立って前処理系の誤差検出モードの
操作が行われる。被検体検査モードの間に前処理系の誤
差検出モードの操作が行われることもあシうる。先ず、
被検体検量モードにおける動作を説明する。
Next, in the sixth embodiment, the operation of which will be explained, there is a subject inspection mode for obtaining actual OCT data and an error detection mode for the preprocessing system. The object testing mode is the main operation mode, and the error detection mode of the preprocessing system is operated prior to the object testing mode. It is also possible that the error detection mode of the preprocessing system is operated during the object testing mode. First of all,
The operation in the analyte calibration mode will be explained.

本実施例では、R−R方式、T−R方式のいずれにも適
用でき、曝射X線はファン状X線であり、該ファン状X
線の透過ファン、状X線は検出器群1を構成する全検出
器で検出される。各積分回路PA1.〜PA、nはその
曝射時間内に検出される対応検出器からの検出信号を積
分する。曝射完了後ス iイツf81.〜Sinを時、
分割でオンする。このスイッチStt〜S、Hの時分割
によるオン操作は、2つの前処理系4A、4Bで同時前
処理を行い、前処理時間を短縮させる目的を持って行う
。具体的には、n個の区間を設定しておき、最初の区間
ではallと811とを同時オン、次の区間ではSXS
と822とを同時オン、・・・、最後の区間でS!nと
S、n  とを同時オンする。各区間では、オンになっ
ている対応スイッチを介してそのスイッチに接続、され
ている積分回路PAの積分値を前処理系4A、4Bに送
る。
This embodiment can be applied to either the R-R method or the T-R method, and the emitted X-rays are fan-shaped X-rays, and the fan-shaped
Ray transmission fan-shaped X-rays are detected by all the detectors constituting the detector group 1. Each integrating circuit PA1. ~PA,n integrates the detection signal from the corresponding detector detected within the exposure time. After the exposure is completed, it is ~Sin at the time,
Turn on in splits. This time-sharing ON operation of the switches Stt to S and H is performed for the purpose of performing simultaneous preprocessing in the two preprocessing systems 4A and 4B and shortening the preprocessing time. Specifically, n sections are set, and in the first section, all and 811 are turned on at the same time, and in the next section, SXS is turned on.
and 822 are turned on at the same time...S in the last section! Turn on n, S, and n at the same time. In each section, the integrated value of the integrating circuit PA connected to the corresponding switch that is turned on is sent to the preprocessing systems 4A and 4B.

前処理系4A、4Bでは増巾器41.42で増巾し、A
D変換器51.52でAD変換する。AD変換器51.
52はAD変換出力を時分割で計算86に転送する。
In pre-treatment systems 4A and 4B, amplification is performed using amplifiers 41 and 42, and A
AD conversion is performed by D converters 51 and 52. AD converter 51.
52 transfers the AD conversion output to calculation 86 in a time-division manner.

具体的には、先ず、AD変換器、51の出力、次いでA
D変換器社の出力という順で行う。こ、の転送では、若
干の転送時間を要するため、AD変換器51 、52は
その転送に要する時間相当分だけのデータラッチを行っ
ている。尚、この区間を短縮するために、上記ラッチ完
了した時点で次の順位のスイツチをオンさせる。これに
よってラッチから転送完了までの時間内を次の順位のス
イッチのオン時間に利用できるため、X@曝射から計算
機6へのCT7″−夕取込みの時間を短縮できる。計算
機6は、全積分回路PAo〜PA2nの積分値をCTデ
ータとして取込むことによって1回の曝射に伴うCTデ
ータの取込みが完了する。2回目の曝射時にも同様な手
順がなされる。以下、何回かの曝射とそれに伴うCTデ
ータの取込みがなされ、断層偉を得るに必要なデータ取
込みの完了を待って、計算機6は、画像再構成演算を行
う。
Specifically, first, the output of the AD converter 51, and then the output of A
The output from D Converter Co., Ltd. will be used in this order. Since this transfer requires some transfer time, the AD converters 51 and 52 perform data latching for an amount corresponding to the time required for the transfer. In order to shorten this period, the switch of the next rank is turned on when the above-mentioned latch is completed. As a result, the time from the latch to the completion of the transfer can be used as the on time for the next switch, so the time from X@ exposure to CT7'' - evening input to computer 6 can be shortened. By capturing the integral values of circuits PAo to PA2n as CT data, the capture of CT data accompanying one exposure is completed.A similar procedure is performed for the second exposure.Hereinafter, several times of exposure will be performed. After the exposure and accompanying CT data have been taken in, the computer 6 performs an image reconstruction operation after waiting for the completion of the data taking required to obtain the tomographic image.

次に、前処理系の誤差検出モードにおける動作を説明す
る。
Next, the operation of the preprocessing system in the error detection mode will be explained.

前処理系4A、4Bの増巾器41.42はAD変換レし
ル較正用Keffられている。例えば、曝射したX線か
減衰せずに、即ち、被検体を通らずに、直接に1線検出
器に入射した時に積、竺回路PAの積分最大出力値Vm
aXは、Vmax==5〜10(V)程度となる。−万
、被検体、例えば腰周シの断面を透過して減衰してきた
X線がX線検出器に入射した時に積分回路PAから得ら
れる積分最小出力値Vminは、Vmln = 0.2
〜0.3 mV程度となる。一方、AD変換器51 、
52は変換できるだけの電圧レベルを持ち、例えば、+
10 Vに設定されている。従って、この変換レベルに
入るように増巾器41.42のダインは設定されている
。例えば、ゲインGはG=1〜4に設定される◇ かかる増巾器41 、42のゲインは同一であることが
理想的であるが、温度や使用時間、使用年数等に応じて
若干のゲインの変動を生ずる。グイ/変動はCTデータ
の誤差となる。前処理系の誤差は主として増巾器41.
42の上記ゲイン変動によって与えられる。他には、A
D変換器51.52の動作誤差かある。
Amplifiers 41 and 42 of the preprocessing systems 4A and 4B are used as Keff for AD conversion level calibration. For example, when the emitted X-rays are not attenuated, that is, they do not pass through the subject and directly enter the single-ray detector, the product is the integrated maximum output value Vm of the line circuit PA.
aX is approximately Vmax=5 to 10 (V). -The minimum integrated output value Vmin obtained from the integrating circuit PA when X-rays that have been attenuated by passing through a cross section of the subject, for example, the waist circumference, enter the X-ray detector is Vmln = 0.2.
~0.3 mV. On the other hand, the AD converter 51,
52 has a voltage level sufficient to convert, for example, +
It is set to 10V. Therefore, the dynes of amplifiers 41 and 42 are set to fall within this conversion level. For example, the gain G is set to G=1 to 4◇ Ideally, the gains of the amplifiers 41 and 42 are the same, but the gain may vary depending on the temperature, usage time, years of usage, etc. causes fluctuations in Gui/fluctuation becomes an error in CT data. The error in the preprocessing system is mainly caused by the amplifier 41.
42 of the above gain variations. In addition, A
There may be an operational error in the D converters 51 and 52.

誤差検出モード時には、該検出区間中スイッチ811 
ゞ8sn * Fk1″Sinはすべてオフとし、スイ
ッチSm e Sm+1のみをオンする。先ず、X@を
曝射しない状態で、前処理系4A、4Bの出力a、bを
時分割で計算機6は取込む。次に、X線を曝射し、減衰
しない状態(被検体等の減衰させる物体が計測空間中に
ない)での透過X線を積分回路PArn対応の検出で検
出する。この検出値を積分回路PAmで積分し、オンに
なっているスイッチSm + Sm+1を介して前処理
系4A、4Bに入力する。かくして得られる前処理系4
A、4Bの出力A、Bを時分割で計算機6は取込む。
In the error detection mode, the switch 811 during the detection period
ゞ8sn * Fk1''Sin is all turned off, and only the switch Sm e Sm+1 is turned on. First, without irradiating X@, the computer 6 extracts the outputs a and b of the preprocessing systems 4A and 4B in a time-sharing manner. Next, X-rays are irradiated, and the transmitted X-rays in an unattenuated state (there is no attenuating object such as a subject in the measurement space) are detected by the detection compatible with the integrating circuit PArn.This detected value is It is integrated by the integrating circuit PAm and inputted to the preprocessing systems 4A and 4B via the switch Sm + Sm+1 which is turned on.The preprocessing system 4 obtained in this way
The computer 6 takes in the outputs A and B of A and 4B in a time-sharing manner.

計算機6は、前処理系4A、4Bでの出力の差(A−a
)、□n−b)を求める。この差はX線の強さにより増
加した出力量である。前処理系4A、4Bは共にX線量
の大小に無関係に一定グインを持つとし、前処理系4A
、4Bの出力Ar 、 Brを縦軸に、横軸にX線量を
とると、前処理系4A。
The computer 6 calculates the difference between the outputs of the preprocessing systems 4A and 4B (A-a
), □n-b). This difference is the amount of power increased by the intensity of the x-rays. It is assumed that both pretreatment systems 4A and 4B have a constant guin regardless of the magnitude of the X-ray dose.
, 4B's output Ar, Br on the vertical axis and the X-ray dose on the horizontal axis, the pretreatment system 4A.

4Bの出力Ar 、 Brは第2図の如き特性となる。The outputs Ar and Br of 4B have characteristics as shown in FIG.

次に、第3図に示す如<、(A−a)を基準として(A
−a)と(B−b)との偏差Δを求める。
Next, as shown in Fig. 3, with (A-a) as a reference, (A
Find the deviation Δ between -a) and (B-b).

Δ−(A−a )−(B−b )・・・・・・・・・(
1)次に、(A−a)とΔとの比Mを求める。
Δ-(A-a)-(B-b)・・・・・・・・・(
1) Next, find the ratio M between (A-a) and Δ.

A  −11A−& このMは補正係数である。前処理系4A、4Bとのゲイ
ンに差異がなければ、(B −b )>(A−a)であ
ればM(0となシ、(B−b)<(A−a)であればM
)0となる。かくして得られた補正係数Mはレジスタに
ラッチされ、CTデータの補正に使用される。
A -11A-& This M is a correction coefficient. If there is no difference in gain between preprocessing systems 4A and 4B, if (B - b ) > (A - a), then M (0), if (B - b) < (A - a), then M
) becomes 0. The correction coefficient M thus obtained is latched in a register and used for correcting CT data.

CTデータは前述した被検体検査モード時に計算機6′
に取込まれた値である。今、前処理系4AOCTデータ
出力を(Am −a )、前処理系4BOCTデータ出
力を(Bm−b)とする時、ゲイン補正は、前処理系4
Bの出力(nmb)に対して行う。この計算式は次式と
なる。
The CT data is stored in the computer 6' during the above-mentioned object examination mode.
This is the value taken into . Now, when the preprocessing system 4AOCT data output is (Am-a) and the preprocessing system 4BOCT data output is (Bm-b), the gain correction is
This is done for the output of B (nmb). The calculation formula is as follows.

C= (Bm −b )+M(Am−a)  −(3)
ここでCは前処理系4Bの出力を補正して得られる補正
後のCTデータである。
C=(Bm-b)+M(Am-a)-(3)
Here, C is corrected CT data obtained by correcting the output of the preprocessing system 4B.

数値事例で示そう。例えば、上記補正係数を求める時点
において、(B−b)と(A−a)とは(B = b 
) = 2 (A −a )−−・−・−・(4)とす
ると、補正係数とは。
Let's show it with a numerical example. For example, at the time of calculating the above correction coefficient, (B-b) and (A-a) are (B = b
) = 2 (A −a )−−・−・−・(4), then what is the correction coefficient?

−b A−a =−1・・・・・・・・・ (5) となる。従って、(3)式の補正値Cは、C=(Bm−
b) −(Am−a)  −−−−−・−・(6)とな
る。ここで、第2図に示した如く前処理系4に、4Hの
ゲインか入力信号(X線量)の大きさによらず一定であ
るとすると、 (Bm −b) = 2 (Am −”)   −・曲
(7)となシ、(6)式は、 C= Am −a             ・・・・
用・・ (8)となる。この補正後のCT7J−タCは
、前処理系4Aの出力と同じとなシ、ゲインの差異によ
る影響は補正できた。
-bA-a=-1... (5) It becomes. Therefore, the correction value C in equation (3) is C=(Bm−
b) −(Am−a) −−−−−・−・(6). Here, assuming that the gain of 4H in the preprocessing system 4 is constant regardless of the magnitude of the input signal (X-ray dose) as shown in Fig. 2, (Bm - b) = 2 (Am -'') -・Song (7) and equation (6) are C= Am -a...
For... (8). The CT7J-taC after this correction was the same as the output of the preprocessing system 4A, and the influence of the difference in gain could be corrected.

簡単な数値で示すとス (B −b )=加、(A−a
)=10とすると、(2)式よシ、M=−1となる。次
KX線の入射強度が憾となる時、(Bm−b)=IO,
(Am−a);5となり、出力に差が生ずる。この値を
(3)式に代入すると、C=5となシ、cT偉の計算に
使用する数は同一となる。
Expressed in simple numbers, (B - b ) = addition, (A - a
)=10, then according to equation (2), M=-1. When the incident intensity of the next KX-ray becomes poor, (Bm-b)=IO,
(Am-a): 5, resulting in a difference in output. When this value is substituted into equation (3), C=5, and the numbers used to calculate cT are the same.

次に、前処理系のゲインが入力信号(X線量)の大小に
よシ変化する場合は、補正係数Mを求める時に入力信号
の範囲を区分し、各々の区分内でのMを求め、(3)弐
による補正を行う。
Next, if the gain of the preprocessing system changes depending on the magnitude of the input signal (X-ray dose), when calculating the correction coefficient M, divide the range of the input signal, calculate M within each division, and calculate ( 3) Perform correction by 2.

第4図に4区分よ9成る補正係数を求めるための説明図
を示す。図で、Al+A11A81A4は前処理系4A
の出力、Bl + 82 m BS + B4は前処理
系4Bの出力である。各区分内での補正後数M、、M、
FIG. 4 shows an explanatory diagram for determining correction coefficients consisting of 4 sections and 9 sections. In the figure, Al+A11A81A4 is the pretreatment system 4A.
The output of Bl + 82 m BS + B4 is the output of the preprocessing system 4B. The number after correction within each category M, , M,
.

M、 、M4は、 となる。かかる補正係数をもとに、(3)式の補正演算
を行い、補正値c、 +C! +C3pc4を求める。
M, , M4 are as follows. Based on this correction coefficient, the correction calculation of equation (3) is performed to obtain the correction value c, +C! Find +C3pc4.

以上の本発明によれば、前処理系のゲインの差を補正す
ることにより充分無視できる程度(正向、誤差検出用X
線検出器、誤差検出用積分回路、誤差検出用のスイッチ
は、被恢体検出用のものを兼用させてもよく、或いは、
独立に誤差検出用として設けたものでもよい。
According to the present invention described above, by correcting the difference in gain of the preprocessing system, it is possible to sufficiently ignore the gain difference (forward direction, error detection
The line detector, error detection integration circuit, and error detection switch may also be used for object detection, or
It may be provided independently for error detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例図、第2図、第3図はその説明
図、第4図は他の実施例を説明する図である。 1・・・X線検出器群、2A、2B・・・積分回路群、
3A、3B・・・スイッチ群、4A、4B・・・前処理
系、6・・・計算機、PAII 〜PA2n 、 PA
m−積分回路、all〜Ban * Bm 、 Sm−
)−t−スイッチ。 特許出願人 株式会社日立メデイコ 代理人 弁理士  秋  本  正  実弟1 図
FIG. 1 is an embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams thereof, and FIG. 4 is a diagram illustrating another embodiment. 1...X-ray detector group, 2A, 2B...integrator circuit group,
3A, 3B... Switch group, 4A, 4B... Preprocessing system, 6... Computer, PAII ~ PA2n, PA
m-integrator circuit, all~Ban*Bm, Sm-
)-t-switch. Patent applicant Hitachi Medeico Co., Ltd. Agent Patent attorney Tadashi Akimoto Younger brother 1 Figure

Claims (1)

【特許請求の範囲】 1、複数のCT用X線検出器系を1つの群として構成さ
れる複数のX線検出器系群と、各X線検出器群を構成す
る複数のX線検出器系について共通に設けられた、X1
m検出器群毎の前処理系と、該前処理系の出力を時分割
で取込む計算機とよ構成ると共に、上記前処理系に被検
体検査時以外の時点でX線源からのX線照射なしのX線
検出器系出力及びX線源からX線を照射し被検体を計測
空間上におかない減衰なしの透過X線によるX線検出器
系出力を入力させ、該入力によって得られる各前処理系
の出力を上記計算機に堆込ませ前処理系のゲイン差によ
る補正用のデータとして設定させてなる構成とするCT
装置の透過X線検出装置。 2、上記検出器系は、X線検出器と、該検出器の出力を
積分する積分回路と、該積分回路の出力を選択出力する
スイッチとより成り、上記前処理系は、上記スイッチか
らの出力を受けとると共にAD変換レベル較正用に使用
される増巾器と、該増巾器出力をAD変換するAD変換
器とよ構成る特許請求の範囲第1項記載OCT装置の透
過X線検出装置。
[Scope of Claims] 1. A plurality of X-ray detector system groups constituted by a plurality of CT X-ray detector systems as one group, and a plurality of X-ray detectors constituting each X-ray detector group. X1, which is commonly provided for the system
It consists of a preprocessing system for each m-detector group and a computer that takes in the output of the preprocessing system in a time-sharing manner. The output of the X-ray detector system without irradiation and the output of the X-ray detector system with transmitted X-rays without attenuation when X-rays are irradiated from the X-ray source and the subject is not placed on the measurement space are input, and the output is obtained by the inputs. A CT configured by inputting the output of each preprocessing system into the computer and setting it as correction data based on the gain difference of the preprocessing system.
The device's transmission X-ray detection device. 2. The detector system includes an X-ray detector, an integrating circuit that integrates the output of the detector, and a switch that selectively outputs the output of the integrating circuit, and the preprocessing system includes the A transmission X-ray detection device for an OCT apparatus according to claim 1, comprising an amplifier that receives an output and is used for AD conversion level calibration, and an AD converter that converts the output of the amplifier into an AD converter. .
JP56175778A 1981-11-04 1981-11-04 Permeated x-ray detecting apparatus of ct apparatus Pending JPS5878650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175778A JPS5878650A (en) 1981-11-04 1981-11-04 Permeated x-ray detecting apparatus of ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175778A JPS5878650A (en) 1981-11-04 1981-11-04 Permeated x-ray detecting apparatus of ct apparatus

Publications (1)

Publication Number Publication Date
JPS5878650A true JPS5878650A (en) 1983-05-12

Family

ID=16002094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175778A Pending JPS5878650A (en) 1981-11-04 1981-11-04 Permeated x-ray detecting apparatus of ct apparatus

Country Status (1)

Country Link
JP (1) JPS5878650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048731A (en) * 1983-08-29 1985-03-16 株式会社日立メディコ X-ray tomographic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048731A (en) * 1983-08-29 1985-03-16 株式会社日立メディコ X-ray tomographic apparatus

Similar Documents

Publication Publication Date Title
JP4326493B2 (en) Method applied to digitization of positron emission tomography (PET) radiation events
US4149259A (en) Transversal filter for convoluted image reconstruction
JPS62161348A (en) X-ray photographing method and apparatus
JPH01320465A (en) Signal processing for oxygen saturation measurement of vital tissue especially for human being
JPH07191962A (en) Correcting circuit for floating-point amplifier
US5056020A (en) Method and system for the correction of image defects of a scanner due to the movements of the latter
GB1569413A (en) Radography
US5371362A (en) Nuclear detection process with base potential correction and correspnding apparatus (particularly a gamma-camera)
JPS59141083A (en) Radiation image formation apparatus
GB2030815A (en) Determination of internal body structures by measuring scattered radiation
JPH0479259B2 (en)
JPS5878650A (en) Permeated x-ray detecting apparatus of ct apparatus
GB1522665A (en) Methods of and apparatus for particle examination
US4075484A (en) Device for measuring radiation absorption or emission
JP3374596B2 (en) Positron CT system
JPS6157840A (en) Radiation tomographic inspecting device
JPS62102739A (en) X-ray tomographic apparatus
JPS5935170A (en) Positron ct apparatus
JP7342316B2 (en) Radiation detector, radiation inspection device, and radiation detection signal processing method
EP3977936A1 (en) Radiographic imaging device and radiographic imaging method
SU1452316A1 (en) Installation for acoustic-emission inspection
JPH1043171A (en) Instrument for measuring bone-salt
JPH01190338A (en) Computer tomographic image apparatus
JPS6113983Y2 (en)
SU647616A1 (en) Method and apparatus for compensating for amplitude spectrum distortions