JPS5878489A - Multiplex wavelength optical amplifier - Google Patents

Multiplex wavelength optical amplifier

Info

Publication number
JPS5878489A
JPS5878489A JP56177400A JP17740081A JPS5878489A JP S5878489 A JPS5878489 A JP S5878489A JP 56177400 A JP56177400 A JP 56177400A JP 17740081 A JP17740081 A JP 17740081A JP S5878489 A JPS5878489 A JP S5878489A
Authority
JP
Japan
Prior art keywords
amplifier
frequency
light
wavelength
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56177400A
Other languages
Japanese (ja)
Other versions
JPH0145751B2 (en
Inventor
Takaaki Mukai
向井 孝彰
Yoshihisa Yamamoto
喜久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56177400A priority Critical patent/JPS5878489A/en
Publication of JPS5878489A publication Critical patent/JPS5878489A/en
Publication of JPH0145751B2 publication Critical patent/JPH0145751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Abstract

PURPOSE:To obtain the amplifier, which can directly amplify a light singal without photoelectric transducing action, can implement the amplification action by using one common element with respect to multiplex wavelength signal light, and has a compact, simple constitution. CONSTITUTION:Two facing reflecting surfaces 3 and 4 are providing in a single current injecting type semiconductor laser amplifier element 1. Light is inputted to one side and outputted from to other side. The reflecting surfaces 3 and 4 act as a half mirror. When a forward direction current is injected from a terminal 2, the element 1 starts laser oscillation at a certain current value or more. Under the bias state lower than this oscillation limit, the Fabry-P erot resonating type linear optical amplifier having a gain vs. frequency characterisic shown by a solid line is obtained. In this amplifier, each carrier wavelength of the incident multiplex wavelength signal light (f1...fN in frequency indication) is set so that it agrees with the frequency of a resonating point. When the multiplex wavelength signal light, whose carrier frequency is the frequency f1... or fN which is equal to the resonance frequency of the amplifier, is inputted into the resonating type optical amplifier 1, respective light is directly amplified, transmitted through the other reflecting surface 4, and taken out.

Description

【発明の詳細な説明】 本発明は、波長多重された光信号を用いる光通信方式に
適する光増幅器に関するものである。特に、波長多重セ
れた光信号を一度電気信号に変換することなく、光のま
ま直接に一増−する光増幅器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical amplifier suitable for optical communication systems using wavelength-multiplexed optical signals. In particular, it relates to an optical amplifier that directly increases wavelength-multiplexed optical signals without converting them into electrical signals.

従来、波長多重光信号の中継用増幅器は、璽個の波長0
JI4tkる搬送波によシ葺波長多大された信号光を分
波器でl個の光ビームに分波し、それぞれの液長の光に
対して個別の素子で増幅を行うものである。41に実用
的には光を一度検波し、電気信号に変換してから識別お
よび再生を行い、再びレーず発振器を用い九光信号発生
を行つ九後にN儂O党ビームを合波するように構成され
る。この丸め構成が豪雑にな)、多重次数菫の増加に伴
い中継器の規模は大きくなる欠点がある。
Conventionally, an amplifier for relaying wavelength-multiplexed optical signals has a wavelength of 0.
Signal light whose wavelength has been multiplied by a JI4tk carrier wave is split into l light beams by a demultiplexer, and each light beam is amplified by a separate element. 41, in practical terms, the light is detected once, converted to an electrical signal, then identified and regenerated, and a laser oscillator is used again to generate a nine-light signal, after which the N-O beam is combined. It is composed of This rounding structure becomes complicated), and the scale of the repeater increases as the number of multi-order violets increases.

光電気変換を行わずに、N個に分岐し走光ビームを各々
1つの一元増幅器で直接増幅する方式も考えられている
が、この場合にも、分#IL器と、■備の光増幅器と、
合fIL器とを要し構IRが複雑になるとともに1個々
の光増幅器から不可避的に発生する雑音が合波器を通し
て伝送路へ送出されるため、伝送系の信号対磐音比が劣
化し中継間隔が短くなシ、実用的な設計が得られない欠
点がある。
A method has also been considered in which the optical beam is branched into N beams and directly amplified by one unified amplifier for each beam without performing photoelectric conversion, but in this case as well, it is necessary to use a split #IL device and an optical amplifier in the equipment. ,
This requires a multiplexer, which complicates the IR structure, and the noise inevitably generated from each optical amplifier is sent out to the transmission line through the multiplexer, which degrades the signal-to-tone ratio of the transmission system. The shortcoming is that the relay interval is short and a practical design cannot be obtained.

本発明は、光電気変換を行うことなく直1ifK光信号
を増幅することのできる増幅器であって、波長多重信号
光に対して、1個の共通の素子にょシ増幅作用を実行さ
せることのできるφ型かつ簡単な構成の増幅器を提供す
ることを目的とする。
The present invention is an amplifier that can amplify a direct 1ifK optical signal without performing opto-electrical conversion, and is capable of performing an amplification effect on wavelength-multiplexed signal light using one common element. It is an object of the present invention to provide a φ-type amplifier with a simple configuration.

本発明は、反射され走光が同一の光路を繰返し通過する
よう〈配設され九2以上の反射面と、仁の反射面の関に
設けられ外部からエネルギが供給されえ増4I#l質を
用い、その利得°周波数幅が上記反射面の間の縦モード
周波数間隔に比べて大きくなるように設定し、入射する
波長多重信号光の彼数の搬送波のR長がこの増幅器の共
振波長のいずtL−IPK−4L、かつ、各入射光の波
長幅がこの増幅器の共振モードKか計る増幅利得のある
波長幅よp小さくなるように設定されたことを特徴とす
る 以下gJIAJlIIf1図面を用いて詳しく説明する
The present invention is arranged so that the reflected light travels through the same optical path repeatedly, and is provided at the interface between 92 or more reflective surfaces and the outer reflective surface, and energy is supplied from the outside. The gain frequency width is set to be larger than the longitudinal mode frequency interval between the reflecting surfaces, and the R length of the carrier wave of the incident wavelength multiplexed signal light is equal to the resonant wavelength of this amplifier. ZtL-IPK-4L, and the wavelength width of each incident light is set to be p smaller than the wavelength width with the amplification gain measured by the resonant mode K of this amplifier. explain in detail.

第1図は本発明の一実施例装置の基本的な構造図である
。!は単一の電流注入型の半導体レーザ増幅素子であり
、端子2からバイアス電流を注入する。この素子1には
二つの対向する反射面3.4があり、矢印で示すように
一方から光を入射し他方から出射する。反射面3.4F
iハーフミラ−として作用する。
FIG. 1 is a basic structural diagram of an apparatus according to an embodiment of the present invention. ! is a single current injection type semiconductor laser amplification element, and a bias current is injected from terminal 2. This element 1 has two opposing reflective surfaces 3.4, and light enters from one and exits from the other, as indicated by the arrows. Reflective surface 3.4F
Acts as a half mirror.

電流注入型の半導体レーず増幅素子lFi、端子2から
層方向の電流を注入してゆくと、ある電流値以上でレー
ず発振を開始する。この発振限界よ)低いバイアス状膣
では、第2図(a)に実線で示すような利得対周波数特
性の7アプリ・ベロ共振1110光直纏増幅器となる。
When a current is injected in the layer direction from the terminal 2 to the current injection type semiconductor laser amplification element lFi, laser laser oscillation starts when the current value exceeds a certain value. In the case of a low bias-like vagina (this oscillation limit), a 7-application Vero-resonant 1110 optical direct chain amplifier has a gain versus frequency characteristic as shown by the solid line in Fig. 2(a).

91図(a)は横軸に周波数、縦軸に利得を示す。図K
 tpで示す周波#(この例では約110 G血、妓長
約27X)毎に共振点が現われる。この周波数fpは上
記反射、面3.40間を光が往復する縦モードの周期に
より定iる。
In FIG. 91(a), the horizontal axis shows frequency and the vertical axis shows gain. Figure K
A resonance point appears at every frequency # indicated by tp (in this example, about 110 G blood, about 27X length). This frequency fp is determined by the period of the longitudinal mode in which light travels back and forth between the reflection surfaces 3 and 40.

その共振点のピークを結ぶと、第2図(、)に破線で、
ぞれ小さい周波数幅・がある′。□ この破線で示す周波数分布で、その利得が最、大となる
点の利得の−となる二つの点について、その周波数間隔
f、を考えると、この例では約40000Hsi以上(
約1001以下)をとること、ができる。
When the peaks of the resonance points are connected, the broken line in Figure 2 (,) is
Each has a small frequency width. □ In the frequency distribution shown by this broken line, if we consider the frequency interval f between the two points where the gain is the maximum and the gain is -, in this example, it is approximately 40,000Hsi or more (
1001 or less).

また一つや共振点についてその利得半値幅f、を考える
と、2 T−5GHz程度になる。最大−得Gは20〜
50 dBを得ることができる。。
Also, considering the gain half width f for one resonance point, it is about 2 T-5 GHz. Maximum gain G is 20~
50 dB can be obtained. .

このような特性Ot!幅器に対して、大町する波長多重
信号光の4!!−搬送波波長(周波数表示でfl、fl
、・−・・・fl )をちょうグこの共振点の周波数に
一致させるように設定する。上記例で、利得半値幅f、
が4000 GII厘で、共振轡間隔fpが1108H
■とすれば、仁の利得半値幅fWの中、に40個近い共
振点が得られるので多重数rは約4.0まで遺でること
になる。
Such characteristics Ot! 4 of the wavelength multiplexed signal light that is transmitted to the width transmitter! ! -Carrier wavelength (fl, fl in frequency display)
, ...fl) are set to match the frequency of this resonance point. In the above example, the gain half width f,
is 4000 GII, and the resonance pitch fp is 1108H.
If (2), nearly 40 resonance points are obtained in the half-width fW of the gain, so the multiplexing number r remains up to about 4.0.

すなわち、増幅器の★線周波数に一致した周波数fl 
、fl 、−−−−f、を搬送波周波数とする波長多重
信号光を共振層の光増幅器IK入射すると、それヤれO
光が直*に増幅されて他の反射面4を透過して取〉出さ
れる。入力の周波数f1、fl、・・・−fMは、必ず
しも隣にあって並んでいる必要は攻<、とびとびであっ
てもかまわな−〇このように単一の増幅器でfl、fl
、・・・”” fNのすべての多重信号光を直接に増幅
するため、増幅器から発生し、伝送路へ送出遮れる雑音
は、これを個別O増幅lIKよシ増幅する方式に比べ1
//Igとなり、中継間隔を拡大することがで龜る。
In other words, the frequency fl that matches the ★ line frequency of the amplifier
When wavelength-multiplexed signal light with carrier frequency , fl , ----f is input to the optical amplifier IK of the resonant layer, it becomes distorted.
The light is directly amplified and transmitted through another reflective surface 4 and extracted. The input frequencies f1, fl, ... -fM do not necessarily have to be next to each other, but they may be discrete. In this way, a single amplifier can input frequencies f1, fl, ...
,..."" Because all the multiplexed signal light of fN is directly amplified, the noise generated by the amplifier and blocked by the transmission path is 1. compared to the method of amplifying it with individual O amplification lIK.
//Ig, which makes it difficult to expand the relay interval.

増幅利得は、入力信号光パワーが増加すると飽和するが
、飽和−により利得がs an低下するときの飽和出力
は、通常の半導体レーザ増幅器では−10〜−s ai
s−′の値となっている。1備の周波数の信号を多重化
して増幅する本発明では、個々の周波数の光で許される
増幅器出力は上記飽和出力の値の1/Iとなるが、徽少
入力党を直線的に増幅する光中継器ではこれは大きな欠
点とはならない。
The amplification gain is saturated as the input signal optical power increases, but when the gain decreases due to saturation, the saturated output is -10 to -sai in a normal semiconductor laser amplifier.
The value is s-'. In the present invention, which multiplexes and amplifies signals of one frequency, the amplifier output allowed for light of each frequency is 1/I of the above-mentioned saturation output value. For optical repeaters, this is not a major drawback.

本発明を実施するととのできる増幅器の素子としては、
これ以外にも閾値以上で軸条モード発振を行う気体、固
体、色素等の種々のレーザを閾値以下で動作させ、増幅
器素子とすることで同様の波長多重光増幅器を構成でき
る。
Amplifier elements that can be used to implement the present invention include:
In addition to this, a similar wavelength multiplexing optical amplifier can be constructed by operating various lasers such as gas, solid, and dye lasers that perform axial mode oscillation above the threshold below the threshold and using them as amplifier elements.

本発明の多の実施例として、ファブリペロ型以外で半導
体利得媒質や他の媒質を用いて共振型増幅素子を構成す
るための共振器として第3図または第4図のような5枚
あるいF14枚の反射面(10または11)をもつリン
グ型共振器を用いることができる。この例でも各反射面
(XOt九#1ll)の間に、バイアスを与えられた媒
質が配置される。
As a further embodiment of the present invention, as a resonator for constructing a resonant type amplification element using a semiconductor gain medium or other medium other than the Fabry-Perot type, a five-piece resonator or an F14 resonator as shown in FIG. 3 or 4 is used. A ring resonator with two reflective surfaces (10 or 11) can be used. In this example as well, a biased medium is placed between each reflecting surface (XOt9#1ll).

ま友、第5図に1半導体中に集積化するものとして、入
力用導波路12と出力用導波路1401$lIK増幅利
得をもち、かつ導波路12と14を結合させる丸めに長
さLの方向性結合導波路13を配置し九構成を用いると
とができ今。この場合Ka共振周波数間隔が Δν=’/nし ただしnは屈折率、Cは光速 となる。増幅中心周波数はΔν N(Nは整数)となる
Mayu, Figure 5 shows an input waveguide 12 and an output waveguide 1401 having an IK amplification gain, and a round shape with a length L to couple the waveguides 12 and 14. It is now possible to arrange the directional coupling waveguide 13 and use nine configurations. In this case, the Ka resonance frequency interval is Δν='/n, where n is the refractive index and C is the speed of light. The amplification center frequency is Δν N (N is an integer).

以上説明したように、利得幅が共振周波数間隔より大き
い1個の共振型光増幅器を用いて、その共振周波数に一
致した多数の周波数の多重化信号光を同時に増幅するこ
とができる。特に、小型、高利得低Q共振器である半導
体レーザ増幅器で、これを行えば、高性能の波長多重伝
送用の光中継器を簡単に構成できる。
As described above, by using one resonant optical amplifier whose gain width is larger than the resonant frequency interval, it is possible to simultaneously amplify multiplexed signal light having a large number of frequencies that match the resonant frequency. In particular, if this is done with a semiconductor laser amplifier that is a small, high-gain, low-Q resonator, a high-performance optical repeater for wavelength multiplexing transmission can be easily constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第115i!lは本発明実施例装置の基本構造図。 第2図は動作原理を説明するための特性図および周波数
配置図。 第3図および第4図は別の本発明実施例装置の構造図。 第5図社同様の原理により動作する応用例の説明図。 l・・・増幅媒質(半導体レーザ素子)、2−・・バイ
アス電流供給端子、3.4−・反射面。 M 1 図 蔦 2 圏 亮 3 図 月 41¥l 昂 5 口
115th i! 1 is a basic structural diagram of an apparatus according to an embodiment of the present invention. FIG. 2 is a characteristic diagram and a frequency allocation diagram for explaining the operating principle. 3 and 4 are structural diagrams of another embodiment of the device of the present invention. Figure 5 is an explanatory diagram of an application example that operates based on the same principle. 1--Amplification medium (semiconductor laser element), 2--Bias current supply terminal, 3.4--Reflection surface. M 1 Zutsuta 2 Kenryo 3 Zutsuki 41¥l Kou 5 mouth

Claims (2)

【特許請求の範囲】[Claims] (1)反射され九光が同一の光路を繰返し通過するよう
に配設された2以上の反射面と、この反射面の関に設け
られ外部牟らエネルギが供給された増幅媒質とを備え、
その利得周波数幅が上記反射面の間隔で定まる縦モード
周波数間隔に比べて大きくなるように設定され、増幅媒
質に入射される入射光を増幅して取出すように構成され
た共振型の光増幅器において、入射光が波長多重信号光
であって、この波長多重信号光の複数の搬送波の波長が
この増幅lB8共振波長のいずれかに一致し、かつ、各
入射光の波長幅がこの増幅器の共振モードにおける増幅
利得のある波長幅より小さくなるように設定され九こと
を特徴とする波長多重光増幅器。
(1) Comprising two or more reflecting surfaces arranged so that the nine reflected lights repeatedly pass through the same optical path, and an amplification medium provided between the reflecting surfaces and supplied with external energy,
In a resonant optical amplifier, the gain frequency width is set to be larger than the longitudinal mode frequency interval determined by the interval between the reflecting surfaces, and is configured to amplify and extract incident light incident on an amplification medium. , the incident light is wavelength-multiplexed signal light, the wavelengths of the plurality of carrier waves of the wavelength-multiplexed signal light match any of the amplification lB8 resonance wavelengths, and the wavelength width of each incident light is within the resonant mode of this amplifier. A wavelength multiplexing optical amplifier characterized in that the amplification gain is set to be smaller than a certain wavelength width.
(2)反射面の数が2個であり、増幅媒質が発振限界よ
)低いバイアス電流が与えられた半導体レーザ素子であ
る特許請求の範囲第(1)項に記載の波長多重光増幅器
(2) The wavelength multiplexing optical amplifier according to claim (1), wherein the number of reflecting surfaces is two, and the amplification medium is a semiconductor laser device to which a bias current lower than the oscillation limit is applied.
JP56177400A 1981-11-05 1981-11-05 Multiplex wavelength optical amplifier Granted JPS5878489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56177400A JPS5878489A (en) 1981-11-05 1981-11-05 Multiplex wavelength optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177400A JPS5878489A (en) 1981-11-05 1981-11-05 Multiplex wavelength optical amplifier

Publications (2)

Publication Number Publication Date
JPS5878489A true JPS5878489A (en) 1983-05-12
JPH0145751B2 JPH0145751B2 (en) 1989-10-04

Family

ID=16030260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177400A Granted JPS5878489A (en) 1981-11-05 1981-11-05 Multiplex wavelength optical amplifier

Country Status (1)

Country Link
JP (1) JPS5878489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245740A (en) * 1986-04-17 1987-10-27 Nec Corp Wavelength multiplex optical transmission system
JPH02226233A (en) * 1989-02-28 1990-09-07 Canon Inc Semiconductor optical amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245740A (en) * 1986-04-17 1987-10-27 Nec Corp Wavelength multiplex optical transmission system
JPH02226233A (en) * 1989-02-28 1990-09-07 Canon Inc Semiconductor optical amplifier

Also Published As

Publication number Publication date
JPH0145751B2 (en) 1989-10-04

Similar Documents

Publication Publication Date Title
US6104527A (en) High efficiency bandwidth doubled and gain flattened silica fiber amplifier
JP3025210B2 (en) Apparatus including optical fiber Raman amplifier
JP3025211B2 (en) Device with optical fiber Raman amplifier
JP3425964B2 (en) Optical signal generator and optical transmission system using stimulated Brillouin scattering
US8687659B2 (en) All-optical generation of 60 GHz millimeter wave using multiple wavelength Brillouin-Erbium fiber laser
JPH0681119B2 (en) WDM optical transmission system
US5392153A (en) Optical amplifier
KR960006371A (en) Amplified telecommunications system for wavelength division multiplexed transmission with equalized receive power
US6480327B1 (en) High power laser system with fiber amplifiers and loop PCM
US5548438A (en) Bidirectional optical amplifier
US5721637A (en) Wavelength converter apparatus
JPH09197452A (en) Optical fiber communication system
JPS5878489A (en) Multiplex wavelength optical amplifier
JPS5885588A (en) Wavelength multiplex light amplifying device
JPS6157744B2 (en)
CA2035804A1 (en) Double-core, active fiber optical amplifier having a wide band signal wavelength
JP3239590B2 (en) Two-wavelength band amplifier and wavelength division multiplex transmission device using the same
JP2002296630A (en) Optical fiber wavelength converter
JPS5848513A (en) Optical amplifier for wave shaping
JPH0317633A (en) Optical inverter
Nelson et al. Passive multiplexing techniques for fiber optic sensor systems
JPH1154842A (en) Light source for optical integrated type optical communication
JPH0354530A (en) Optical repeater and optical transimssion line network using the same
JPH04309929A (en) Long-wavelength light source
JPH04251828A (en) Optical amplifier