JPS5878417A - Vacuum vessel for thin film formation - Google Patents

Vacuum vessel for thin film formation

Info

Publication number
JPS5878417A
JPS5878417A JP17636181A JP17636181A JPS5878417A JP S5878417 A JPS5878417 A JP S5878417A JP 17636181 A JP17636181 A JP 17636181A JP 17636181 A JP17636181 A JP 17636181A JP S5878417 A JPS5878417 A JP S5878417A
Authority
JP
Japan
Prior art keywords
substrate
cooling
heating
holder
substrate support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17636181A
Other languages
Japanese (ja)
Other versions
JPS6256652B2 (en
Inventor
Kazuo Nakamura
一雄 中村
Shinya Homan
信也 宝満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP17636181A priority Critical patent/JPS5878417A/en
Publication of JPS5878417A publication Critical patent/JPS5878417A/en
Publication of JPS6256652B2 publication Critical patent/JPS6256652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To establish sufficient thermal contact between a heating/cooling holder and substrate support in order to enhance thermal conduction characteristic and to precisely control a cooling and heating temperature of the substrate support by additionally providing a pressurizing means which holds both substrate holder and heating/cooling holder with a pressure larger than that generated by gravity in case of mounting said substrate holder to said heating/ cooling holder. CONSTITUTION:A substrate support 3 is placed on a carrier base 8a and is then carried to the specified location 8 within the evaporation chamber 5. Here, when the substrate holder is lowered to the location indicated by 11B of Fig. B, a spring 14B is maximumly compressed as will be understood from the figure. Thereafter, the heating/cooling substrate holder is returned to the position 11A from the position 11B. In this final condition, the spring 14A is elongated longer than 14B but is more compressed than the first spring 14. Therefore, the substrate support 10A is compressed to the heating/cooling substrate holder with a force 50-100 times larger as a compared with a force of contact system by self- weight.

Description

【発明の詳細な説明】 この発明は真空蒸着、ス・母ツタリング、ドライエツチ
ング、プラズマCVD等の薄膜形成真空装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum apparatus for forming thin films such as vacuum evaporation, star sintering, dry etching, and plasma CVD.

基板挿入室と薄膜形成室の2つ又はそれ以上の真字室を
有し、複数枚の被処理基板例えばウェノ・−をセットし
た基板支持体を搬送機構にのせ、搬送機構が薄膜形成室
の中を移動しながら、又は止って薄膜形成を行ういわゆ
るインライン方式の薄膜形成真空装置においては、基板
支持体にセットされたウェハーをランプ又はヒータによ
シ傍熱加熱することはできても、冷却することは極めて
困難であった。そζで冷却を必要5、とする場合は、基
板支持体を搬送機構で搬送して薄膜形成室にある加熱冷
却の可能なテーブルの上に置くロードロック式の薄膜形
成^全装置が使用されていた。しかしこの真空装置にお
いても、テーブルの加熱及び水冷により基板支持体を加
熱及び冷却することはできるが、テーブルと基板支持体
の熱接触が不充分のため基板支持体と基板の温度を希望
するように制御することは不可能であった。
It has two or more true character chambers, a substrate insertion chamber and a thin film forming chamber, and a substrate support on which a plurality of substrates to be processed, such as wafers, are set, is placed on a transport mechanism, and the transport mechanism moves into the thin film forming chamber. In so-called in-line thin film forming vacuum equipment, which forms thin films while moving or stopping, the wafer set on the substrate support can be indirectly heated using lamps or heaters, but it is not possible to cool the wafer. It was extremely difficult to do so. If cooling is required5, the substrate support is transported by a transport mechanism and placed on a table in the thin film forming chamber that can be heated and cooled.A load-lock type thin film forming apparatus is used. was. However, even in this vacuum device, although the substrate support can be heated and cooled by heating the table and cooling with water, the thermal contact between the table and the substrate support is insufficient, so the temperature of the substrate support and the substrate cannot be adjusted to the desired temperature. It was impossible to control.

以上述べたように、テーブルと基板支持体間の熱接触不
良のため2例えばリフトオフのためにレジストを塗布し
た基板を用いる場合とが極めて微小な結晶粒界から成る
薄膜を作製する場合には。
As described above, due to poor thermal contact between the table and the substrate support, for example, when using a resist-coated substrate for lift-off, and when producing a thin film consisting of extremely fine grain boundaries.

ih製最中基板温度を低温に保つ必要があったのにも拘
らず基板搬送機構をもつ従来装置ではそれが困難であっ
た。他方膜作製の最中あるいは作製後の熱処理のために
基板温度を室温よシも高いある特定の温度に極めて精度
のよい範囲内で保持する必要が生ずることもあったが、
従来装置ではそれも困難であった。
Although it was necessary to maintain the substrate temperature at a low temperature during IH manufacturing, it was difficult to do so with conventional equipment equipped with a substrate transport mechanism. On the other hand, it has sometimes become necessary to maintain the substrate temperature within a very precise range at a certain temperature, which is higher than room temperature, for heat treatment during or after film fabrication.
This was also difficult with conventional equipment.

量を得ようとするものである。It is an attempt to obtain quantity.

本発明によれば、基板挿入室と、加熱冷却基板ホルダー
を持ち1つ又はそれ以上の室から成る薄膜形成室部と、
この薄膜形成室部と前記基板挿入室の間に設けられた隔
離バルブ手段と、被処理基板をセットした基板支持体を
前記基板挿入室から却ホルダに取付は取外しする着脱手
段とを有するロードロック方式の薄膜形成装置において
、前記基板支持体を前記加熱冷却ホルダに取シ付けたと
膜形成真空装置が得られる。
According to the present invention, a thin film forming chamber section including a substrate insertion chamber and one or more chambers having a heating and cooling substrate holder;
A load lock having isolation valve means provided between the thin film forming chamber and the substrate insertion chamber, and attachment/detachment means for attaching and detaching the substrate support on which the substrate to be processed is set from the substrate insertion chamber to the cooling holder. In this type of thin film forming apparatus, when the substrate support is attached to the heating and cooling holder, a film forming vacuum apparatus is obtained.

次に図面を用いて本発明について詳細に説明する。Next, the present invention will be explained in detail using the drawings.

第1図社この発明の一実施例であるロードロック式の蒸
着装置の構成の概略をあられした断面模式図である◎は
しめに基板支持体の動きを説明する。基板挿入室1にあ
る基板支持体上下機構2に基板支持体3をのせ、主Iン
グ4にょシ真空排気する。一方蒸着室5は主ポンゾロに
より真空排気されておシ、とこで隔離バルブ7を開く。
Figure 1 is a schematic cross-sectional view outlining the configuration of a load-lock type vapor deposition apparatus which is an embodiment of the present invention. Finally, the movement of the substrate support will be explained. The substrate support 3 is placed on the substrate support up/down mechanism 2 in the substrate insertion chamber 1, and the main I ring 4 is evacuated. On the other hand, the vapor deposition chamber 5 is evacuated by the main Ponzoro, and then the isolation valve 7 is opened.

そして薄膜形成室である蒸着室5にある搬送用台座8が
2ツクピニオン方式の自動搬送機構9によ)基板挿入室
の81で示した所定の位atで移動する。
Then, the transport pedestal 8 in the vapor deposition chamber 5, which is a thin film forming chamber, is moved to a predetermined position 81 in the substrate insertion chamber (by a two-pinion automatic transport mechanism 9).

なお10は基板支持体をあらゎすものであるが。Note that 10 stands for the substrate support.

この時点はまた存在しない。This point also does not exist.

次に、基板支持体上下機構2が下の位置まで下降し、基
板支持体3が搬送用台座8a上にのる。
Next, the substrate support vertical mechanism 2 is lowered to the lower position, and the substrate support 3 is placed on the transport pedestal 8a.

これは点線3′であられしである。次に搬送用台座8a
が再び蒸着室5の所定の位置8で示したもとのところま
でもどる。このとき基板支持体は先に説明した10の位
置にくる。こζであとに詳しく説明するが、加熱冷却基
板ホルダー11を基板支持体10の所まで下降し、第1
図には示してない着脱用爪で基′板支持体10を装着し
、再び上昇してもとの位置に戻す。この時隔離バルブ7
は閉となシ、基板支持体の蒸発源12がらの蒸着準備が
完了する。以上の動作は全て自動的に行なわれる。
This is indicated by the dotted line 3'. Next, the transportation pedestal 8a
returns to the predetermined position 8 in the deposition chamber 5 again. At this time, the substrate support is at the position 10 described above. As will be explained in detail later, the heating and cooling substrate holder 11 is lowered to the substrate support 10, and the first
The substrate support 10 is attached using an attachment/detachment claw (not shown), and then it is raised again and returned to its original position. At this time isolation valve 7
When the evaporation source 12 of the substrate support is closed, preparation for evaporation is completed. All of the above operations are performed automatically.

なお点線で丸く示した13の部分には基板支持体10’
と台座8・′との間にばね14とばね押え15が介在し
ていることを示したもので2次の第2図の説明との関連
を示したために図示したものである。
Note that the substrate support 10' is located at the part 13 circled with a dotted line.
This figure shows that a spring 14 and a spring presser 15 are interposed between the pedestal 8 and the pedestal 8.

なおばね14は最も長く伸びた状態にある。Note that the spring 14 is in its longest extended state.

142図は第1図の本発明による装置の主要部を示した
図であって、に)は支持板(第1図の10)を加熱冷却
基板ホルダー11に装着した場合の断をあられし、 (
(’)はω)の点線の丸で囲んだ部分を上から見た状態
をあられしている。そして第1図におけると同じ要素に
は同じ参照数字にA、B、Cを付して示しである。まず
基板支持体搬送用台座8に乗ってきた基板支持体、ばね
、ばね押への組合せがCB)におけるIIB、14B、
15Bに示す定位置にそれぞれ止められる。そこで(4
)に示したベアリング21によ多回転可能なつめ回転腕
22により留め具23のつめ24を、初における24m
の位置(向き)に置く。なおこの留め具23は。
FIG. 142 is a diagram showing the main parts of the apparatus according to the present invention shown in FIG. (
(') shows the part surrounded by the dotted line of ω) viewed from above. The same elements as in FIG. 1 are designated by the same reference numerals with A, B, and C added thereto. First, the combination of the substrate support, spring, and spring pusher mounted on the substrate support transfer pedestal 8 is IIB, 14B in CB),
Each is stopped at the fixed position shown in 15B. So (4
) The pawl 24 of the fastener 23 is rotated by the bearing 21 shown in FIG.
Place it in the position (orientation). In addition, this fastener 23.

つめ24は回転するが、全体として加熱冷却基板ニルダ
11に固定されている。モして25Aは被処理基板であ
るウェハーである。
Although the pawl 24 rotates, the entirety is fixed to the heating/cooling board nilder 11. Furthermore, 25A is a wafer which is a substrate to be processed.

ここで基板ホルダーを下げて小)のl1mで示した位置
まで下げる。この場合つめは24aの位置にあって下降
通路から外れているので、加熱冷却基板ホルダー11A
の下降を妨げない。そして加熱冷却基板ホルダーが(B
)のIIBに示すところまで下降した状態では、ばね1
4Bは図からも分るように最も強く圧縮されている。
At this point, lower the substrate holder to the position indicated by l1m (small). In this case, the pawl is at position 24a and is out of the descending path, so the heating and cooling board holder 11A
does not impede the descent of the And the heating and cooling board holder (B
), the spring 1
As can be seen from the figure, 4B is the most strongly compressed.

次につめ回転腕22によシつめ24mの位置から24b
の位置まで回し、加熱冷却基板ホルダーを113Bの位
置からIIAの位置(第1図の11と同じ)にまで戻す
・したがって24Bの位置にあったつめは若干上ったと
とるでばね押え15Bに尚シ(このときばね14Bは1
4Aの長さまで伸びている)、以後は基板保持体10B
を持ち上げ、最終的にに)に示したような配置になる。
Next, move the pawl rotating arm 22 from the pawl 24m position to 24b.
Turn the heating/cooling board holder to position 113B and return it to position IIA (same as 11 in Figure 1). Therefore, assume that the pawl at position 24B has risen slightly, so move it to spring retainer 15B. (At this time, spring 14B is 1
4A), and thereafter the substrate holder 10B.
, and the final arrangement is as shown in ).

上記の最終的の状態においては、ばね14Aの長さは、
14Bよりは伸びているが、最初の第1図におけるばね
14よルは圧縮されている。このため基板支持体10A
は加熱冷却基板ホルダー11Aに従来の基板支持体10
A自身の重量によ軸 る接触方式に比較して5o−j’xoo倍の力で圧着さ
れる。従って例えば加熱冷却基板ホルダー11Aが70
℃に加熱されているとき、バネを用いない従来方式では
基板支持体10Aの温度は接触後1時間たっても室温2
5℃から2〜3℃しか上昇しダー11Aの温度とほぼ等
しくなった〇第2図囚に示してシールドカバー26は、
加熱冷却基板ホルダー11Aに高圧を印加したときに放
電が基板ホルダー以外に及ぶのを防止するためのもので
あ)、これによF) A?ワー効率がよく、又余分な所
の放電が少ないためにそこからスノ4 ツタリングされ
て出しくる不純物が少なく、ウェノ・−25Aへの汚染
の心配が少ない。またこのウェハー25Aがレジストの
塗布しであるリフトオフ用のものである場合、基板ホル
ダーに約10℃程度の冷却水を流して冷却するととによ
シアスパッタエツチングによる基板温度上昇をレジスト
の耐熱限界である80℃以下に保つことが可能であった
In the above final state, the length of the spring 14A is
Although more extended than 14B, spring 14 in the first Figure 1 is compressed. For this reason, the substrate support 10A
The conventional substrate support 10 is attached to the heating and cooling substrate holder 11A.
Comparing with the contact method using the weight of A itself, it is crimped with 5 o-j'xoo times the force. Therefore, for example, the heating and cooling substrate holder 11A is 70
℃, in the conventional method that does not use springs, the temperature of the substrate support 10A remains at room temperature 2 even after 1 hour after contact.
The temperature rose by only 2 to 3 degrees Celsius from 5 degrees Celsius and became almost equal to the temperature of the heater 11A. As shown in Figure 2, the shield cover 26
This is to prevent discharge from reaching areas other than the substrate holder when high voltage is applied to the heating/cooling substrate holder 11A). The power efficiency is high, and since there is little discharge in unnecessary areas, there are few impurities that come out from there, so there is little worry about contamination of the Weno-25A. In addition, if this wafer 25A is for lift-off use, where resist is applied, cooling water at about 10°C may be flowed through the substrate holder to prevent the rise in substrate temperature due to shear sputter etching, which is within the heat resistance limit of the resist. It was possible to maintain the temperature below a certain 80°C.

以上の説明では−1板ホルダ一温度を約10℃及び約7
0℃に保つ場合について述べたが1本発明は特に基板ホ
ルダーの温度設定方法及び所定の基板温度に制約をもつ
ものではない。例えば液体窒素を用いて冷却して液体窒
素温度に基板温度を保持する目的でも本発明は有効であ
る。
In the above explanation, the -1 plate holder temperature is approximately 10℃ and approximately 7℃.
Although the case where the temperature is maintained at 0° C. has been described, the present invention is not particularly limited to the method of setting the temperature of the substrate holder or the predetermined substrate temperature. For example, the present invention is also effective for maintaining the substrate temperature at the liquid nitrogen temperature by cooling using liquid nitrogen.

以上述べたように本発明では、基板支持体の搬送と着脱
機構を用いることによシ、ロードロック方式の薄膜形成
真空装置において基板支持体の冷却及び加熱の温度が精
密に制御できるので、薄膜形成上ウェハーの温度制御が
重要であるリフトオフ蒸着、リフトオフスパッタリング
、ドライエツチング等を所望の条件で行うことができ、
従って良質の製品を得ることができる。
As described above, in the present invention, by using the conveyance and attachment/detachment mechanism of the substrate support, the cooling and heating temperatures of the substrate support can be precisely controlled in a load-lock type thin film forming vacuum apparatus. Lift-off vapor deposition, lift-off sputtering, dry etching, etc., in which wafer temperature control is important during formation, can be performed under desired conditions.
So you can get high quality products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるロードロック式の蒸着
装置の構成の概略をあられした断面模式図、第2図は第
1図の本発明による装置の主要部を示した図で、■は断
面を示した図、俤)は装着時における断面を示した図、
t′)は(B)の一部を上から見た図である。 記号の説明=1は基板挿入室、2は基板支持体上下機構
、3と3′は(搬送前の)基板支持体、4は主ポンプ、
5と5Aは蒸着室、6は主ポンプ。 7社隔離バルブ、8.8a、8B、8Cは搬送用台座、
9はラックピニオン式搬送機構、10゜10A、IOB
は(搬送後の)基板支持体、以下A、B、Cは省略じて
、11は加熱冷却基板ホルダー、12は蒸着源、14は
ばね、15はばね押え、22はつめ回転腕、23は留め
具、24は留め具のつめ、24aと24bはつめ24の
2つの位置、25はウェハー、26はシールドカバーを
それぞれあられしている。
FIG. 1 is a schematic cross-sectional view of the configuration of a load-lock type vapor deposition apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the main parts of the apparatus according to the present invention shown in FIG. ■ is a diagram showing a cross section, 俤) is a diagram showing a cross section when installed,
t') is a top view of a part of (B). Explanation of symbols = 1 is the substrate insertion chamber, 2 is the substrate support vertical mechanism, 3 and 3' are the substrate support (before transportation), 4 is the main pump,
5 and 5A are the deposition chambers, and 6 is the main pump. 7 company isolation valves, 8.8a, 8B, 8C are transportation pedestals,
9 is rack and pinion type transport mechanism, 10° 10A, IOB
11 is a heating/cooling substrate holder, 12 is a deposition source, 14 is a spring, 15 is a spring presser, 22 is a claw rotation arm, 23 is a substrate support (after transportation), hereinafter A, B, and C are omitted. The fastener, 24 is the claw of the fastener, 24a and 24b are the two positions of the claw 24, 25 is the wafer, and 26 is the shield cover.

Claims (1)

【特許請求の範囲】 1、基板挿入室と、加熱冷却基板ホルダーを持ち1つ又
はそれ以上の室から成る薄膜形成室部と。 この薄膜形成室部と前記基板挿入室の間に設けられた隔
離バルブ手段と、被処理基板をセットした基板支持体を
前記基板挿入室から前記薄膜形成室は取外しする着脱手
段とを有するロードロック方式の薄膜形成真空装置にお
いて、前記基板支持体を前記加熱冷却ホルダに取り付け
たときに重力に装置。 2、前記加圧手段が前記のよシ大きな圧力を圧縮したば
ねによシ得るようにしたことを特徴とする特許請求の範
囲(1)の薄膜形成真空装置。
[Claims] 1. A thin film forming chamber comprising a substrate insertion chamber and one or more chambers having a heating and cooling substrate holder. A load lock having isolation valve means provided between the thin film forming chamber and the substrate insertion chamber, and an attachment/detachment means for removing a substrate support on which a substrate to be processed is set from the substrate insertion chamber. In the thin film forming vacuum apparatus of the above-mentioned method, when the substrate support is attached to the heating/cooling holder, gravity is applied to the apparatus. 2. The thin film forming vacuum apparatus according to claim 1, wherein the pressurizing means is configured to apply the greater pressure to a compressed spring.
JP17636181A 1981-11-05 1981-11-05 Vacuum vessel for thin film formation Granted JPS5878417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17636181A JPS5878417A (en) 1981-11-05 1981-11-05 Vacuum vessel for thin film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17636181A JPS5878417A (en) 1981-11-05 1981-11-05 Vacuum vessel for thin film formation

Publications (2)

Publication Number Publication Date
JPS5878417A true JPS5878417A (en) 1983-05-12
JPS6256652B2 JPS6256652B2 (en) 1987-11-26

Family

ID=16012263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17636181A Granted JPS5878417A (en) 1981-11-05 1981-11-05 Vacuum vessel for thin film formation

Country Status (1)

Country Link
JP (1) JPS5878417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165421A (en) * 1984-09-07 1986-04-04 Matsushita Electric Ind Co Ltd Device for plasma chemical vapor deposition
JPH036366A (en) * 1989-06-02 1991-01-11 Nippon Steel Corp Substrate holder fixing base for reaction vapor-deposition device
JP2016125107A (en) * 2015-01-06 2016-07-11 株式会社カネカ Thin film deposition apparatus, method for manufacturing thin film using the same and method for manufacturing organic el apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105540U (en) * 1990-02-09 1991-10-31
JPH0592310U (en) * 1992-05-19 1993-12-17 丸井産業株式会社 Construction spacer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165421A (en) * 1984-09-07 1986-04-04 Matsushita Electric Ind Co Ltd Device for plasma chemical vapor deposition
JPH036366A (en) * 1989-06-02 1991-01-11 Nippon Steel Corp Substrate holder fixing base for reaction vapor-deposition device
JP2016125107A (en) * 2015-01-06 2016-07-11 株式会社カネカ Thin film deposition apparatus, method for manufacturing thin film using the same and method for manufacturing organic el apparatus

Also Published As

Publication number Publication date
JPS6256652B2 (en) 1987-11-26

Similar Documents

Publication Publication Date Title
US6108937A (en) Method of cooling wafers
US5674786A (en) Method of heating and cooling large area glass substrates
US6486444B1 (en) Load-lock with external staging area
US5914493A (en) Charged-particle-beam exposure apparatus and methods with substrate-temperature control
US8196619B2 (en) Load lock apparatus, processing system and substrate processing method
US6357143B2 (en) Method and apparatus for heating and cooling substrates
US6270582B1 (en) Single wafer load lock chamber for pre-processing and post-processing wafers in a vacuum processing system
EP0513834B1 (en) Method and apparatus for cooling wafers
US8354001B2 (en) Processing thin wafers
US7194199B2 (en) Stacked annealing system
JP2004523880A (en) Double double slot type load lock for processing equipment
KR20080110482A (en) Vapor phase growing apparatus and vapor phase growing method
US6561796B1 (en) Method of semiconductor wafer heating to prevent bowing
US6200432B1 (en) Method of handling a substrate after sputtering and sputtering apparatus
JPS5878417A (en) Vacuum vessel for thin film formation
TW536741B (en) Substrate processing equipment and method and covering member for use therein
US10115611B2 (en) Substrate cooling method, substrate transfer method, and load-lock mechanism
US6957690B1 (en) Apparatus for thermal treatment of substrates
JPH0756864B2 (en) Epitaxy vapor phase growth equipment
JPH11345771A (en) Sheet type vacuum treating method and device
JPH01292826A (en) Wafer processing apparatus
JPH05160030A (en) Substrate cooling system
JPH0793268B2 (en) Plasma CVD equipment
JPH0237744A (en) Transfer