JPS5878348A - Manufacturing device for glass bulb for emission tube - Google Patents

Manufacturing device for glass bulb for emission tube

Info

Publication number
JPS5878348A
JPS5878348A JP17543581A JP17543581A JPS5878348A JP S5878348 A JPS5878348 A JP S5878348A JP 17543581 A JP17543581 A JP 17543581A JP 17543581 A JP17543581 A JP 17543581A JP S5878348 A JPS5878348 A JP S5878348A
Authority
JP
Japan
Prior art keywords
glass
glass tube
laser beam
pair
beam irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17543581A
Other languages
Japanese (ja)
Inventor
Shigeru Sudo
須藤 繁
Masaaki Yada
矢田 正明
Yuji Tanaka
裕司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP17543581A priority Critical patent/JPS5878348A/en
Publication of JPS5878348A publication Critical patent/JPS5878348A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/043Heating devices specially adapted for re-forming tubes or rods in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/045Tools or apparatus specially adapted for re-forming tubes or rods in general, e.g. glass lathes, chucks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/07Re-forming tubes or rods by blowing, e.g. for making electric bulbs

Abstract

PURPOSE:To enable glass bulbs with high quality and high dimensional accuracy to be manufactured in a short time, without any need of the skillfulness, irrespective of the diameter of the glass bulbs, by providing a means of stopping the radiating action of a laser-light radiating device in preference to control of a program controller when the outer diameter detected by an outer-diameter detector indicates a given value. CONSTITUTION:It is clear that the outer diameter and the shape of a spherical expanded part are determined for each combination of the diameter and the thickness of a worked glass tube (P), according to the radiation time of laser light, the periods of the forward movements and the backward movements of shucks 4a and 4b, and the increasing state of the internal pressure. Therefore, by sputtering a cam timer 23 and timers 25, 27 and 28 according to a manual prepared on the basis of the results of experiments, glass bulbs with a designated size can be manufactured in large numbers in a short time. In addition, since laser light is used as a heating source, high-quality glass bulbs which are not contaminated with any hydrogen or the like can be manufactured.

Description

【発明の詳細な説明】 本発明は、発光青用ガラス球体製造装置Wに係り、特に
、直径数■のものであっても短時間にかつ歩留りよく製
造できるようにした製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus W for producing glass spheres for luminescent blue, and more particularly to an apparatus capable of producing glass spheres with a diameter of several square meters in a short period of time and with high yield.

最近、家庭用照明光源の分野においても省エネルギ化が
f寸はれておシ、この要望に応えるべく種々の提案がな
されている。たとえば、その1つとして発光効率の高い
高圧放′屯灯を家庭用照明光源として用いる提案かめる
。高圧放′亀灯、たとえばメタルハライドランノは、石
英容器、゛ つまりガラス球内に一対め電極を配置する
とともに始動ガスや金属化合物などを封入したものであ
るが、効率が白熱電球の4〜5倍と良く、また、光色も
極めてすぐれている。したがってこのような高圧放電灯
を家庭用照明光源として用いれば省エネルギ化の要望を
満すことが可能である。
Recently, there has been an increase in energy saving in the field of household lighting sources, and various proposals have been made to meet this demand. For example, one proposal is to use high-pressure open-air lamps with high luminous efficiency as home lighting sources. High-pressure lamps, such as metal halide lamps, have a pair of electrodes placed inside a quartz container, i.e., a glass bulb, and are filled with starting gas and a metal compound. It's twice as good, and the light color is also extremely good. Therefore, if such a high-pressure discharge lamp is used as a home illumination light source, it is possible to satisfy the demand for energy saving.

ところで、現在市販されている茜圧放′五灯は100〜
1000 (W)と高出力で屋外や高天井の室内で用い
るものが大半である。したがって、家庭用照明光源にす
るには出力を20〜40(W)とし、それに伴なわせて
発光管を小形化する必要がある。この場合、発光管用ガ
ラス球全如伺にして製造するかと云う点が問題となる。
By the way, the Akane pressure release'goto currently on the market is 100~
Most of them have a high output of 1000 (W) and are used outdoors or indoors with high ceilings. Therefore, in order to use it as a home lighting light source, it is necessary to increase the output to 20 to 40 (W) and to reduce the size of the arc tube accordingly. In this case, the question is whether to manufacture the entire glass bulb for the arc tube.

すなわち、現在市販されている高圧放電灯の発光管用ガ
ラス球は、一般に加工熱源として酸水素バーナを用いた
ガラス旋盤で製造されている。
That is, glass bulbs for arc tubes of high-pressure discharge lamps currently on the market are generally manufactured on a glass lathe using an oxyhydrogen burner as a processing heat source.

しかし、酸水素バーナでは炎の広が9が大きく、加熱範
囲が広くなるので小球ケ形成しようとしても紡鋪形にな
る傾向が強い。特に、直径5簡程度の小球を高い寸法精
度で形成するととは極めて困難である。また、酸水素バ
ーナを用いたガラス旋盤でガラス球を形成した場合、形
成時に酸水素炎中の水素が石英に溶は込み易く、このた
め、このようなガラス球でメタルノ・ライドランノを形
成した場合を例にとると、ランノの寿命期間中にガラス
内に溶は込んでいる水素が放電空間に拡散してランノの
始m特性を悪化させることが知られている。特に、20
〜40(W)の小形メタルノ・ライドラ/ノでは上述し
た水素の影舎がよシ強く表われることが予想される。さ
らに−また、従来の酸水素・クーテを用いたガラス旋盤
は、その操作に熟練を要し、生産性に欠ける問題がある
However, in the case of an oxyhydrogen burner, the flame spread 9 is large and the heating range is wide, so even if small balls are attempted to be formed, they tend to become spindle-shaped. In particular, it is extremely difficult to form small spheres with a diameter of about 5 mm with high dimensional accuracy. In addition, when glass spheres are formed using a glass lathe using an oxyhydrogen burner, the hydrogen in the oxyhydrogen flame tends to melt into the quartz during formation, and for this reason, when forming metalno-hydrogen with such glass spheres, For example, it is known that hydrogen dissolved in the glass during the life of the runno diffuses into the discharge space and deteriorates the initial characteristics of the runno. In particular, 20
It is expected that the above-mentioned hydrogen shadow will appear more strongly in the small-sized metalno-lidra/no of ~40 (W). Furthermore, the conventional glass lathe using an oxyhydrogen coute requires skill to operate and has a problem of low productivity.

本発明は、このような事情fC鑑みてなされたもので、
その目的とするところは、球径の大小に関係夕く、葦だ
熟練度を必要とせずに高品質、高寸法精度のガラス球体
を短時間で製造でき、将米矛想される高圧放電灯の家庭
用照明光源化の実現に十分を与できる発光宮用ガラス球
体製造装置を提供することにある。
The present invention was made in view of such circumstances,
The aim is to manufacture glass spheres of high quality and high dimensional accuracy in a short time, regardless of the size of the sphere diameter, without requiring any level of skill. An object of the present invention is to provide an apparatus for manufacturing a glass sphere for a luminescent lamp, which is sufficient to realize the realization of a light source for household lighting.

すなわち、本発明に係る製造装置は、被加ニガラスチュ
ーブ金保持し、このチューブに回転力、圧縮力および引
張力を選択的にI4するガ5− ラス旋盤と、このガラス旋盤に保持された被加ニガラス
チューブの表面に加工用レーザ光f選択的に照射して軟
化させるレーザ光照射装置iと、前記被加工ガラスチー
−ブ内の圧力を選択的に可変するガス供給装置と、予め
定められたプログラムにしたがって前記ガラス旋盤、レ
ーザ光照射装置およびガス供給装置を制御して前記被加
ニガラスチューブのレーザ光照射部位に球状膨出部を形
成させるプログラム制御装置とで構成されている。プロ
グラム制御装置は、設定を変えることによってどのよう
なプログラムでも組むことができるが、たとえば次のよ
うなノログラムに設定される。すなわち、スタート指令
が与えられると、まず、ガラス旋盤に保持されて連続回
転している被加工ガラスチーープQこレーザ光照射装置
からレーザ光を照射させる。レーザ光の照射によって被
加工ガラスチー−ブが軟化する時点になると、ガラス旋
盤に圧縮力付与指令を与えるとともにガラス供給装置K
にガス供給指令を与える。したがって、被加工ガラスチ
ューブは軟化している部分が球形に膨出することになる
。そして、ある大きさに膨出した時点でレーザ光照射装
置に照射停止指令を与え、次にガス供給装置に停止指令
を与える。被加工ガラスチー−プの球形に膨出した部分
の外径は、レーザ光の照射期間、内圧、圧縮力、引張力
、被加ニガラスチューブの肉厚等によって一義的に決ま
る。したがって、これらを考慮にいれてプログラムを設
定しておきさえすれは、自動的に外径寸法の等しいガラ
ス球体を製造することができる。
That is, the manufacturing apparatus according to the present invention includes a glass lathe that holds a glass tube to be processed and selectively applies rotational force, compressive force, and tensile force to the tube; a laser beam irradiation device i that selectively irradiates the surface of the glass tube to be processed with a processing laser beam f to soften it; a gas supply device that selectively varies the pressure inside the glass tube to be processed; and a program control device that controls the glass lathe, the laser beam irradiation device, and the gas supply device in accordance with a programmed program to form a spherical bulge at the laser beam irradiation portion of the glass tube to be processed. The program control device can create any program by changing the settings, but for example, it is set to the following program. That is, when a start command is given, first, a laser beam is irradiated from a laser beam irradiation device to the glass to be processed, which is held in a glass lathe and continuously rotated. When the glass cube to be processed is softened by laser beam irradiation, a compressive force application command is given to the glass lathe, and the glass supply device K
Give gas supply command to. Therefore, the softened portion of the glass tube to be processed bulges out into a spherical shape. Then, when the bulge reaches a certain size, an irradiation stop command is given to the laser beam irradiation device, and then a stop command is given to the gas supply device. The outer diameter of the spherically bulging portion of the glass tube to be processed is uniquely determined by the laser beam irradiation period, internal pressure, compressive force, tensile force, wall thickness of the glass tube to be processed, etc. Therefore, as long as the program is set taking these into account, glass spheres having the same outer diameter can be automatically manufactured.

そして、この場合には、上記設定要素の選択によって設
計通りの寸法のもの全短時間に製造できるし、また、熱
源としてレーザ光を用いているので水素などが浴は込ん
でいない品質のすぐれたガラス球体全製造することがで
きる。
In this case, by selecting the above-mentioned setting elements, products with the designed dimensions can be manufactured in a short period of time, and since laser light is used as the heat source, high-quality products can be produced that do not contain hydrogen or other substances. Glass spheres can be manufactured entirely.

また、本発明に係る製造装、直は上述した構成要件に加
えて球状膨出部の外径を光学的に検出する外径検出装置
を設けるとともに上記外径検出装置で検出された外径が
定められた値のとき前記ノログラム制御装置の制御に優
先させてレーザ光照射装置の照射動作を停止させる手段
を設けたものである。
In addition to the above-mentioned constituent elements, the manufacturing equipment according to the present invention is also provided with an outer diameter detection device that optically detects the outer diameter of the spherical bulge, and the outer diameter detected by the outer diameter detection device is Means is provided for stopping the irradiation operation of the laser beam irradiation device, giving priority to the control of the norogram control device when the value is determined.

したがって、前記と同様な効果が得られることは勿論の
こと、特に球状膨出部の外径を検出し、上述した動作を
行なわせるようにしているので、なお一層高寸法精度の
ものを製造することができる。
Therefore, not only can the same effects as described above be obtained, but also the outer diameter of the spherical bulge is detected and the above-mentioned operation is performed, which makes it possible to manufacture products with even higher dimensional accuracy. be able to.

以下、本発明の実施例を回向を参照しながら説明する。Hereinafter, embodiments of the present invention will be described with reference to the present invention.

第1図は本発明の一実施例に係る製造装置を模式的に示
すもので、この装置は次のように構成されている。
FIG. 1 schematically shows a manufacturing apparatus according to an embodiment of the present invention, and this apparatus is constructed as follows.

すなわち、図中Jはガラス旋盤であり、このガラス旋盤
工は、大きく分けて、基台2と、この基台2の上面に図
中左右方向に移動自在でかつ同一線上に対向して配置さ
れた一対の可動部材、9m 、3bと、これら可動部材
Jm 、、9bの対向面に互いに同軸的に対向し、かつ
回転自在に支持されて被加工ガラスチー−ブPを保持す
る一対の保持機構、つまりチャック4m 、 4bと、
前記可動部材3aに固定されたモータ5の回転力を図示
しない機構を介してチャック4m。
That is, J in the figure is a glass lathe, and this glass lathe machine can be roughly divided into a base 2 and a machine that is movable in the left and right direction in the figure and placed facing each other on the same line on the top surface of this base 2. a pair of movable members 9m, 3b, and a pair of holding mechanisms coaxially opposed to each other and rotatably supported on opposing surfaces of these movable members Jm, 9b to hold the glass cheese P to be processed; In other words, chucks 4m and 4b,
The rotational force of the motor 5 fixed to the movable member 3a is applied to the chuck 4m via a mechanism (not shown).

4bに伝え、上記チャック4m 、4bを同方向に等速
度で同期回転させる第1の駆動機構6と、前記基台2上
に固定されたモータ7および一端側が上記モータ7の回
転軸に連結され他端側か前記可動部材3a、Jbに設け
られた図示しないネジ孔に螺合した送りネジ8からなる
第2の駆動機構9とで構成されている。なお、上記送シ
ネジ8の可動部材3のネジ孔に螺合する部分Q1は左ネ
ジに形成はれており、またOr動部材3bのネジ化に螺
合する部分Q2は右ネジに形成されている。
4b, and synchronously rotates the chucks 4m and 4b in the same direction at a constant speed; a motor 7 fixed on the base 2; and one end connected to the rotating shaft of the motor 7. The other end includes a second drive mechanism 9 consisting of a feed screw 8 screwed into a screw hole (not shown) provided in the movable members 3a and Jb. Note that the portion Q1 of the feed screw 8 that is screwed into the screw hole of the movable member 3 is formed with a left-hand thread, and the portion Q2 that is screwed into the threaded portion of the moving member 3b is formed with a right-hand thread. There is.

しかして、ガラス旋盤りの上方にはレーザ光照射装置L
す1己置されている。レーザ光照射装置10は、たとえ
ば炭酸ガスレーザ発振管Iノと、このレーザ発振管1ノ
から送出されたレーザ光12を図中上下動可能なレンズ
13を介して前記チャック4a、4b間に位置する被9
− 加工ガラスチー−ブPの表面に向けて照射する反射鏡1
4と、この反射鏡14とレーザ発振管Iノとの間に位置
してレーザ光12の照射を選択的にじゃWfするシャッ
タ15とで構成されている。
However, above the glass lathe is a laser beam irradiation device L.
One person is placed there. The laser beam irradiation device 10 is located between the chucks 4a and 4b, for example, through a carbon dioxide laser oscillation tube I and a laser beam 12 emitted from the laser oscillation tube 1 through a vertically movable lens 13 in the figure. Covered 9
- Reflector 1 that illuminates the surface of processed glass cube P
4, and a shutter 15 located between the reflecting mirror 14 and the laser oscillation tube I and selectively blocking the irradiation of the laser beam 12.

一方、前記チャック4a 、4bに保持された被加工ガ
ラスチー−ゾPは、チャック4a側に位置する開口端が
適宜な栓によって閉塞され、チャック4b側に位置する
開口端が図示しない回転シール機構を介してガス供給装
置工16.に接続される。ガス供給装置L1は、内圧が
数気圧に保たれた空気ゴンペ17と、この空気?ンペ1
7と被加工ガラスチー−ブPとの間に介挿された一It
磁弁18とで構成されている。
On the other hand, the glass to be processed P held by the chucks 4a and 4b has its open end located on the chuck 4a side closed with a suitable stopper, and its open end located on the chuck 4b side closed by a rotary sealing mechanism (not shown). Gas supply equipment via 16. connected to. The gas supply device L1 includes an air gompe 17 whose internal pressure is maintained at several atmospheres, and this air? Empe 1
7 and the glass cheese P to be processed.
It is composed of a magnetic valve 18.

しかして、前記ガラス1耐盤りのモータ7、レーザ光照
射装H173oのシャッタ15およびガス供給装置り互
の電磁弁18は次に述べるプログラム制御装置21によ
って制@1される。このノログラム制御装置21は、モ
ータ22によって駆動されるカムタイマ23を主体とし
たもので、上記カムタイマ23の第1の出力をシャツタ
コ10− ントローラ24に尋人してシャッタ15を後述する関係
に制御し、また、カムタイマ23の第2の出力をタイマ
25を介してモータコントローラ26に導入し、モータ
7の正転を後述する関係に制御し、同様にカムタイマ2
3の第3の出力をタイマ27を介してモータコントロー
ラ26に導入し、モータ7の逆転を後述する関係に制御
し、さらにカムタイマ23の第4の出力をタイマ28に
導入して電磁弁18を後述する関係に制御するようにし
ている。
The motor 7 of the glass 1, the shutter 15 of the laser beam irradiation device H173o, and the electromagnetic valve 18 of the gas supply device are controlled by a program control device 21, which will be described below. This nologram control device 21 mainly includes a cam timer 23 driven by a motor 22. The first output of the cam timer 23 is applied to a shirt tachometer 10 and a controller 24 to control the shutter 15 in the relationship described below. Also, the second output of the cam timer 23 is introduced to the motor controller 26 via the timer 25, and the normal rotation of the motor 7 is controlled in the relationship described later.
The third output of the cam timer 23 is introduced into the motor controller 26 via the timer 27 to control the reverse rotation of the motor 7 in the relationship described below, and the fourth output of the cam timer 23 is introduced into the timer 28 to control the solenoid valve 18. The relationship is controlled to be described later.

次に上記のように構成された装置を使ってガラス球体全
製造する場合の動作を説明する。
Next, the operation of manufacturing a glass sphere using the apparatus configured as described above will be explained.

まず、被加ニガラスチューブPをチャック4a、4bに
保持させる。この場合、チャック4a側の開口端を栓で
閉蒸し、壕だチャック4b側の開口端を回転シール機構
を介してガス供給装置LLに接続する。。
First, the glass tube P to be applied is held by the chucks 4a and 4b. In this case, the open end on the chuck 4a side is sealed with a plug, and the open end on the trench chuck 4b side is connected to the gas supply device LL via a rotary seal mechanism. .

次に、カムタイマ23の谷出力の送出される順序および
期間をマニアルにしたがって設定する。次にモータ6を
手動操作で回転開始させる。
Next, the order and period in which the valley outputs of the cam timer 23 are sent out are set according to the manual. Next, the motor 6 is manually started to rotate.

モータ6が回転を開始すると被加工ガラスチネープPは
一定速度たとえば40 rpmでたとえば図中矢印29
で示す方向へ回転を開始する。
When the motor 6 starts rotating, the glass line P to be processed moves at a constant speed, for example, 40 rpm, at the arrow 29 in the figure.
Start rotating in the direction shown.

このような状態でレーザ発振管ノ1を動作状態にする。In this state, the laser oscillation tube 1 is brought into operation.

なお、このときシャッタノ5は図中破線で示すように閉
じているものとする。次に、第2図に示すように時点t
oでモータ22を回転開始させる。モータ22が回転す
ると、カムタイマ23が動作を開始し、このカムタイマ
23は、まず第1の出力を送出する。この結果、第2図
に示すようにシャッタ15が@開″となり、レーザ光1
2が被加工ガラスチ二−ブPの表面に照射される。した
がって、被加ニガラスチューブPの照射部位は徐々に軟
化する。このようにして時点t2に至るとカムタイマ2
3から第4の出力の送出が開始され、タイマ28が動作
する。すなわ、ち、タイマ28は@2図に示すように電
磁弁18を、たとえば0゜2秒間隔で0、5秒ずつ間欠
的に付勢する。したがって、被加ニガラスチューブP内
の圧力は徐々に増加する。被加ニガラスチューブPのレ
ーザ光R射部位はすでにるるS度軟化しているので上述
の如く内圧が増加すると上記部位が外側に向けて膨張を
開始する。そして、時点t3に至るとカムタイマ23が
第2の出力の送出を開始する。この結果、タイマ25が
たとえば1.25秒間隔で1.25秒ずつ出力を送出し
、この出力に基いてモータコントローラ26がモータ7
を間欠的に正転させる。この正転によってチャック4a
At this time, it is assumed that the shutter 5 is closed as shown by the broken line in the figure. Next, as shown in FIG.
The motor 22 starts rotating at o. When the motor 22 rotates, the cam timer 23 starts operating, and the cam timer 23 first sends out a first output. As a result, the shutter 15 is opened as shown in FIG. 2, and the laser beam 1
2 is irradiated onto the surface of the glass tube P to be processed. Therefore, the irradiated area of the glass tube P to be added gradually softens. In this way, when time t2 is reached, cam timer 2
The transmission of the third to fourth outputs is started, and the timer 28 starts operating. That is, the timer 28 intermittently energizes the solenoid valve 18, for example, at 0.2 second intervals for 0.5 seconds, as shown in Figure 2. Therefore, the pressure inside the glass tube P to be applied gradually increases. Since the part of the glass tube P to be applied to which the laser beam R is irradiated has already softened by a degree S, as described above, when the internal pressure increases, the part starts to expand outward. Then, at time t3, the cam timer 23 starts sending out the second output. As a result, the timer 25 sends an output for 1.25 seconds at 1.25 second intervals, and based on this output, the motor controller 26 controls the motor 7.
rotates forward intermittently. Due to this forward rotation, the chuck 4a
.

4bが互いに軸方向に近づき被加工ガラスチー−プPに
圧縮力が加わる。被加ニガラスチューブPは、前述の如
く軟化しておυ、また、内圧も徐々に増加しているので
、さらに外径が大さくなる方向へ膨張する。そして、時
点t4に至るとカムタイマ23からの第4の出力の送出
が一旦停止する。このため、電磁弁J8が閉じたま\と
なる。この状態で時点t6が到来すると、カムタイマ2
3から第2の出力の送出が停止される。したがって、モ
ータ7の正転動作が停止する。そして、時点t6に至る
と、カムタイマ13− 23から再び第4の出力が送出され、この結果、再び電
磁弁18が間欠的に付勢されて被加ニガラスチューブP
内の圧力が再び徐々に増加する。
4b approach each other in the axial direction, and compressive force is applied to the glass chip P to be processed. The glass tube P to be heated is softened as described above, and the internal pressure is also gradually increasing, so that it further expands in the direction of increasing its outer diameter. Then, at time t4, the transmission of the fourth output from the cam timer 23 is temporarily stopped. Therefore, the solenoid valve J8 remains closed. When time t6 arrives in this state, cam timer 2
3, the transmission of the second output is stopped. Therefore, the normal rotation operation of the motor 7 is stopped. Then, at time t6, the fourth output is sent out again from the cam timer 13-23, and as a result, the solenoid valve 18 is intermittently energized again, and the applied glass tube P
The pressure inside gradually increases again.

そして、時点t7に至ると、カムタイマ23から第3の
出力の送出が開始され、この結果、タイマ22が動作し
、その出力に基いてモータコントローラ26がモータ7
をたとえば1.25秒間隔で1.25秒ずつ逆転させる
。この逆転によってチャ、り4m 、4bが互いに軸方
向へ後退し、この後退によって被加ニガラスチューブP
の膨出部分の形状が球形に成形される。そして時点t8
でカムタイマ23の第3の出力の送出が停止され、モー
タ7の回転が停止される。この時点においては、まだ電
磁弁が間欠的に付勢されており、したがって、内圧は保
々に増力口している。そして、時点t9において、カム
タイマ23から第1の出力の送出が停止され、との結果
、シャッタ15が閉じて被加工ガラステエープPへのレ
ーザ光の照射が停止される。このため、被加ニガラスチ
ューブPの膨出部の温度14− が徐々に低下する。そして、時点ttoに至るト、カム
タイマ23からの出力が停止され、続いて時点tllに
おいてモータ22の回転動作が停止し、一連の!pルブ
ラム御を終了する。したがって、この時点でレーザ発振
管1ノの動作を止めるとともにモータ6を止めてチャッ
ク4a、4bから被加ニガラスチューブP’lり外せば
、第3図に示すように被加ニガラスチ−ブPの中途部位
に球状膨出部Xを有したものを得ることができ、このよ
うに形成されたものの図中2点鎖線で示す部分を切断す
ることによって発光管用ガラス球体を得ることができる
Then, at time t7, the cam timer 23 starts sending out the third output, and as a result, the timer 22 operates, and the motor controller 26 controls the motor 7 based on the output.
For example, it is reversed by 1.25 seconds at 1.25 second intervals. Due to this reversal, the shafts 4m and 4b retreat from each other in the axial direction, and this retreat causes the applied glass tube P
The shape of the bulging part is formed into a spherical shape. and time t8
At this point, the transmission of the third output of the cam timer 23 is stopped, and the rotation of the motor 7 is stopped. At this point, the solenoid valve is still intermittently energized, so the internal pressure is constantly increasing. Then, at time t9, the transmission of the first output from the cam timer 23 is stopped, and as a result, the shutter 15 is closed and the irradiation of the laser beam to the glass tape P to be processed is stopped. Therefore, the temperature 14- of the bulging portion of the glass tube P to be applied gradually decreases. Then, at time tto, the output from the cam timer 23 is stopped, and then at time tll, the rotational operation of the motor 22 is stopped, and a series of! Terminate control of the p rubrum. Therefore, at this point, if the operation of the laser oscillation tube 1 is stopped, the motor 6 is stopped, and the heated glass tube P'l is removed from the chucks 4a and 4b, the heated glass tube P'l is removed as shown in FIG. A glass sphere for an arc tube can be obtained by cutting the thus formed part shown by the two-dot chain line in the figure.

そして、この場合、球状膨出部Xの外匝および形状は、
被加ニガラスチューブPの径および肉厚との関連におい
て、レーザ光照射時間、チャック4m、4bの前進期間
および後退期間、内圧の増加具合によって一義的に決唸
ることは明らかであるから、予め実験結果に基いて作成
されたマニアルにしたがってカムタイマ23とタイマ2
5,27.28とを設定すれば、指定寸法のものを短時
間に多量に製造することができる。また、加熱源として
レーザ光を用いているので、水素等の溶は込んでいない
良質のガラス球体を製造できることも明らかであり、結
局、前述した効果が得られることになる。
In this case, the outer shape and shape of the spherical bulge X are as follows:
It is clear that the diameter and wall thickness of the glass tube P to be applied are primarily determined by the laser beam irradiation time, the forward and backward periods of the chucks 4m and 4b, and the degree of increase in internal pressure. Cam timer 23 and timer 2 according to the manual created based on experimental results.
5, 27, and 28, it is possible to manufacture a large amount of products with specified dimensions in a short period of time. Furthermore, since a laser beam is used as a heating source, it is clear that a glass sphere of good quality without hydrogen or the like being dissolved therein can be produced, and as a result, the above-mentioned effects can be obtained.

第4図は本発明の他の実施例に係る製造装置を模式的に
示すもので、第1図と同一部分は同一符号で示しである
。したがって、重板する部分の説明は省略する。
FIG. 4 schematically shows a manufacturing apparatus according to another embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

この実施例が前記実施例と異なる点は、球状膨出部Xの
外径を検出する外径検出装置41を設け、この外径検出
装置41で得られた外径が所定値のときプログラム制御
装置21の制御に優先させてレーザ光照射装置LAの照
射動作を停止させたことにある。
This embodiment differs from the previous embodiments in that an outer diameter detection device 41 is provided to detect the outer diameter of the spherical bulge X, and when the outer diameter obtained by this outer diameter detection device 41 is a predetermined value, program control is performed. The reason is that the irradiation operation of the laser beam irradiation device LA is stopped in priority to the control of the device 21.

外径検出装置Lユは具体的には第5図に示すように、H
e−Neレーザ発振管等のレーザ発振管42から送出さ
れたレーザ光43を凸レンズ44によって被加ニガラス
チューブP上の定められた点Rに絞るとともにとのレー
ザ光43を凸レンズ4sq介して受光器46で受光する
ように構成されている。そして、受光器46の出力の立
下り時点で前記シャッタコントローラ24に内蔵された
図示しない回路で、このシャッタコントローラ24を強
制的に動作させてシャッタ15を閉じるようにしている
。なお、レーザ発振管42はカムタイマ23の第5の出
力によって動作させるようにしている。
Specifically, as shown in FIG.
Laser light 43 sent out from a laser oscillation tube 42 such as an e-Ne laser oscillation tube is focused to a predetermined point R on the glass tube P by a convex lens 44, and the laser light 43 is received via a convex lens 4sq. The device 46 is configured to receive the light. When the output of the light receiver 46 falls, a circuit (not shown) built into the shutter controller 24 forcibly operates the shutter controller 24 to close the shutter 15. Note that the laser oscillation tube 42 is operated by the fifth output of the cam timer 23.

このような構成であると、球状膨出部Xの半径が点Rま
で拡がると、レーザ光43がさえぎられて受光器46の
出力が立下り、この時点でシャッタ15が閉じることに
なる。したがって、予め点Rの位置を目標とする半径値
に合わせておけば、外径寸法に誤差のないガラス球体を
多量に製造することができる。
With such a configuration, when the radius of the spherical bulge X expands to point R, the laser beam 43 is blocked and the output of the light receiver 46 falls, at which point the shutter 15 closes. Therefore, by adjusting the position of point R to the target radius value in advance, it is possible to manufacture a large quantity of glass spheres with no error in the outer diameter dimension.

なお、上述した実施例において、レーザ発振器42、凸
レンズ44.45および受光器46を一体に移動させて
点Rの位置を微調整できる機構を設けてもよい。また、
より高精度な外径検出を行なうために反射鏡やフィルタ
等を組合17− せて外径検出装置を#I成してもよい。
In addition, in the embodiment described above, a mechanism may be provided that can finely adjust the position of point R by moving the laser oscillator 42, convex lenses 44, 45, and light receiver 46 together. Also,
In order to detect the outer diameter with higher precision, the outer diameter detection device may be formed by combining a reflecting mirror, a filter, etc.

以上詳述したように、本発明によれは、高品質で高寸法
精度のガラス球体を能率よ<jA造できる発光管用ガラ
ス球体製造装置を提供できる。
As described above in detail, the present invention can provide a glass sphere manufacturing apparatus for arc tubes that can efficiently manufacture glass spheres of high quality and high dimensional accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る製造装置の模式的構成
図、第2図は同装置の動作を説明するだめの図、第3図
は同装置によって製造されたガラス球体の側面図、第4
図は本発明の他の実施例に係る製造装置の模式的構成図
、第5図は同装置の要部構成図である。 P・・・被刀■エガラスチーーブ、X・・・球状膨出部
、L・・・ガラス旋盤、4a、4b・・・チャック、6
・・・第1の駆動機構、9・・・第2の駆動機構、■・
・・レーザ光照射装置、16・・・ガス供給装+d、z
 29・・・プログラム制御装置、Lユ・・・外径検出
装置。 出願人代理人 弁理士 鈴 江 武 彦18−
FIG. 1 is a schematic configuration diagram of a manufacturing device according to an embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of the device, and FIG. 3 is a side view of a glass sphere manufactured by the device. , 4th
The figure is a schematic block diagram of a manufacturing apparatus according to another embodiment of the present invention, and FIG. 5 is a block diagram of main parts of the same apparatus. P...To be cut ■Eglas Steve, X...Spherical bulge, L...Glass lathe, 4a, 4b...Chuck, 6
...first drive mechanism, 9...second drive mechanism, ■.
...Laser light irradiation device, 16...Gas supply device +d, z
29...Program control device, L-yu...Outer diameter detection device. Applicant's agent Patent attorney Takehiko Suzue 18-

Claims (2)

【特許請求の範囲】[Claims] (1)被加工ガラスチー−ブを保持する一対の保持機構
を有するとともに上記一対の保持機構を同一方向へ等速
度で同期回転させる第lの駆動機構および上記一対の保
持機構を選択的に互いに相反する方向へ対速で進退させ
る第2の駆動機構からなるガラス旋盤と、このガラス旋
盤の前記一対の保持機構間に位置する前記被加ニガラス
チューブの次面に向けて選択的に加工用レーザ光を照射
して上記被加ニガラスチューブを軟化させるレーザ光照
射装置と、前記被加工ガラスチー−ブ内の圧力を選択的
に61にするガス供給装置と、予め定められたプログラ
ムにしたがって前記ガラス旋盤の前記第1.第2の駆l
ih機構およびレーザ光照射装置および前記ガス供給装
置を制御して前記被加ニガラスチューブのレーザ光照射
部位に球状膨出部を形成させるゾログラム制御装置とを
具備してなることを特徴とする発光管用ガラス球体製造
装置。
(1) A first drive mechanism that has a pair of holding mechanisms that hold the glass cheese to be processed and rotates the pair of holding mechanisms synchronously in the same direction at a constant speed, and the pair of holding mechanisms that are selectively set in opposition to each other. a glass lathe consisting of a second drive mechanism that moves forward and backward at opposite speeds in a direction of a laser beam irradiation device that softens the glass tube to be processed by irradiating light; a gas supply device that selectively increases the pressure inside the glass tube to 61%; and a gas supply device that softens the glass tube according to a predetermined program. The first part of the lathe. The second drive
A light emitting device comprising an ih mechanism, a laser beam irradiation device, and a zologram control device that controls the gas supply device to form a spherical bulge at the laser beam irradiation site of the glass tube to be added. Glass sphere manufacturing equipment for tubes.
(2)被加ニガラスチューブを保持する一対の保持機構
を有するとともに上記一対の保持機構を同一方向へ等速
度で同期回転させる第1の駆動機構および上記一対の保
持機構を選択的に仏いに相反する方向へ等速で進退させ
る第2の駆動機構からなるガラス旋盤と、このガラス旋
盤の前記一対の保持機構間に位置する前記被加ニガラス
チューブの表面に向けて選択的に加工用レーデ光を照射
して上記被加工ガラスチー−ブを軟化させるレーザ光照
射装置と、前’r=を被加ニガラスチューブ内の圧力を
選択的に可変するガス供給装置と、予め定められたプロ
グラムにしたがって前記ガラス旋盤の前記第1.第2の
駆動機構およびレーザ光照射装置およびNil記ガス供
給装置を制御して前記被加ニガラスチューブのレーザ光
照射部位に球状膨出部を形成させるプログラム制御装置
と、前記球状膨出部の外径を光学的に検出する外径検出
装置と、この装置で検出された外径が定められた値のと
き前記プログラム制御装置の制御に優先させて前記レー
ザ光照射装置のレーザ光照射を停止させる手段とを具備
してなることを特徴とする発光管用ガラス球体製造装置
(2) A first drive mechanism that has a pair of holding mechanisms that hold the glass tube to be applied and rotates the pair of holding mechanisms synchronously in the same direction at a constant speed, and a first drive mechanism that selectively rotates the pair of holding mechanisms. a glass lathe comprising a second driving mechanism that advances and retreats at a constant speed in opposite directions; and a glass lathe for selectively processing the surface of the glass tube located between the pair of holding mechanisms of the glass lathe. A laser beam irradiation device that softens the glass tube to be processed by irradiating it with LED light, a gas supply device that selectively varies the pressure inside the glass tube to be processed, and a predetermined program. According to the first embodiment of the glass lathe. a program control device that controls a second drive mechanism, a laser beam irradiation device, and a gas supply device to form a spherical bulge at the laser beam irradiation site of the glass tube; an outer diameter detection device that optically detects an outer diameter; and when the outer diameter detected by the device is a predetermined value, the laser light irradiation of the laser light irradiation device is stopped with priority over the control of the program control device. What is claimed is: 1. A glass sphere manufacturing apparatus for an arc tube, comprising means for producing a glass sphere for an arc tube.
JP17543581A 1981-10-31 1981-10-31 Manufacturing device for glass bulb for emission tube Pending JPS5878348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17543581A JPS5878348A (en) 1981-10-31 1981-10-31 Manufacturing device for glass bulb for emission tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17543581A JPS5878348A (en) 1981-10-31 1981-10-31 Manufacturing device for glass bulb for emission tube

Publications (1)

Publication Number Publication Date
JPS5878348A true JPS5878348A (en) 1983-05-11

Family

ID=15996041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17543581A Pending JPS5878348A (en) 1981-10-31 1981-10-31 Manufacturing device for glass bulb for emission tube

Country Status (1)

Country Link
JP (1) JPS5878348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1024515A1 (en) * 1999-01-27 2000-08-02 Matsushita Electronics Corporation Method for manufacturing a discharge tube
WO2014202525A1 (en) * 2013-06-20 2014-12-24 Schott Ag Device and method for transforming a tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1024515A1 (en) * 1999-01-27 2000-08-02 Matsushita Electronics Corporation Method for manufacturing a discharge tube
US6487878B1 (en) 1999-01-27 2002-12-03 Matsushita Electric Industrial Co., Ltd. Method for manufacturing a discharge tube
US6568216B2 (en) 1999-01-27 2003-05-27 Matsushita Electric Industrial Co., Ltd. Method for manufacturing a discharge tube
WO2014202525A1 (en) * 2013-06-20 2014-12-24 Schott Ag Device and method for transforming a tube

Similar Documents

Publication Publication Date Title
CN100394544C (en) Luminous heat treatment device
RU2007128813A (en) ELECTRODE-FREE ELECTRIC LAMP
JPS6057654B2 (en) Tube sealing method
EP1403595A3 (en) Absorber element for high temperature solar heat recovery and process for manufacturing same
JPS5878348A (en) Manufacturing device for glass bulb for emission tube
JPH0527324A (en) Projection type display device
US3817733A (en) Apparatus and process for subdividing sealed glass tube containing radioactive gas
JP2001237195A (en) Flashing light irradiation-heating device
US3434818A (en) Apparatus for sealing off glass vessels
US4535268A (en) High pressure tipless tungsten halogen lamp
TW201819695A (en) Apparatus and method for crystal growth in floating zone process
JP2006244792A (en) Method and tool for molding lamp arc tube
US4509928A (en) Method of making high pressure tungsten halogen lamps
TW466562B (en) Lamp unit for light radiating type heating device
JP2008505472A (en) Lamp processing method and lamp processed according to this method
JP4339860B2 (en) Torch assembly and fluorescent lamp manufacturing apparatus using the torch assembly
US7445534B2 (en) Method of sealing a lamp by deformation of a pinch region using high-energy radiation
JPS5918121A (en) Apparatus for welding glass parts
JP4847046B2 (en) Heat treatment equipment
US20020170318A1 (en) Brief summary of the invention
JP2000215806A (en) Manufacture of flare for bulb
JPS5889756A (en) Sealing apparatus for electrode of luminous bulb for discharge lamp
JP2003059855A (en) Light irradiation-type heating treatment device
JPS5991628A (en) Chipping-off device of luminescent tube
JP2016109318A (en) Light collection mirror type heating furnace