JPS587815B2 - kuunenpikikanshikinenriyoufunshiyaseigiyosouchi - Google Patents

kuunenpikikanshikinenriyoufunshiyaseigiyosouchi

Info

Publication number
JPS587815B2
JPS587815B2 JP7029575A JP7029575A JPS587815B2 JP S587815 B2 JPS587815 B2 JP S587815B2 JP 7029575 A JP7029575 A JP 7029575A JP 7029575 A JP7029575 A JP 7029575A JP S587815 B2 JPS587815 B2 JP S587815B2
Authority
JP
Japan
Prior art keywords
output
fuel injection
oxygen concentration
air
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7029575A
Other languages
Japanese (ja)
Other versions
JPS51146637A (en
Inventor
益田明
小林昭雄
乗松秀明
北島重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7029575A priority Critical patent/JPS587815B2/en
Publication of JPS51146637A publication Critical patent/JPS51146637A/en
Priority to US05/900,505 priority patent/US4178884A/en
Publication of JPS587815B2 publication Critical patent/JPS587815B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電子式燃料噴射制御装置の燃料噴射量の調量に
エンジン排気管に設けられた酸素濃度検出器の濃度検出
信号により、この調量即ち燃料噴射量を決める噴射パル
スの時間巾にFeed Backすることにより空燃比
を一定とする空燃比帰還式燃料噴射制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention determines the fuel injection amount of an electronic fuel injection control device by using a concentration detection signal from an oxygen concentration detector installed in the engine exhaust pipe. The present invention relates to an air-fuel ratio feedback type fuel injection control device that keeps the air-fuel ratio constant by feeding back the time width of an injection pulse.

従来周知の電子式燃料噴射装置は、吸入空気流量計によ
って得られたエンジンの吸入空気量に見合った燃料が計
算されて燃料噴射が行なわれていた。
In conventional electronic fuel injection devices, fuel injection is performed by calculating the amount of fuel commensurate with the intake air amount of the engine as determined by an intake air flow meter.

しかし、空燃比をきびしく一定に保つためには排気管に
設けられた酸素濃度検出器でもって検出した酸素濃度の
値により混合気が濃いか、薄いかを判定し、燃料噴射パ
ルスの時間巾に帰還補正をかけていたが、その方法は第
5図5B図示の酸素濃度検出器の出力により得られる帰
還補正出力は第5図5A図示の如き積分出力であり、定
常状態で目的値即ちこの場合空気過剰率λ=1で燃料み
空気中の酸素との量が完全燃焼できる理論空燃比となる
値を中心としてリミットサイクルを生じる。
However, in order to keep the air-fuel ratio strictly constant, it is necessary to determine whether the air-fuel mixture is rich or lean based on the oxygen concentration value detected by the oxygen concentration detector installed in the exhaust pipe, and to adjust the time width of the fuel injection pulse. Feedback correction was applied, but the method was that the feedback correction output obtained from the output of the oxygen concentration detector shown in FIG. 5, 5B is an integral output as shown in FIG. At an excess air ratio λ=1, a limit cycle is generated around a value that is a stoichiometric air-fuel ratio at which the amount of fuel and oxygen in the air can be completely combusted.

これは燃料が噴射されてから排気管に達し、酸素濃度検
出器が応答するまでの系に時間遅れがあるからである。
This is because there is a time delay in the system from when fuel is injected until it reaches the exhaust pipe and when the oxygen concentration detector responds.

したがって、第5図5B図示の酸素濃度検出器の出力信
号によって電子式燃料噴射制御装置の噴射パルスの時間
巾を、第5図5A図示のような積分波形の帰還補正出力
により帰還制御するのでは、リミットサイクルの噴射パ
ルスの時間巾が目的値(λ=1)から最高にずれた点か
ら目的とする中心値(λ=1)にもどるまでの時間T1
,T2は全くむだな時間、即ち帰還制御の際の追従遅れ
となってしまうという欠点がある。
Therefore, the time width of the injection pulse of the electronic fuel injection control device is feedback-controlled by the feedback correction output of the integral waveform as shown in FIG. 5, 5A, using the output signal of the oxygen concentration detector shown in FIG. 5, 5B. , the time T1 from the point where the time width of the injection pulse of the limit cycle deviates from the target value (λ = 1) to the maximum until it returns to the target central value (λ = 1)
, T2 has the disadvantage that it becomes a completely wasted time, that is, a follow-up delay during feedback control.

また、従来の帰還補正出力として積分器出力により噴射
量の増減を行なう場合帰還系に時間遅れがあるため、負
荷の変動、エンジン回転数の変化、空気量などで積分定
数を変化させてよりよいマッチングと過渡応答性を得よ
うとしており、そこで、上述の各種の検出信号に応じて
系の要求値にあう積分定数に設定しなくてはならなかっ
た。
In addition, when increasing or decreasing the injection amount using the integrator output as a conventional feedback correction output, there is a time delay in the feedback system, so it is better to change the integral constant depending on load fluctuations, changes in engine speed, air amount, etc. We were trying to obtain matching and transient response, so we had to set the integral constant to match the required value of the system according to the various detection signals mentioned above.

しかしながら、ある程度マッチングのとれた系では、積
分定数を変化させる必要はあまりなく、定常のマッチン
グと過渡応答性を得るため、積分定数の時間的変化をつ
けることによって得られる帰還補正量即ち噴射量の変化
は定常マッチングと考えれば小さい方が、過渡応答性を
考えれば大きい方がよい。
However, in a system that has been matched to some extent, there is not much need to change the integral constant, and in order to obtain steady matching and transient response, the feedback correction amount, that is, the injection amount, can be obtained by changing the integral constant over time. It is better to have a smaller change considering steady matching, and a larger change considering transient response.

この相反する要求に応じるため、積分定数をはじめは大
きく、時間経過と共に小さくなるようにすることによっ
て、定常時の安定性と過渡時のマッチングを可能にでき
る。
In order to meet these conflicting demands, stability during steady state and matching during transient times can be achieved by setting the integral constant to be large at first and to become smaller over time.

本発明は上述の点に鑑みてなされたものであり、ある程
度マッチングのとれた帰還系において、帰還補正出力で
ある積分手段からの出力の積分定数をはじめは大きく時
間経過と共に小さくなるように時間的変化をさせること
により、定常時の安定性と過渡時のマッチングを良好に
すると共に、帰還追従性を向上して一定の空燃比で機関
を運転することができる空燃比帰還式燃料噴射制御装置
を提供することを目的とするものである。
The present invention has been made in view of the above points, and in a feedback system that has been matched to a certain extent, the integration constant of the output from the integrating means, which is the feedback correction output, is initially large and becomes smaller as time passes. The air-fuel ratio feedback type fuel injection control device is capable of improving steady-state stability and transient matching by changing the air-fuel ratio, as well as improving feedback followability and operating the engine at a constant air-fuel ratio. The purpose is to provide

以下本発明を図に示す一実施例について説明する。An embodiment of the present invention shown in the drawings will be described below.

第1図の空燃比帰還式燃料噴射制御系を示すブロック線
図において、1は内燃機関であるエンジン本体、2は吸
気管、3は排気管、4はスロットルバルブ、5は吸気管
2の前部に取付けられた機関の吸入する空気量を計測す
る吸入空気流量計、6は酸化ジルコン等の固体電解質よ
りなる酸素濃度検出器で、排気管3に配設して排気ガス
中の酸素濃度を検出するものであり、排気ガスの温度が
450℃〜600℃の許容温度以上になると前記酸素濃
度に応答して正常作動し、濃度検出信号を発生するもの
である。
In the block diagram of the air-fuel ratio feedback type fuel injection control system shown in Fig. 1, 1 is the engine body which is an internal combustion engine, 2 is the intake pipe, 3 is the exhaust pipe, 4 is the throttle valve, and 5 is the front of the intake pipe 2. 6 is an oxygen concentration detector made of a solid electrolyte such as zirconium oxide, which is installed in the exhaust pipe 3 to measure the oxygen concentration in the exhaust gas. When the temperature of the exhaust gas exceeds an allowable temperature of 450° C. to 600° C., it operates normally in response to the oxygen concentration and generates a concentration detection signal.

7は燃料を吸気管2内に噴射する噴射弁で、後述する燃
料噴射制御装置が出力する燃料噴射パルス信号により開
弁作動するものである。
Reference numeral 7 denotes an injection valve for injecting fuel into the intake pipe 2, which is opened by a fuel injection pulse signal output from a fuel injection control device to be described later.

8はエンジン回転数等の機関状態を検出する機関状態検
出手段、9はエアクリーナ、10は電子式燃料噴射制御
装置で、前記吸気管2の前部に取付けた吸入空気流量計
5の出力に見合った燃料量を前記噴射弁7より供給する
ため、この噴射弁7を開弁作動させる所定時間巾の燃料
噴射パルス信号を発生する。
Reference numeral 8 denotes an engine state detection means for detecting the engine state such as the engine speed, 9 an air cleaner, and 10 an electronic fuel injection control device, which corresponds to the output of the intake air flow meter 5 attached to the front part of the intake pipe 2. In order to supply the amount of fuel from the injection valve 7, a fuel injection pulse signal having a predetermined duration for opening the injection valve 7 is generated.

11は排気管3に配設した前記酸素濃度検出器6より出
力する濃度検出信号に応じて前記電子式燃料噴射制御装
置10による燃料噴射量を帰還補正する帰還制御回路で
、この帰還制御回路11の出力が電源電圧VBの半分で
ある基準電圧VB/2の出力を有するとき、この基準電
圧VB/2に保持して帰還制御系の補正量を零とし基本
の予め設定した要求燃料を噴射するようにしてある。
Reference numeral 11 denotes a feedback control circuit for feedback correcting the fuel injection amount by the electronic fuel injection control device 10 in accordance with a concentration detection signal output from the oxygen concentration detector 6 disposed in the exhaust pipe 3; has an output of a reference voltage VB/2 which is half of the power supply voltage VB, the reference voltage VB/2 is held, the correction amount of the feedback control system is set to zero, and the basic preset required fuel is injected. It's like this.

従って、帰還制御回路11は出力として基準電圧VB/
2より低い電圧のとき燃料噴射パルスの時間巾を小さく
するようにし、他方基準電圧VB/2より高い電圧のと
き燃料噴射パルスの時間巾を長くするようにして燃料噴
射量を補正するものである。
Therefore, the feedback control circuit 11 outputs the reference voltage VB/
The fuel injection amount is corrected by reducing the time width of the fuel injection pulse when the voltage is lower than 2, and by increasing the time width of the fuel injection pulse when the voltage is higher than the reference voltage VB/2. .

次に、本発明の要部となる帰還制御回路の詳細構成及び
その作動を第2図乃至第4図において述べる。
Next, the detailed configuration and operation of the feedback control circuit, which is the main part of the present invention, will be described with reference to FIGS. 2 to 4.

第2図において、VBは電源電圧VBの電源ライン、G
NDはアースライン、201,202,203,204
,205は抵抗で、特に抵抗202,203によりツエ
ナーダイオード206により決まるツエナー電圧を抵抗
分割して所定レベルの基準電圧■Sを比較器Q1に設定
入力してある。
In Figure 2, VB is the power supply line of power supply voltage VB, G
ND is ground line, 201, 202, 203, 204
, 205 are resistors. In particular, the Zener voltage determined by the Zener diode 206 is divided by the resistors 202 and 203, and a reference voltage S at a predetermined level is set and input to the comparator Q1.

12は本発明の主となる出力補正手段を成しており、2
07,208は所定レベルの基準電圧を与える分圧用の
抵抗、209,210はダイオード、211,212,
213,214,215,216,217,218は抵
抗、219,220はコンデンサで、抵抗215とコン
デンサ219、及び抵抗216とコンデンサ220は所
定の時定数を有する放電回路を構成してある。
12 constitutes the main output correction means of the present invention;
07, 208 are voltage dividing resistors that provide a reference voltage at a predetermined level, 209, 210 are diodes, 211, 212,
213, 214, 215, 216, 217, 218 are resistors, 219, 220 are capacitors, and the resistor 215 and the capacitor 219, and the resistor 216 and the capacitor 220 constitute a discharge circuit having a predetermined time constant.

T1,T2,T3,T4はトランジスタで、比較器Q1
の出力が出力“0”のとき第2図中D点電位は零電位と
なり、トランジスタT2,T3は導通状態となり、トラ
ンジスタT1,T4は遮断する。
T1, T2, T3, T4 are transistors, comparator Q1
When the output is "0", the potential at point D in FIG. 2 becomes zero potential, transistors T2 and T3 become conductive, and transistors T1 and T4 are cut off.

一方、比較器Q1の出力が出力“1”のときには図中D
点電位は電源電圧VBに近く、トランジスタT1,T4
が導通して、トランジスタT2,T3は遮断状態となる
On the other hand, when the output of comparator Q1 is "1", D
The point potential is close to the power supply voltage VB, and the transistors T1 and T4
becomes conductive, and transistors T2 and T3 are cut off.

221,222は種分器Q2の入力抵抗、223は積分
用のコンテ′ンサ、224は出力端である。
221 and 222 are input resistances of the specifier Q2, 223 is an integration capacitor, and 224 is an output terminal.

上記構成によるその作動を説明すると、酸素濃度検出器
6の出力波形は第3図3Aの如き波形であり、この出力
波形は第4図に示す酸素濃度検出器6の空気過剰率λと
出力電圧との出力特性により求まるものである。
To explain the operation of the above-mentioned configuration, the output waveform of the oxygen concentration detector 6 is as shown in FIG. This is determined by the output characteristics of

そこで、比較器Q1の基準電圧を抵抗202,203に
より電圧VSに設定しておくと、比較器Q1の出力即ち
図中点Dの出力波形は第3図3B図示の如く第3図3A
図示波形の反転波形となる。
Therefore, if the reference voltage of the comparator Q1 is set to the voltage VS by the resistors 202 and 203, the output of the comparator Q1, that is, the output waveform at point D in the figure, will be as shown in FIG. 3, 3B.
This is an inverted waveform of the illustrated waveform.

そこで、機関に噴射される混合気が濃い即ちRichの
とき排気管3中の酸素濃度は低く酸素濃度検出器6の出
力電圧は大きくなり比較器Q1の出力はアース電位に近
く、従ってトランジスタT1,T4は遮断し、トランジ
スタT2,T3は導通となる。
Therefore, when the air-fuel mixture injected into the engine is rich, the oxygen concentration in the exhaust pipe 3 is low and the output voltage of the oxygen concentration detector 6 is high, and the output of the comparator Q1 is close to the ground potential. T4 is cut off and transistors T2 and T3 are turned on.

この時、図中A点の電圧波形は第3図30に示す如く抵
抗215とコンデンサ219で決まる時定数の放電波形
となり、積分器Q2はこの場合基準入力電圧■s/2と
して前記放電波形を積分する。
At this time, the voltage waveform at point A in the figure becomes a discharge waveform with a time constant determined by the resistor 215 and capacitor 219 as shown in FIG. Integrate.

一方、機関に噴射される混合気が薄い即ちLeanのと
き排気管3中の酸素濃度は高くなって酸素濃度検出器6
の出力は小さくなり、比較器Q1の出力は電源電位VB
に近く、従って、トランジスタT,,T4は導通し、ト
ランジスタT2,T3は遮断状態となる。
On the other hand, when the air-fuel mixture injected into the engine is lean, the oxygen concentration in the exhaust pipe 3 becomes high and the oxygen concentration detector 6
The output of comparator Q1 becomes smaller, and the output of comparator Q1 becomes the power supply potential VB.
Therefore, transistors T, , T4 are conductive, and transistors T2 and T3 are in a cut-off state.

そこで、この時の図中B点の電圧波形は第3図3Dに示
す如く抵抗216とコンデンサ220で決まる時定数の
放電波形となり、上述と同様にして積分器Q2は前記放
電波形を積分し、従って第3図3C,3Dの両放電波形
出力を入力して積分した積分器Q2の出力は第3図3E
に示すような出力波形となるこの第3図3E図示の出力
は電子式燃料噴射制御装置10への帰還補正出力であり
、この出力波形によると最初は変化量が大きく時間経過
するに従って小さくなり、これは噴射弁7からの燃料噴
射量の変化もこれと同様に変化することになる。
Therefore, the voltage waveform at point B in the figure at this time becomes a discharge waveform with a time constant determined by the resistor 216 and capacitor 220 as shown in FIG. 3D, and the integrator Q2 integrates the discharge waveform in the same manner as described above. Therefore, the output of integrator Q2, which inputs and integrates both the discharge waveform outputs of Fig. 3 3C and 3D, is shown in Fig. 3 3E.
The output shown in FIG. 3E, which has an output waveform as shown in FIG. This means that the amount of fuel injected from the injection valve 7 also changes in the same way.

そこで、ある程度空燃比のマッチングのとれた系におい
ては、最初燃料噴射量の増減率が大きく、時間経過と共
に燃料噴射量の増減率が小さくなるように電子式燃料噴
射制御装置10に作用することになる。
Therefore, in a system where the air-fuel ratio has been matched to a certain extent, the rate of increase/decrease in the fuel injection amount is initially large, and the electronic fuel injection control device 10 is operated so that the rate of increase/decrease in the fuel injection amount becomes smaller as time passes. Become.

従って、燃料噴射量は目的値とする空燃比から一定割合
以上ずれることなく応答性の良い制御ができるものであ
る。
Therefore, the fuel injection amount can be controlled with good responsiveness without deviating from the target air-fuel ratio by more than a certain percentage.

以上述べたように本発明装置においては、比較手段から
の出力に応じて積分手段への入力の信号波形を時間的に
変化させ、この積分手段からの出力の積分定数を時間的
に変化させる出力補正手段を備えているから、定常時の
安定性と過渡時のマッチングを可能にできると共に、帰
還補正の応答性を向上して帰還追従性を良好にし、空燃
比のバラツキを一定巾に制御できるという優れた効果が
ある。
As described above, in the device of the present invention, the signal waveform input to the integrating means is changed over time in accordance with the output from the comparing means, and the integral constant of the output from the integrating means is changed over time. Since it is equipped with a correction means, it is possible to achieve stability during steady state and matching during transient conditions, improve feedback correction response, improve feedback followability, and control air-fuel ratio variations within a certain range. This has an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にがかる空燃比帰還式燃料噴射制御装置
の全体構成を示すブロック線図、第2図は本発明の要部
となる帰還制御回路の一実施例を示す電気結線図、第3
図は本発明の作動説明に供する各部電圧波形図、第4図
は酸素濃度検出器の出力特性を示す特性図、第5図は従
来装置の説明に供する出力波形図である。 6・・・・・・排気管に設けた酸素濃度検出器、10・
・・・・・電子式燃料噴射制御装置、11・・・・・・
帰還制御回路、Q1・・・・・・比較器、Q2・・・・
・・積分器、12・・・・・・トランジスタT1,T2
,T3,T4等よりなる出力補正手段。
FIG. 1 is a block diagram showing the overall configuration of an air-fuel ratio feedback type fuel injection control device according to the present invention, FIG. 2 is an electrical wiring diagram showing an embodiment of the feedback control circuit which is the main part of the present invention 3
4 is a characteristic diagram showing the output characteristics of the oxygen concentration detector, and FIG. 5 is an output waveform diagram illustrating the conventional device. 6...Oxygen concentration detector installed in the exhaust pipe, 10.
...Electronic fuel injection control device, 11...
Feedback control circuit, Q1... Comparator, Q2...
...Integrator, 12...Transistor T1, T2
, T3, T4, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の排気ガス中の酸素濃度を酸素濃度検出器
により検出して、その検出出力と予め設定した設定値と
を比較する比較手段を有し、この比較手段からの出力を
積分手段にて積分した増減桶性を有する積分出力により
燃料噴射量の増減補正を行ない、前記酸素濃度を一定に
制御する空燃比帰還式燃料噴射制御装置において、前記
比較手段からの出力に応じて前記積分手段への入力の信
号波形を時間的に変化させ、該積分手段からの出力の積
分定数を時間的に変化させる出力補正手段を備えたこと
を特徴とする空燃比帰還式燃料噴射制御装置。
1 The oxygen concentration in the exhaust gas of the internal combustion engine is detected by an oxygen concentration detector, and the detection output is compared with a preset value. In the air-fuel ratio feedback type fuel injection control device that controls the oxygen concentration to be constant by correcting the increase or decrease of the fuel injection amount using an integral output having an integrated increase/decrease characteristic, 1. An air-fuel ratio feedback type fuel injection control device comprising an output correction means for temporally changing the signal waveform of an input of the integrating means and temporally changing an integral constant of an output from the integrating means.
JP7029575A 1975-06-05 1975-06-10 kuunenpikikanshikinenriyoufunshiyaseigiyosouchi Expired JPS587815B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7029575A JPS587815B2 (en) 1975-06-10 1975-06-10 kuunenpikikanshikinenriyoufunshiyaseigiyosouchi
US05/900,505 US4178884A (en) 1975-06-05 1978-04-27 Method and system to control the mixture air-to-fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7029575A JPS587815B2 (en) 1975-06-10 1975-06-10 kuunenpikikanshikinenriyoufunshiyaseigiyosouchi

Publications (2)

Publication Number Publication Date
JPS51146637A JPS51146637A (en) 1976-12-16
JPS587815B2 true JPS587815B2 (en) 1983-02-12

Family

ID=13427318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7029575A Expired JPS587815B2 (en) 1975-06-05 1975-06-10 kuunenpikikanshikinenriyoufunshiyaseigiyosouchi

Country Status (1)

Country Link
JP (1) JPS587815B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440922A (en) * 1977-09-07 1979-03-31 Toyota Motor Corp Air fuel ratio control equipment of internal combustion engine
DE3124676A1 (en) * 1981-06-24 1983-01-13 Robert Bosch Gmbh, 7000 Stuttgart ELECTRONICALLY CONTROLLED FUEL METERING SYSTEM
JPS5923038A (en) * 1982-07-30 1984-02-06 Hitachi Ltd Control method of air-fuel ratio of internal combustion engine

Also Published As

Publication number Publication date
JPS51146637A (en) 1976-12-16

Similar Documents

Publication Publication Date Title
US3973529A (en) Reducing noxious components from the exhaust gases of internal combustion engines
SU1005668A3 (en) Method for controlling fuel supply in internal combustion engines
US4252098A (en) Air/fuel ratio control for an internal combustion engine using an exhaust gas sensor
US4178883A (en) Method and apparatus for fuel/air mixture adjustment
US4144847A (en) Emission control apparatus for internal engines with means for generating step function voltage compensating signals
GB1509075A (en) Process and device for regulating the operational behaviour of an internal combustion engine
US4133326A (en) Fuel control system for an internal combustion engine
JPS584177B2 (en) Feedback air-fuel ratio control device for electronically controlled injection engines
US4120269A (en) Compensation for inherent fluctuation in output level of exhaust sensor in air-fuel ratio control system for internal combustion engine
US4210106A (en) Method and apparatus for regulating a combustible mixture
JPS6045297B2 (en) Internal combustion engine fuel control device
JPS5834654B2 (en) Method and device for controlling and adjusting fuel-air component ratio of working mixture of internal combustion engine
US4327689A (en) Combined warm-up enrichment, engine roughness and exhaust gas sensor control for EFI engine
US4178884A (en) Method and system to control the mixture air-to-fuel ratio
US4099491A (en) System controlling any air/fuel ratio with stoichiometric sensor and asymmetrical integration
US4096833A (en) Circuit for frequency modulated fuel injection system
US4111162A (en) Method and system for controlling the mixture air-to-fuel ratio
JPS6118664B2 (en)
JPS6115230Y2 (en)
JPS6151139B2 (en)
US4479464A (en) Air-to-fuel ratio correcting arrangement in a fuel supply control system having a feedback loop
US4284050A (en) Apparatus for controlling the mixture composition in an internal combustion engine
US4145999A (en) Electronic feedback control system for fuel injection in internal combustion engines of fuel injection type
US4391256A (en) Air-fuel ratio control apparatus
JPS587815B2 (en) kuunenpikikanshikinenriyoufunshiyaseigiyosouchi