JPS5877828A - Conversion of xylene containing ethylbenzene - Google Patents

Conversion of xylene containing ethylbenzene

Info

Publication number
JPS5877828A
JPS5877828A JP56174558A JP17455881A JPS5877828A JP S5877828 A JPS5877828 A JP S5877828A JP 56174558 A JP56174558 A JP 56174558A JP 17455881 A JP17455881 A JP 17455881A JP S5877828 A JPS5877828 A JP S5877828A
Authority
JP
Japan
Prior art keywords
benzene
xylene
ethylbenzene
reaction
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56174558A
Other languages
Japanese (ja)
Other versions
JPS6213932B2 (en
Inventor
Kazuyoshi Iwayama
岩山 一由
Takehisa Inoue
井上 武久
Atsuo Kanai
金井 孜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP56174558A priority Critical patent/JPS5877828A/en
Publication of JPS5877828A publication Critical patent/JPS5877828A/en
Publication of JPS6213932B2 publication Critical patent/JPS6213932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To recover high purity benzene in the isomerization of xylenes containing ethylbenzene and the simultaneous conversion of the ethylbenzene to benzene, by recycling a part of the recovered benzene to the isomerization process, and decomposing the by-product to a low-boiling substance. CONSTITUTION:At least a part of ethylbenzene contained in xylene is dealkylated and at the same time, xylene is isomerized by treating the xylene containing ethylbenzene in the presence of hydrogen using a binary catalyst composed of a hydrogenation active component and a solid acid component. In the above process, a part of the recovered benzene is recycled to the reaction step to effect the recovery of high purity benzene. The amount of benzene fraction recycled to the reactor is usually 0.5-20 times, especially 1-10 times of benzene produced by the dealkylation reaction. The hydrogenation active component is e.g. preferably rhenium, etc., and the solid acid component is preferably mordenite, etc.

Description

【発明の詳細な説明】 本発明は、エチルベンゼンを含むキシレン類を水素の存
在下でキシレン類の異性化を行うとともに、エチルベン
ゼンの少なくとも一部をベンゼンに変換せしめる方法に
係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of isomerizing xylenes containing ethylbenzene in the presence of hydrogen and converting at least a portion of the ethylbenzene into benzene.

更に詳しく述べれば本反応で得られるベンゼン留分中に
混入するベンゼンと同程度の沸点を有する非芳香族成分
の量を低減せしめ、より有用性の高いベンゼンを得る方
法に係るものである。
More specifically, the present invention relates to a method of reducing the amount of non-aromatic components having a boiling point similar to that of benzene mixed into the benzene fraction obtained by this reaction, thereby obtaining benzene with higher usefulness.

パラキシレンは、合成繊維ポリエステルの粗原料として
需要が著しく増大してきた。一方、オルソキシレンとメ
タキシレンの需要はパラキシレンに比べて小さく、これ
らのキシレンをパラキシレンに変換するキシレン異性化
反応は工業的に重要である。
Demand for paraxylene has increased significantly as a raw material for synthetic fiber polyester. On the other hand, the demand for ortho-xylene and meta-xylene is smaller than that for para-xylene, and the xylene isomerization reaction that converts these xylenes to para-xylene is industrially important.

一般に、工業的に利用されるキシレン原料は、ナフサの
改質またはクラッキングによる反応生成物を芳香族抽出
および分留して得られ、いずれもエチルベンゼンを含む
ものである。このよう々キシレン原料からエチルベンゼ
ンを何らかの手段で除去し、分離工程と異性化工程を組
合せてパラキシレンが製造される。
In general, industrially used xylene raw materials are obtained by aromatic extraction and fractional distillation of reaction products from naphtha reforming or cracking, and both contain ethylbenzene. In this way, ethylbenzene is removed from the xylene raw material by some means, and para-xylene is produced by combining the separation step and the isomerization step.

エチルベンゼンの除去法としては、エチルベンゼンをそ
のまま分離する方法と、反応してより有用な他の化合物
に変換せしめる方法とがある。前者の例としては蒸留法
が挙げられる。この場合、エチルベンゼンとキシレン類
との間の沸点差が小さいため、超精密蒸留を行なう必要
があり設備費、用役費が高く経済的に不利な方法である
。後者の例としては白金成分と固体酸成分からなる二元
系触媒を用いてエチルベンゼンをキシレン類に変換せし
めると同時にキシレン類の異性化を同時に行なう方法が
ある。反応によジエチルベンゼンを除去する方法は特別
な設備を必要としないので経済的に有利な方法といえる
。しかし上記二元系触媒を用いる方法で−は極めて高価
な貴金属である白金を使用すること、あるいはエチルベ
ンゼンとキシレン異性体との間の熱力学的平衡関係によ
ジエチルベンゼン転化率に限界があることなどの問題点
かあシ。
Methods for removing ethylbenzene include a method of separating ethylbenzene as it is, and a method of converting it into other more useful compounds by reaction. An example of the former is a distillation method. In this case, since the boiling point difference between ethylbenzene and xylenes is small, it is necessary to carry out ultra-precision distillation, which is an economically disadvantageous method with high equipment and utility costs. An example of the latter is a method in which ethylbenzene is converted into xylenes using a binary catalyst consisting of a platinum component and a solid acid component, and the xylenes are isomerized at the same time. The method of removing diethylbenzene by reaction does not require any special equipment, so it can be said to be an economically advantageous method. However, in the above-mentioned method using a binary catalyst, platinum, which is an extremely expensive noble metal, is used, or there is a limit to the conversion rate of diethylbenzene due to the thermodynamic equilibrium relationship between ethylbenzene and xylene isomers. The problem with this.

さらに改善が望まれている。Further improvements are desired.

以上の点を解決するものとして固体酸成分と水添成分か
ら成る触媒を用い、エチルベンゼンをベンゼンとエタン
に変換する方法が最近注目されるようになった。即ち、
エチルベンゼンをベンゼンとエタンに水添脱アルキル化
する反応は、熱力学的制約をほとんど受けないので、転
化率の向上が比較的容易であり、また本反応によす得う
れるベンゼンはキシレン類と沸点差が大きく蒸留法によ
り容易に分離でき、かつ合成に進める触媒として本発明
者らは、レニウムおよび/又はリンを含むモルデナイト
触媒、あるいはさらにモリブデン、タングステン、バナ
ジウムを添加した触媒を特願昭55−83952.55
−140408,56−18092等で先にこれを提案
した。しかしながら本反応をさらに効率化するには次の
点について改良されることが望Aましい。一つは反応の
選択性であり、エチル基がエチルベンゼン、キシレンへ
トドランスアルキル化する反応、およびキシレン同志の
不均化反応を仰え、キシレンの損失を最少限にとどめる
ことである。もう一つは、回収されるベンゼンの純度を
高めることである。本反応の利点の一つは、回収された
ベンゼンをスチレン、ラクタム等の素原料として利用す
る点にあるが、これまでに知られている触媒においては
、ベンゼンと同程度の沸点を有する非芳香族炭化水素の
副生量が多く、ベンゼンの有効度を高めるためには、こ
れらの副生物を低くすることが必要である。前者につい
てはト、ランスアルキル化および不拘イヒ反応と脱アル
キル反応の反応次数、活性化エネルギーの差を利用し反
応条件を操作して選択率を高くすることができるが本質
的には触媒の改良によらなければならない。後者につい
ては触媒の分解活性を弱めて非芳香族炭化水素の生成を
抑えるかあるいは逆に分解活性を強めで非芳香族炭化水
素をベンゼンから容易に分暴 離できるようなC!〜C4成分にまで分解させてしまう
ことが考えられるが、脱エチル化活性を低下させずに分
解活性を抑えるのは両反応が同じ酸性点上で進行するの
で難しく、また分解活性を高めるとキシレン等も分解し
てしまい、いずれにしても触媒による解決は難しい。
As a solution to the above problems, a method of converting ethylbenzene into benzene and ethane using a catalyst consisting of a solid acid component and a hydrogenation component has recently attracted attention. That is,
The reaction of hydrogenation dealkylation of ethylbenzene to benzene and ethane is hardly subject to thermodynamic constraints, so it is relatively easy to improve the conversion rate, and the benzene obtained by this reaction is similar to xylenes. The present inventors proposed a mordenite catalyst containing rhenium and/or phosphorus, or a catalyst further containing molybdenum, tungsten, and vanadium, as a catalyst that has a large boiling point difference, can be easily separated by distillation, and can be used for synthesis. -83952.55
-140408, 56-18092, etc., proposed this earlier. However, in order to further improve the efficiency of this reaction, it is desirable to improve the following points. One is the selectivity of the reaction, which involves the transalkylation of ethyl groups to ethylbenzene and xylene, and the disproportionation reaction of xylenes, minimizing the loss of xylene. The other is to increase the purity of the benzene that is recovered. One of the advantages of this reaction is that the recovered benzene can be used as a raw material for styrene, lactam, etc., but with the catalysts known so far, non-aromatic The amount of group hydrocarbon by-products is large, and in order to increase the effectiveness of benzene, it is necessary to reduce the amount of these by-products. Regarding the former, it is possible to increase the selectivity by manipulating the reaction conditions by taking advantage of the difference in reaction order and activation energy between trans-alkylation, unrestricted reaction, and dealkylation, but essentially it is possible to improve the catalyst. Must be based on Regarding the latter, C! It is conceivable that the decomposition activity may be decomposed to ~C4 components, but it is difficult to suppress the decomposition activity without decreasing the deethylation activity because both reactions proceed on the same acidic point, and increasing the decomposition activity will cause the decomposition of xylene. etc. are also decomposed, and in any case, it is difficult to solve the problem with a catalyst.

以上の点を鑑み、本発明者らは、エチルベンゼンを含む
キシレン類を水素存在下、・キシレン類の異性化を行な
うとともにエチルベンゼンの少なくとも一部をベンゼン
に変換せしめる反応において、回収されるベンゼンの純
度向上法について検討を行なったところ、回収されたベ
ンゼンの一部を該異性化工程に再循環させるとベンゼン
と同程度の沸点を有する非芳香族炭化水素がより沸点の
低い炭化水素へ分解されることを見い出し本発明に到達
した。
In view of the above points, the present inventors conducted a reaction in which xylenes containing ethylbenzene are isomerized in the presence of hydrogen, and at least a portion of the ethylbenzene is converted into benzene. An investigation into an improvement method revealed that if a portion of the recovered benzene is recycled to the isomerization process, non-aromatic hydrocarbons with a boiling point similar to that of benzene will be decomposed into hydrocarbons with a lower boiling point. We have discovered this and arrived at the present invention.

本発明による方法を第1図のフローシートにより説明す
る。
The method according to the invention will be explained with reference to the flow sheet of FIG.

エチルベンゼンを含むキシレン類(1)ハ、再循環液(
2,3)と混合され(4)、反応器(5)へ供給される
。反応器流出液(6)は蒸留塔(7)に送られ塔頂留分
(8)と塔底留分00)に分離される。塔頂留分(8)
は主としてベンゼンから成り、その一部(3)は反応器
(5)に再循環させ、残り(9)を回収する。塔底留分
00)はキシレン分離工程(2)に送られ、バラキシレ
ン0◇を分離回収し、バラキシレンを除去したラフィネ
ート成分(2)を反応器(5)へ再循擾させる。なお本
図においては他の副生成物で−ある軽沸点成分、ト・ル
エンおよび炭素数9以上の高沸点成分の分類あるいはキ
シレン分類!程でのオルソキシレンの分離については省
略しである。
Xylenes containing ethylbenzene (1) C, recirculating liquid (
2, 3) (4) and supplied to the reactor (5). The reactor effluent (6) is sent to a distillation column (7) and separated into a top fraction (8) and a bottom fraction 00). Top fraction (8)
consists mainly of benzene, part (3) of which is recycled to the reactor (5) and the remainder (9) recovered. The column bottom fraction 00) is sent to the xylene separation step (2), where the free xylene 0◇ is separated and recovered, and the raffinate component (2) from which free xylene has been removed is recycled to the reactor (5). In this figure, other by-products such as light-boiling components, toluene, and high-boiling components with carbon atoms of 9 or more are classified or xylene is classified. The separation of ortho-xylene in step is omitted.

本発明で痺世される原料は、エチルベンゼンを含むキシ
レン混合物が用いられるが、これら各成分・P濃度に特
に制限はない。また、供給原料には他の芳香族成分例え
ばベンゼン、トルエントリメチルベンゼン、エチルトル
エン、ジエチルベンゼン1、エチルキシレン等、アルイ
ハキシレンと同程度の沸点を有する非芳香族炭化水素を
少量含有するものも使用することができる。
The raw material to be numbed in the present invention is a xylene mixture containing ethylbenzene, but there are no particular limitations on the concentrations of these components and P. In addition, feedstocks containing other aromatic components such as benzene, tolutrimethylbenzene, ethyltoluene, diethylbenzene 1, ethylxylene, etc., containing small amounts of non-aromatic hydrocarbons with a boiling point similar to that of alkylxylene are also used. can do.

なお、原料の一供給位置はその組成によって反応工程と
キシレン分離工程が適宜選択される。
Note that the reaction step and xylene separation step are appropriately selected at one feeding position of the raw material depending on its composition.

本発明で使用される触媒は、エチルベンゼンの少なくと
も一部をベンゼンに転化し、キシレン類を異性化しうる
活性を有するものであれば特に限定するものではないが
、水添活性成分と固体酸成分から成る二元系触媒が好ま
しく使用される。水添活性成分としては、レニウムs 
■b族金属あるいはVIII族金属が好ましく、固体酸
成分としては酸型のゼオライト、特にモルデナイト、ま
たはZSM型等の表1に示すX線回折パターンを有する
ゼオライトが好ましく、まだ触媒の選択性を向上するも
のとしてリン等を添加することも可能である。
The catalyst used in the present invention is not particularly limited as long as it has the activity of converting at least a part of ethylbenzene into benzene and isomerizing xylenes, A binary catalyst consisting of: As a hydrogenated active ingredient, rhenium s
■Group b metals or group VIII metals are preferable, and as the solid acid component, acid type zeolites, especially mordenite, or ZSM type zeolites having the X-ray diffraction pattern shown in Table 1 are preferable, and still improve the selectivity of the catalyst. It is also possible to add phosphorus or the like as a substance.

表1 X線回折パターン 1α1 ±[1,2’   S   3.8S±o、o
s  ”  vs9B  ±0.2  、M   3.
82±o、os   vs6.37±0.1   W 
  3.75±0.08  .56、DO±0.1  
 W”3.72±0.08  55.71±0.1  
W  ろ、66±0.05   M5.58±0.1 
  W   3.00±0.05   M4、s7±o
、os  v2.[lO:l:0.05’   W−但
し、相対強度(100I/io)へvs−非常に強い、
S=強い、M=中級の強さ、W=弱、いで表わした〇反
応装置は固定床、移動床、流動床いずれでもよいが装置
が簡単で運転操作の芥易な固定床方式が好ましい。反応
条件も特に限定されるものではないが反応温度は600
〜600℃、反応圧力は・大気圧から50 Kl/ c
rA G 、接触時間、のパラメーターであるタイム・
ファクターW/Fは1〜200 ?−cat・hr/l
−mols水素対芳香族炭化水素の舌ル比I(2/Fは
1〜5Dが好ましい0本発明の方法であるベンゼン留分
の反応器への循・環量は、触媒活性、原゛料中の非芳香
族炭化水素含有量、所望するベンゼン留分等により変り
うるが1通常は脱アルキル反応で生成するベンゼン量の
a、5〜20倍が好ましく、特に1〜10倍量が好まし
い0本発明の方法は、回収されたベンゼン留分を脱アル
キル活性を有するキシレン異性化触媒で処理してベンゼ
ン留分中の非芳香族炭化水素を分解減少させるもので、
べ/ゼン留分の循環量が生成するベンゼン量の[15倍
より低いと、分解の効果が不充分であり、また20倍よ
りも多い場合には、循環再処理する経費の増加に比べて
、該非芳香族炭化水素の分解、減少効果は不充分となシ
、本方法は有利でなくなる。このようなベンゼン留分の
循環処理は反応の初期にベンゼン留分をプロセス外に取
り出さずに全量を反応器に循環し、ベンゼンの循環量が
基準の値に達すると、反応により生成する量に相当する
ベンゼン留分を分離回収すればよい。なお、本反応で生
成するトルエンを坂ンゼン留分とともに反応器流出液か
ら分離し、一部を反応器へ再循環し、残秒をプロセス外
に取り出し、ベンゼンとトルエンに分離することも可能
である。
Table 1 X-ray diffraction pattern 1α1 ±[1,2' S 3.8S±o,o
s” vs9B ±0.2, M3.
82±o, os vs6.37±0.1W
3.75±0.08. 56, DO±0.1
W”3.72±0.08 55.71±0.1
W Lo, 66±0.05 M5.58±0.1
W 3.00±0.05 M4, s7±o
, os v2. [lO:l:0.05' W - However, relative intensity (100I/io) vs - very strong,
S=Strong, M=Intermediate Strength, W=Weak The reactor may be a fixed bed, moving bed, or fluidized bed, but a fixed bed system is preferred because it is simple and easy to operate. Although the reaction conditions are not particularly limited, the reaction temperature is 600℃.
~600℃, reaction pressure is 50 Kl/c from atmospheric pressure
rA G , contact time;
Is the factor W/F 1-200? -cat・hr/l
-mols Hydrogen to aromatic hydrocarbon tongue ratio I (2/F is preferably 1 to 5D) In the method of the present invention, the amount of benzene fraction recycled to the reactor is determined by catalyst activity, raw material Although it may vary depending on the non-aromatic hydrocarbon content in the benzene fraction, the desired benzene fraction, etc. 1 Usually, a is preferably 5 to 20 times the amount of benzene produced in the dealkylation reaction, and particularly preferably 1 to 10 times the amount of benzene produced in the dealkylation reaction. The method of the present invention treats the recovered benzene fraction with a xylene isomerization catalyst having dealkylation activity to decompose and reduce non-aromatic hydrocarbons in the benzene fraction,
If the circulating amount of benzene fraction is less than 15 times the amount of benzene produced, the decomposition effect is insufficient, and if it is more than 20 times, the increase in cost for cyclic reprocessing is , the decomposition and reduction effect of the non-aromatic hydrocarbons is insufficient, and this method becomes less advantageous. In this type of circulating treatment of benzene fraction, the entire amount of benzene fraction is circulated to the reactor without taking it out of the process at the beginning of the reaction, and when the circulating amount of benzene reaches a standard value, the amount produced by the reaction is reduced. The corresponding benzene fraction may be separated and recovered. It is also possible to separate the toluene produced in this reaction from the reactor effluent together with the Sakanzene fraction, recirculate a portion to the reactor, and take the remaining second out of the process to separate it into benzene and toluene. be.

以上のようにして反応器流出液ば、ベンゼン留分を除去
された後、必要に応じトルエン、オルソキシレンを蒸留
分離し、さらにバラキシレンを分離回収し残シの成分を
反応器へ循環させるO 以下本発明を実施例をもって説明する0実施例 ノートy社製合成ナトリウム型モルデナイト11ゼオロ
ン−10DNA”粉末を0.169規定の硝酸カルシウ
ム水溶液で固液比5C1/にり)にて、80〜90℃に
加温し60分間バッチ的にイオン交換処理をした。その
後蒸留水で1回水洗し、再びカルシウムイオン・交換処
理を行ない、この操作を5回くシ返した。その後、蒸留
水で充分′水洗し、110℃で1夜乾燥した。このカル
シウムイオン交換、をした”ゼオロン−10DNA”を
次に、 0.18’7規定の塩化アンモニウム水溶液で
固液比5(i/l1p)にて80〜90℃に加温し、3
0分間バッチ的に脱アルカリ処理した。その後蒸留水で
充分に水洗し、110℃で1夜乾燥した。このモ、ルデ
ナイト粉末にアルミナゾルをバインダーと七てアルミナ
(At203 )換算で15重量%、過レニウム酸水溶
液をレニ、ウム(Re)として(11重量%、リン酸を
リンCP)として5重量%、メタバナジン酸アンモニウ
ム水溶液をバナジウム(V)として1重量%添加して充
分混練した0混線後10〜24メツシユの粒子に成型し
、110℃で1夜乾燥し、その後500℃で空気中2時
間焼成した。
After the benzene fraction is removed from the reactor effluent as described above, toluene and ortho-xylene are separated by distillation as required, further separating and recovering the distal xylene, and the remaining components are recycled to the reactor. The present invention will be explained below with reference to examples.0 Example Note Synthetic sodium type mordenite 11 zeolon-10 DNA'' powder manufactured by y company was mixed with a 0.169 normal calcium nitrate aqueous solution at a solid-liquid ratio of 5C1/Ni) to 80 to 90% ℃ and subjected to batchwise ion exchange treatment for 60 minutes.Then, it was washed once with distilled water, and calcium ion exchange treatment was performed again, and this operation was repeated 5 times.After that, distilled water was used thoroughly. ' Washed with water and dried overnight at 110°C. This calcium ion-exchanged "Zeolon-10 DNA" was then mixed with a 0.18'7N ammonium chloride aqueous solution at a solid-liquid ratio of 5 (i/l1p). Heat to 80-90℃, 3
Batch dealkalization treatment was carried out for 0 minutes. Thereafter, it was thoroughly washed with distilled water and dried at 110°C overnight. In this case, alumina sol was added as a binder to Rudenite powder, 15% by weight in terms of alumina (At203), perrhenic acid aqueous solution as Re, 11% by weight, phosphoric acid as Phosphorus CP, 5% by weight. After adding 1% by weight of vanadium (V) to an ammonium metavanadate aqueous solution and thoroughly kneading the mixture, it was formed into particles of 10 to 24 meshes, dried at 110°C overnight, and then calcined at 500°C in air for 2 hours. .

この触媒を用いてエチルベンゼンを含む供給原料キシレ
ンを反応温度4.50℃、反応圧力10 ”l / a
d G N・Hz F  12moν’rnO1%w/
F80 iP−cat−hr/?−motで反応させた
。供給原料キシレンと反応生成物の組成は次のとおりで
あつた。
Using this catalyst, the feedstock xylene containing ethylbenzene was reacted at a reaction temperature of 4.50°C and a reaction pressure of 10”l/a.
d G N・Hz F 12moν'rnO1%w/
F80 iP-cat-hr/? -mot was reacted. The compositions of the feedstock xylene and the reaction product were as follows.

反応生成液を精留塔で蒸留し、ベンゼン、トルエン留分
を得た。この留分を水素炎検出器をもつガスクロマトグ
ラフィーを用い非芳香族成分を分析し、2=ンゼンを1
00として計算した。
The reaction product liquid was distilled in a rectification column to obtain benzene and toluene fractions. This fraction was analyzed for non-aromatic components using gas chromatography equipped with a hydrogen flame detector.
Calculated as 00.

その結果を表1に水子。The results are shown in Table 1.

次に蒸留したベンゼン、トルエン留分ヲベンゼン基準で
反応で生成するベンゼン量の約2倍量相当分原料、キー
シレンに加えて供給原料としてW/F7jノーc a 
t、 ・h r/?−mo l で同様に反応させた0
供Mt料と反応生成物の組成を分析した結果次のとおシ
であった。
Next, in addition to the distilled benzene and toluene fraction, which is equivalent to about twice the amount of benzene produced in the reaction based on benzene standards, in addition to Kishilene, W/F7J No.
t, ・hr/? −mol 0 reacted in the same way
Analysis of the composition of the supplied Mt material and the reaction product revealed the following.

チ 反応生成液を同様に精留塔で蒸留し、ベンゼントルエン
留分を得た。この留分をガスクロマトグラフィーを用い
て非芳香族成分を分析し、ベンゼンを100として計算
しだ0その結果を表1に示す。さらに、ベンゼン、トル
エン留分をベンゼン基準で反応で生成するベンゼン量ノ
約6倍量相当分原料キシレンに加えて供給原料としW/
F  667−cat−hr/!?−mot で同様に
反応させた。反応生成液は精留塔で蒸留され、非芳香族
成分を同様に分析した。
The reaction product liquid was similarly distilled using a rectification column to obtain a benzene-toluene fraction. This fraction was analyzed for non-aromatic components using gas chromatography, and calculations were made with benzene as 100. The results are shown in Table 1. Furthermore, benzene and toluene fractions were added to the raw material xylene in an amount equivalent to about 6 times the amount of benzene produced in the reaction based on benzene standards, and used as a feedstock W/
F 667-cat-hr/! ? -mot was reacted in the same manner. The reaction product liquid was distilled in a rectification column, and non-aromatic components were similarly analyzed.

表1.よりベンゼンを循環して反応させることにより、
ベンゼンの近傍に沸点を有する非芳香族成分が減少し、
ベンゼン純度が向上することが理解できる。
Table 1. By circulating more benzene and reacting,
Non-aromatic components with boiling points near benzene are reduced,
It can be seen that the benzene purity improves.

なお、この実験ではワン・パスで反応させたが、実際の
フローではベンゼンが反応工程を循環し、そあ一部のベ
ンゼンが取り出されるサイクルを描くのでベンゼン純度
はさらに向上していく。
Note that in this experiment, the reaction was carried out in one pass, but in the actual flow, benzene is circulated through the reaction process, and some benzene is extracted, so the purity of benzene is further improved.

表1 非芳香族成分濃度 ベンゼンを100として計算Table 1 Non-aromatic component concentration Calculated with benzene as 100

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施態様を示すフローチャート
である。 1−・供給原料、5・・−反応器、7・・・蒸留塔、1
2・・−分離装置
FIG. 1 is a flowchart showing one embodiment of the method of the present invention. 1--Feedstock, 5--Reactor, 7--Distillation column, 1
2...-separation device

Claims (1)

【特許請求の範囲】[Claims] (1)−チ′−ベンゼンを含むキシレン類を水素の存在
下、エチルベンゼンの少なくとも一部を脱アルキル化C
,同時°にキシレンを異性化させる方法にお伝て11回
収されるベンゼンの一部を反応工程に循環せしめること
を特徴とするエチルベンゼンを含むキシレン類の変換方
法0
(1) Dealkylating xylenes containing -thi'-benzene to at least a portion of ethylbenzene in the presence of hydrogen
, A method for simultaneously isomerizing xylene 11 A method for converting xylenes containing ethylbenzene characterized by recycling a part of the recovered benzene to the reaction process 0
JP56174558A 1981-11-02 1981-11-02 Conversion of xylene containing ethylbenzene Granted JPS5877828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56174558A JPS5877828A (en) 1981-11-02 1981-11-02 Conversion of xylene containing ethylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174558A JPS5877828A (en) 1981-11-02 1981-11-02 Conversion of xylene containing ethylbenzene

Publications (2)

Publication Number Publication Date
JPS5877828A true JPS5877828A (en) 1983-05-11
JPS6213932B2 JPS6213932B2 (en) 1987-03-30

Family

ID=15980651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174558A Granted JPS5877828A (en) 1981-11-02 1981-11-02 Conversion of xylene containing ethylbenzene

Country Status (1)

Country Link
JP (1) JPS5877828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114127A1 (en) * 2006-03-29 2007-10-11 Toray Industries, Inc. Method for conversion of ethylbenzene and process for production of para-xylene
JP2008106031A (en) * 2006-03-29 2008-05-08 Toray Ind Inc Method for conversion of ethylbenzene and method for production of para-xylene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416432A (en) * 1977-05-09 1979-02-07 Mobil Oil Contactic isomerization method of monocyclic methyllsubstituted aromatic hydrocarbon material
JPS5424834A (en) * 1977-07-22 1979-02-24 Mobil Oil Isomerization method of xylene
JPS5446724A (en) * 1977-09-14 1979-04-12 Atlantic Richfield Co Isomerization of c8 alkyl aromatic hydrocarbons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416432A (en) * 1977-05-09 1979-02-07 Mobil Oil Contactic isomerization method of monocyclic methyllsubstituted aromatic hydrocarbon material
JPS5424834A (en) * 1977-07-22 1979-02-24 Mobil Oil Isomerization method of xylene
JPS5446724A (en) * 1977-09-14 1979-04-12 Atlantic Richfield Co Isomerization of c8 alkyl aromatic hydrocarbons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114127A1 (en) * 2006-03-29 2007-10-11 Toray Industries, Inc. Method for conversion of ethylbenzene and process for production of para-xylene
JP2008106031A (en) * 2006-03-29 2008-05-08 Toray Ind Inc Method for conversion of ethylbenzene and method for production of para-xylene

Also Published As

Publication number Publication date
JPS6213932B2 (en) 1987-03-30

Similar Documents

Publication Publication Date Title
US4341914A (en) Transalkylation process with recycle of C10 hydrocarbons
EP0234684B1 (en) Xylene isomerization process
US4642406A (en) High severity process for xylene production employing a transalkylation zone for xylene isomerization
EP0307113B1 (en) Process for conversion of ethylbenzene in c8 aromatic hydrocarbon mixture
US4783568A (en) Xylene producing process having staged catalytic conversion of ethylbenzene
US6369287B1 (en) Process for co-production and separation of ethylbenzene and paraxylene
EP1109761B1 (en) Para-xylene production process
US4697039A (en) Xylene producing process having staged catalytic conversion of ethylbenzene
EP0230655A1 (en) Improved dehydrocyclodimerization process
US6593504B1 (en) Selective aromatics transalkylation
US6518472B1 (en) Stabilized dual bed xylene isomerization catalyst system
KR101357387B1 (en) Method for conversion of ethylbenzene and process for production of para-xylene
EP0005909B1 (en) Isomerisation of alkyl aromatics using a gallium containing aluminosilicate catalyst
EP0042754B1 (en) Conversion of xylenes containing ethyl benzene
US6177604B1 (en) Process for co-production and separation of ethylbenzene and paraxylene
US4957891A (en) Catalyst for isomerizing alkylaromatics
US3919339A (en) Hydrogenolysis/isomerization process
JPS63196528A (en) Manufacture of xylene by use of both isomerizing/transalkylating zone
US5998688A (en) Xylene isomerization process using toluene co-feed
US4886927A (en) Process for isomerization of alkylaromatics
JPS5877828A (en) Conversion of xylene containing ethylbenzene
JP5292699B2 (en) Method for converting ethylbenzene and method for producing paraxylene
JP4423577B2 (en) Method for isomerizing an aromatic fraction containing 8 carbon atoms using a catalyst containing a zeolite having an EUO type structure
JPH06298675A (en) Isomerization of dimethylnaphthalene
CA2315101A1 (en) Meta-xylene production process