JPS5877744A - Production of hollow cast ingot - Google Patents

Production of hollow cast ingot

Info

Publication number
JPS5877744A
JPS5877744A JP17734581A JP17734581A JPS5877744A JP S5877744 A JPS5877744 A JP S5877744A JP 17734581 A JP17734581 A JP 17734581A JP 17734581 A JP17734581 A JP 17734581A JP S5877744 A JPS5877744 A JP S5877744A
Authority
JP
Japan
Prior art keywords
mold
molten steel
hollow
steel
solidified shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17734581A
Other languages
Japanese (ja)
Inventor
Tetsuya Fujii
徹也 藤井
Norio Sumita
則夫 住田
Masao Oguchi
征男 小口
Toshihiko Emi
江見 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17734581A priority Critical patent/JPS5877744A/en
Publication of JPS5877744A publication Critical patent/JPS5877744A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/04Casting hollow ingots

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a hollow cast of good quality without wasting unsolidified steel by increasing the gaseous pressure on the surface of the molten steel in a mold at the point of the time when the solidified shell of a prescribed thickness is formed after charging of the molten steel into the mold and forcing and discharging the unsolidified steel into an intermediate vessel. CONSTITUTION:A nozzle 4A of a ladle 4 is opened and molten steel 8 is charged through an intermediate vessel 6 into a mold 2. Upon completion of the charging, the molten steel 8 in the mold 2 begins to solidify from the mold wall, and after a specified time, the molten steel forms a solidified shell 30 of a prescribed thickness. Thereupon the pressure in a top cover 18 is increased to force and discharge the unsolidified steel 8 in the mold 2 into the vessel 6 so as to leave no molten steel 8 in the mold 2; thereafter a sliding gate 14 is closed. An oil hydraulic cylinder 24 is driven to draw a hollow solidified shell 30 from the inside of the mold 2, whereby a hollow steel ingot is obtained.

Description

【発明の詳細な説明】 本発明は中空鋼塊の製造方法に係り、特に簡単に大量生
産のできる製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a hollow steel ingot, and particularly to a method for manufacturing a hollow steel ingot that can be easily mass-produced.

従来、中空鋼塊は、遠心鋳造法や中子法によって製造さ
れている。遠心鋳造法は、円筒状鋳型内に溶鋼を注入し
、円筒鋳型を高速で回転させて遠心力を利用して中空体
を製造する方法であり、遠心力によって溶鋼中の非金属
介在物やガスが分離されて緻密で健全な鋳物が得られ、
を九押湯や湯口が不要であるから鋳造歩留が高い等の長
所を有する。この方法は薄肉の中空体の製造に適してい
るが、厚肉の場合は偏析が助長され厚み方向の濃度分布
の偏差が大となって品質上の問題を生じる。
Conventionally, hollow steel ingots have been manufactured by a centrifugal casting method or a core method. Centrifugal casting is a method in which molten steel is injected into a cylindrical mold, the cylindrical mold is rotated at high speed, and a hollow body is manufactured using centrifugal force. is separated and a dense and sound casting is obtained.
It has the advantage of high casting yield because it does not require a boiler or sprue. This method is suitable for manufacturing thin-walled hollow bodies, but in the case of thick-walled bodies, segregation is promoted and the deviation of the concentration distribution in the thickness direction becomes large, causing quality problems.

また設備費が高額であり、1回当りの溶解量が100を
以上の大型精錬炉に見合う鋳造設備を設置するためには
多額の設備費用を要する欠点がある。
Moreover, the equipment cost is high, and there is a drawback that a large amount of equipment cost is required to install casting equipment suitable for a large smelting furnace where the amount of melting per time is 100 or more.

中子法は遠心鋳造法と比較して厚肉中空体の製造に適し
、鋳型の中央部に回転する水冷中子を設け、鋳型と中子
の間に溶鋼を供給し中子に接する凝固殻がある程度成長
した後、中子を連続的に上昇させて引抜く方法であるー
、更に鋳型の中央部に円形もしくは異形の水平断面を有
する金属板中子を設置し、金属板中子の内部を中空とし
て内部を水冷、冷却気体吹込み、あるいは輻射熱吸収体
の充填等によって凝固条件を調整する方法4ある。
Compared to the centrifugal casting method, the core method is more suitable for manufacturing thick-walled hollow bodies. A rotating water-cooled core is installed in the center of the mold, and molten steel is supplied between the mold and the core, and a solidified shell in contact with the core is used. After the core has grown to a certain extent, the core is raised continuously and pulled out.Furthermore, a metal plate core with a circular or irregular horizontal cross section is installed in the center of the mold, and the inside of the metal plate core is removed. There are four methods in which the solidification conditions are adjusted by making the tube hollow and cooling the inside with water, blowing cooling gas, or filling the tube with a radiant heat absorber.

これらの中子法は中子の製作、据付けの複雑さ、中空鋼
塊の表面性状の不良および内面の割れなどの問題があり
、実用的で大量生産に適した方法とはいい難い欠点があ
る。
These core methods have problems such as the complexity of core manufacturing and installation, poor surface quality of the hollow steel ingot, and cracks on the inner surface, and have drawbacks that make it difficult to say that it is a practical method suitable for mass production. .

又凝固途中の一塊から未凝固溶鋼を排出すれば容易に中
空鋼塊が得られるという原理がよく知られているが、特
殊な装置を用いないと未凝固溶鋼の有効利用が図り得な
い丸め、排出法による中空鋼塊製造は実用的な方法にな
り得なかった。
Furthermore, the principle that a hollow steel ingot can be easily obtained by discharging the unsolidified molten steel from a lump in the middle of solidification is well known, but in rounding, the effective use of unsolidified molten steel cannot be achieved without the use of special equipment. Manufacturing hollow steel ingots by the discharge method could not become a practical method.

本発明の目的は上記従来技術の問題点を解決し、中子を
使用せずしかも未凝固溶鋼を有効に利用できる中空鋼塊
の製造方法を提供するにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for manufacturing a hollow steel ingot that does not use a core and can effectively utilize unsolidified molten steel.

本発明の要旨とするところは次のとお抄である。The gist of the present invention is as follows.

すなわち取鍋よりの溶鋼を収容する中間容器から湯道を
経て下注ぎ法にて鋳型に溶鋼を注入する段階と、前記鋳
型内に所定の厚さの凝固殻が生成された時点で該鋳型内
の溶鋼面を気体によって加圧し未凝固溶鋼を前記中間容
器に圧送排出する段階と、形成された前記中空凝固殻を
上方に引抜く段階と、を有して成ることを特徴とする中
空鋼塊の製造方法である。
Specifically, there is a step in which molten steel is poured from an intermediate container containing molten steel from a ladle into a mold by a bottom pouring method through a runner, and when a solidified shell of a predetermined thickness is generated in the mold, A hollow steel ingot characterized by comprising the steps of pressurizing the molten steel surface with gas and pumping and discharging the unsolidified molten steel into the intermediate container, and pulling the formed hollow solidified shell upward. This is a manufacturing method.

本発明の詳細ならびに実施例を添付図面を参照して説明
する。先ず本発明の実施に使用する装置について記載す
る。本発明による中空鋼塊の製造には下注ぎ法を利用す
るが、鋳型2と取鍋4の中間に中間容器6を設け、取鍋
4からの溶鋼8を一時貯溜するようになっている。中間
容器6と鋳型2との間は通常の下注ぎ法と同様に耐火製
円筒れんが10より成る湯道12にて連通され、中間容
器6の下部出側にはスライディングゲート14が設けら
れ溶鋼8の注入を任意に制御することができる。
Details and embodiments of the invention will now be described with reference to the accompanying drawings. First, the apparatus used to carry out the present invention will be described. A bottom pouring method is used to manufacture the hollow steel ingot according to the present invention, and an intermediate container 6 is provided between the mold 2 and the ladle 4 to temporarily store the molten steel 8 from the ladle 4. The intermediate container 6 and the mold 2 are communicated with each other by a runner 12 made of fireproof cylindrical bricks 10, as in the usual bottom pouring method, and a sliding gate 14 is provided at the lower exit side of the intermediate container 6 to allow the molten steel 8 to flow. injection can be controlled arbitrarily.

本発明による中空鋼塊の製造方法は上記要旨のとおり@
型2内に溶鋼8を注入後、所定厚さの凝固殻が生成され
た時点で鋳型2内の溶鋼面上の気体圧力を上昇させて未
凝固溶鋼を中間容器6に圧送することにより排出する方
法をとったので鋳型2の上部には0リング等のシール材
16を介して密閉室構造の上蓋18が設けられ、上蓋1
8には加圧用気体の導入管20と排出管22が設けられ
ているほか加圧時の気体圧力制御用の制御バルブを備え
ている。
The method for manufacturing a hollow steel ingot according to the present invention is as summarized above.
After pouring the molten steel 8 into the mold 2, when a solidified shell of a predetermined thickness is generated, the gas pressure on the surface of the molten steel in the mold 2 is increased and the unsolidified molten steel is forced into the intermediate container 6 and discharged. Since this method was adopted, an upper lid 18 with a closed chamber structure is provided on the upper part of the mold 2 via a sealing material 16 such as an O-ring, and the upper lid 1
8 is provided with an inlet pipe 20 and an exhaust pipe 22 for pressurizing gas, and is also provided with a control valve for controlling the gas pressure during pressurization.

更に上蓋18の上部には油圧シリンダー24が設けられ
、そのピストン26は上蓋18内を下方に伸びて中空凝
固殻引抜き装置28と連結されている。
Furthermore, a hydraulic cylinder 24 is provided in the upper part of the upper cover 18, and its piston 26 extends downward within the upper cover 18 and is connected to a hollow solidified shell extraction device 28.

次に上記装置を便用する本発明による中空−塊の製造方
法について説明する。すなわち先ず油圧シリンダー24
のピストン26を伸ばしてその先端の中空凝固殻引抜き
装置28に保持金具29を装置し、保持金具29の下端
が十分注入される浴ms内にQ[する位置に垂下する。
Next, a method for manufacturing a hollow block according to the present invention which utilizes the above-mentioned apparatus will be explained. That is, first, the hydraulic cylinder 24
The piston 26 is extended and a holding fitting 29 is attached to the hollow solidified shell extracting device 28 at its tip, and the lower end of the holding fitting 29 hangs down to a position where it is fully injected into the bath ms.

この場合の上418内の圧力は大気圧でよい。In this case, the pressure within the top 418 may be atmospheric pressure.

かくの妬くして上記装置の整備が完了すると、収′@4
のノズル4Aを開いて溶鋼8を中間容器6全経由して鋳
型2に注入する。この場合スライディングゲート14は
開のままとし、鋳型2内の溶鋼8のレベルが所定位置に
達したならば、@’鍋4からの溶鋼8の注入を中止する
か、もしくはスライディングゲート1令を閉として鋳型
2への溶鋼8の注入を中止する。鋳型2内の溶鋼8のレ
ベルは中間容器6のレベルと同一であるので予め中間容
器6の内壁にマークする等によって鋳#12内の予定レ
ベルを知ることができる。
After completing the maintenance of the above-mentioned equipment, the
The nozzle 4A is opened and the molten steel 8 is injected into the mold 2 through the intermediate container 6. In this case, the sliding gate 14 is left open, and when the level of the molten steel 8 in the mold 2 reaches a predetermined level, the injection of the molten steel 8 from the pot 4 is stopped, or the sliding gate 1 is closed. As a result, the injection of molten steel 8 into the mold 2 is stopped. Since the level of the molten steel 8 in the mold 2 is the same as the level in the intermediate container 6, the expected level in the casting #12 can be known by marking the inner wall of the intermediate container 6 in advance.

溶鋼8の注入が完了すると鋳型2内の溶鋼8は鋳型壁か
ら凝固を開始し、一定時間後には所定厚さの凝固殻30
を得ることができる。この凝固殻30の厚さは溶鋼注入
時の溶鋼8の温度と注入完了時からの経過時間によって
知ることができる。
When the injection of molten steel 8 is completed, the molten steel 8 in the mold 2 starts solidifying from the mold wall, and after a certain period of time, a solidified shell 30 of a predetermined thickness is formed.
can be obtained. The thickness of the solidified shell 30 can be determined from the temperature of the molten steel 8 at the time of pouring the molten steel and the elapsed time from the completion of pouring.

凝固殻30が所定の厚さになる時点を予想して上蓋18
内の圧力を増加し鋳型2内の未凝固溶鋼8を中間容器6
に圧送排出し、少くとも鋳型2内に溶鋼8が残らないよ
うにした後、スライディングゲート14を閉とする。
The upper lid 18 is installed in anticipation of the point in time when the solidified shell 30 reaches a predetermined thickness.
The unsolidified molten steel 8 in the mold 2 is transferred to the intermediate container 6 by increasing the pressure inside.
After the molten steel 8 is pumped and discharged so that at least no molten steel 8 remains in the mold 2, the sliding gate 14 is closed.

この時点では中空凝固殻引抜き装置28に装着し九保持
金具29は形成された中空凝固殻30の上端に完全に溶
着しているので、油圧シリンダー24を駆動して鋳型2
内から中空凝固殻30を引抜くことができる。この中空
凝固殻30の引抜きを容易ならしめるために鋳型2には
上広鋳型を用いることが好適であり、更に機械加工され
て内面に凹凸のない銅製水冷鋳型を用いた方がよい。中
窒凝固fi30の取出しは上蓋18の鋳型2への連結を
解放することによって容易に行なうことができる。
At this point, the holding fitting 29 attached to the hollow solidified shell drawing device 28 is completely welded to the upper end of the formed hollow solidified shell 30, so the hydraulic cylinder 24 is driven to remove the mold.
The hollow solidified shell 30 can be pulled out from within. In order to facilitate the drawing out of the hollow solidified shell 30, it is preferable to use a wide-top mold for the mold 2, and it is also preferable to use a copper water-cooled mold that is machined and has no irregularities on its inner surface. The middle nitrogen solidified fi 30 can be easily taken out by releasing the connection of the upper lid 18 to the mold 2.

中空凝固殻30の引抜き取出しが完了した時点で、中空
凝固殻引抜き装置28に新たな保持金具29を装着し鋳
型装置を整備し、取1sJ4から製造する中空−塊貰せ
に相当する溶鋼8を中間容器6に補給し、上記の操作を
繰返すことによって断続的に中空鋼塊を製造することが
できる。
When the drawing out of the hollow solidified shell 30 is completed, a new holding fitting 29 is attached to the hollow solidified shell drawing device 28, the mold device is maintained, and the molten steel 8 corresponding to the hollow lump produced from the hollow solidified shell 30 is manufactured from the hollow solidified shell 30. By replenishing the intermediate container 6 and repeating the above operations, hollow steel ingots can be manufactured intermittently.

なお本発明の実癩において上蓋18と鋳型20に一、l
ll1との接触部の気密保持には耐熱ゴム製の0す/グ
をゾール材16として使用することが好ましい。
In addition, in the actual leprosy of the present invention, the upper lid 18 and the mold 20 are
It is preferable to use 0S/G made of heat-resistant rubber as the sol material 16 to keep the contact area with ll1 airtight.

又凝固殻厚さができるだけ一定である多数個の中空−塊
を断続的に製造するだめには操業中を通じて鋳型2の熱
的采件を一定に保つ必要がある。
Furthermore, in order to continuously produce a large number of hollow bodies whose solidified shell thickness is as constant as possible, it is necessary to maintain the thermal conditions of the mold 2 constant throughout the operation.

そのためには、鋳型2内への熱の蓄積が少ないことが必
要であり、熱伝導のすぐれた銅製の鋳型を水冷ジャケッ
ト32を使用して水冷することが好ましい。
For this purpose, it is necessary that the accumulation of heat in the mold 2 is small, and it is preferable to water-cool a mold made of copper with excellent heat conductivity using a water-cooling jacket 32.

実施例 直径が300m、肉厚的60−1長さ2mの中空円筒状
の鋼塊の製造を添付図面によシ説明する。
EXAMPLE The production of a hollow cylindrical steel ingot with a diameter of 300 m and a wall thickness of 60-1 and a length of 2 m will be explained with reference to the accompanying drawings.

鋳鉄製定盤34上に下面内径300111+、上面内径
340m、長さ2500mの円筒状鋳型2を立役し、耐
火性の円筒れんが10で湯道12を作った。中間容器6
と湯道12の接続部にはスライディングゲート14を設
け、鋳型2への溶鋼注入および注入速度を制御した。銅
製鋳型2の外面には水冷ジャケット32を設は水冷構造
とした。
A cylindrical mold 2 with a lower inner diameter of 300111+, an upper inner diameter of 340 m, and a length of 2500 m was stood on a cast iron surface plate 34, and a runner 12 was made with fire-resistant cylindrical bricks 10. Intermediate container 6
A sliding gate 14 was provided at the connection between the runner 12 and the runner 12 to control the injection of molten steel into the mold 2 and the injection speed. A water cooling jacket 32 was provided on the outer surface of the copper mold 2 to provide a water cooling structure.

上記の装置を使用して、化学組成がC: 0.13チ、
8i: 0.25 s、Mn:0.78%、P:0.0
18チ、s:o、oosチ、At:0.035係である
溶鋼8を取鍋4から中間容器6に注入シフ、ついでスラ
イディングゲート14を開いて鋳型2に溶鋼を注入した
。鋳型2の上部には中空凝固殻引抜き装置28に装着さ
れた保褥金具29が予め垂下されていた。鋳型2内に所
定量の溶鋼を注入するのに約   30秒を要した。2
40秒静置後、上蓋18内に加圧用Arガスを導入し、
気体゛圧力を絶対圧で2.7気圧とし未凝固溶鋼8を中
間容器6内に圧送排出した。その後直ちに油圧シリンダ
ー24を作動させて凝固殻30を上方に引抜いた。引抜
き完了後、上蓋18内の気体排出管22の制御パルプを
開として、鋳型2内の圧力を大気圧に戻し、中間容器6
内の溶鋼を@型2内に再注入した。これと同時に上蓋1
8と引抜いた中空凝固殻3oを鋳型2上方から取除き、
別に用意されている他の上蓋18と引抜き装置26を鋳
型2上面にセットした。
Using the above apparatus, the chemical composition is C: 0.13,
8i: 0.25 s, Mn: 0.78%, P: 0.0
Molten steel 8 of 18, s: o, oos, At: 0.035 was injected from the ladle 4 into the intermediate container 6, and then the sliding gate 14 was opened and the molten steel was poured into the mold 2. A cushion fitting 29 attached to a hollow solidified shell drawing device 28 was previously suspended from the upper part of the mold 2. It took about 30 seconds to inject a predetermined amount of molten steel into mold 2. 2
After leaving it still for 40 seconds, pressurizing Ar gas was introduced into the upper lid 18,
The gas pressure was set to 2.7 atmospheres in absolute terms, and the unsolidified molten steel 8 was pumped and discharged into the intermediate container 6. Immediately thereafter, the hydraulic cylinder 24 was operated to pull the solidified shell 30 upward. After drawing is completed, the control pulp of the gas exhaust pipe 22 in the upper lid 18 is opened to return the pressure in the mold 2 to atmospheric pressure, and the intermediate container 6 is
The molten steel inside was reinjected into @type 2. At the same time, the upper lid 1
8 and the pulled-out hollow solidified shell 3o are removed from above the mold 2,
Another separately prepared upper cover 18 and a pulling device 26 were set on the upper surface of the mold 2.

上記の操作を9回繰返し、9個の中空鋼塊を製造したが
、この操作を通じて、適時取鍋4がら中間容器6に溶鋼
8を補給し、中間容器6内の溶鋼レベルをほぼ一定に維
持した。
The above operation was repeated 9 times to produce 9 hollow steel ingots. Through this operation, molten steel 8 was replenished from the ladle 4 to the intermediate container 6 at appropriate times, and the molten steel level in the intermediate container 6 was maintained almost constant. did.

得られた中空鋼塊は初回の鋼塊を除いて、平均内厚が6
1咽、範囲が57〜64■のほぼ均一な肉厚を有する中
空鋼塊が得られた。
The obtained hollow steel ingots, excluding the first steel ingot, have an average inner thickness of 6
A hollow steel ingot with a substantially uniform wall thickness ranging from 57 to 64 cm was obtained.

−塊の表面と内面について、肉眼にて表面欠陥を観察し
たが、割れなどの欠陥は皆無であり満足すべき品質の中
空鋼塊が得られた。
- Surface defects were observed with the naked eye on the surface and inner surface of the ingot, but there were no defects such as cracks, and a hollow steel ingot of satisfactory quality was obtained.

本発明は、上記の実施例からも明らかな如く、未凝固溶
鋼を高圧気体によって中間容器に圧送排出することによ
り、未凝固溶鋼を無駄にすることなく、品質の良好な中
空鋼塊を製造することができた。
As is clear from the above embodiments, the present invention produces a hollow steel ingot of good quality without wasting unsolidified molten steel by pumping and discharging unsolidified molten steel into an intermediate container using high-pressure gas. I was able to do that.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施例を示す鋳造装置の模式断面図
である。 2・・・鋳型     4・・・取鍋 6・・・中間容器   8・・・溶鋼 30・・・凝固殻 代理人   中  路  武  雄
The accompanying drawing is a schematic sectional view of a casting apparatus showing an embodiment of the present invention. 2... Mold 4... Ladle 6... Intermediate container 8... Molten steel 30... Solidified shell agent Takeo Nakaji

Claims (1)

【特許請求の範囲】[Claims] (1)取鍋よりの溶鋼を収容する中間容器から湯道を経
て下注ぎ法にて鋳型に溶鋼を注入する段階と、前記鋳型
内に所定の厚さの凝固殻が生成された時点で該鋳型内の
溶鋼面を気体によって加圧し未凝固溶鋼を前記中間容器
に圧送排出する段階と、形成された前記中空凝固殻を上
方に引抜く段階と、を有して成ることを特徴とする中空
鋼塊の製造方法。
(1) A step in which molten steel is poured from an intermediate container containing molten steel from a ladle into a mold by a bottom pouring method through a runner, and when a solidified shell of a predetermined thickness is generated in the mold. A hollow steel molding method comprising the steps of pressurizing the molten steel surface in the mold with gas and pumping and discharging the unsolidified molten steel into the intermediate container, and pulling the formed hollow solidified shell upward. Method of manufacturing steel ingots.
JP17734581A 1981-11-05 1981-11-05 Production of hollow cast ingot Pending JPS5877744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17734581A JPS5877744A (en) 1981-11-05 1981-11-05 Production of hollow cast ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17734581A JPS5877744A (en) 1981-11-05 1981-11-05 Production of hollow cast ingot

Publications (1)

Publication Number Publication Date
JPS5877744A true JPS5877744A (en) 1983-05-11

Family

ID=16029337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17734581A Pending JPS5877744A (en) 1981-11-05 1981-11-05 Production of hollow cast ingot

Country Status (1)

Country Link
JP (1) JPS5877744A (en)

Similar Documents

Publication Publication Date Title
US4476911A (en) Diecasting method for producing cast pieces which are low in gas, pores and oxides, as well as diecasting machine for implementing the method
US2363695A (en) Process for continuous casting
US3746077A (en) Apparatus for upward casting
US2565959A (en) Method of casting metal continuously
US3814170A (en) Apparatus for melting and casting material under pressure
US3913660A (en) Chill mold for casting pistons
US3672432A (en) Bottom poured ingots
US3610320A (en) Unit for manufacturing hollow metal ingots
US4527608A (en) Method for inoculating liquid metal cast under low pressure
US3066364A (en) Pouring technique for continuous casting
US3658117A (en) Continuous metal casting method and apparatus
US3995680A (en) Method of cooling piston blank molds
JPS5877744A (en) Production of hollow cast ingot
US2747245A (en) Process for continuous casting of metal billets
JPH08141731A (en) Casting method and casting device
FI77587C (en) Apparatus for casting a metal pipe, especially a cast iron pipe for continuous vertical casting.
WO1990000101A1 (en) Low pressure casting of metal
US3929185A (en) Apparatus for treating cast materials in the molten state
US2853754A (en) Continuous hollow casting
JPS5897463A (en) Continuous casting method for metallic pipe
US4355680A (en) Method and apparatus for continuous casting of hollow articles
US5232046A (en) Strand casting apparatus and method
US4100960A (en) Method and apparatus for casting metals
JPS5858960A (en) Production of hollow steel ingot
JPH11291000A (en) Continuous casting, particularly, steel continuous casting equipment